
74 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Reproducible Documents with PythonTeX

Geoffrey M Poore‡∗

http://www.youtube.com/watch?v=G-UDHc2UVOg

F

Abstract—PythonTeX is a LaTeX package that allows Python code in a LaTeX
document to be executed. This makes possible reproducible documents that
combine analysis with the code required to perform it. Writing such documents
can be more efficient because code is adjacent to its output. Writing is also less
error-prone since results may be accessed directly from within the document,
without copy-and-pasting. This paper provides an overview of PythonTeX, in-
cluding Python output caching, dependency tracking, synchronization of errors
and warnings with the LaTeX document, conversion of documents to other for-
mats, and support for languages beyond Python. These features are illustrated
through an extended, step-by-step example of reproducible analysis performed
with PythonTeX.

Index Terms—reproducible science, reproducible documents, dynamic report
generation

Introduction

The concept of "reproducible documents" is not new—indeed,
there are at least two definitions, each with its own history.

According to one definition, a reproducible document is a
document whose results may be conveniently reproduced via a
makefile or a similar approach [Schwab]. Systems such as Mada-
gascar [MAD] and VisTrails [VIS] represent a more recent and
sophisticated version of this idea. The actual writing process for
this type of document closely resembles the unreproducible case,
except that the author must create the makefile (or equivalent), and
thus it is easier to ensure that figures and other results are current.

According to another definition, a reproducible document is
a document in which analysis code is embedded. The document
itself both generates and reports results, using external data. This
approach is common among users of the R language. Sweave has
allowed R to be embedded in LaTeX since 2002 [Leisch]. The
knitr package provides similar but more powerful functionality,
and has become increasingly popular since its release in 2011
[Xie]. This approach to reproducible documents has roots in
literate programming, through noweb [Ramsey] ultimately back to
Knuth’s original concept [Knuth]. Knuth suggested that programs
be written as literature, interweaving code and documentation in
a form geared toward human readers. Similarly, a reproducible
document with embedded code integrates code and document into
a unified whole. The writing process for such a document can
be significantly different from the unreproducible case because of

* Corresponding author: gpoore@uu.edu
‡ Union University

Copyright © 2013 Geoffrey M Poore. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

the tight integration that is possible. For example, it is possible to
create dynamic reports with Sweave and knitr that automatically
accommodate whatever data is provided.

These two definitions of a reproducible document need not
be mutually exclusive. They might be thought of as two ends
of a continuum, with a given project potentially benefiting from
some combination. The makefile-style approach may be more
appropriate for large codebases and complex computations, but
even then, it can be convenient to embed plotting code in reports.
Likewise, even a relatively simple analysis might benefit from
externalizing some code and managing it via the makefile-style
approach, rather than embedding everything.

This paper is primarily concerned with the second type of
reproducible document, in which code is embedded. In the Python
ecosystem, there are several options for creating such documents.
The IPython notebook provides a highly interactive interface in
which code, results, and text may be combined [IPY]. Repro-
ducible documents may be created with Sphinx [Brandl], though
the extent to which this is possible strongly depends on the
extensions employed. Pweave is essentially Sweave for Python,
with support for reST, Sphinx, and markdown in addition to
LaTeX [Pastell]. There have also been LaTeX packages that allow
Python code to be included in LaTeX documents: python.sty
[Ehmsen], SageTeX [Drake], and SympyTeX [Molteno]. Python-
TeX is the most recent of these packages.

The LaTeX-based approach has some drawbacks. It is less in-
teractive than the IPython notebook. And it can be less convenient
than a non-LaTeX system for converting documents to formats
such as HTML. At the same time, a LaTeX package has several
significant advantages. Since the user directly creates a valid La-
TeX document, the full power of LaTeX is immediately accessible.
A LaTeX package can also provide superior LaTeX integration
compared to other approaches that do support LaTeX but are not
integrated at the package level. For example, PythonTeX makes it
possible to create LaTeX macros that contain Python code.

The PythonTeX package builds on previous LaTeX packages,
emphasizing performance and usability. Python code may be
divided into user-defined sessions, which automatically run in
parallel via the multiprocessing module [MULT]. All code
output is cached and the user has fine-grained control over when
code will be re-executed, including the option to track document
dependencies. This allows a PythonTeX document to be compiled
just as quickly as a normal LaTeX document so long as no Python
code is modified. Python errors and warnings are synchronized
with the document’s line numbering, so that their source is
easily located. PythonTeX documents may be easily converted to
plain LaTeX documents suitable for journal submission or format

http://www.youtube.com/watch?v=G-UDHc2UVOg
mailto:gpoore@uu.edu

REPRODUCIBLE DOCUMENTS WITH PYTHONTEX 75

conversion. While PythonTeX’s focus is on Python, the package
may extended to support additional languages.

PythonTeX Overview

Using the PythonTeX package is as simple as adding the command
\usepackage{pythontex}

to the preamble of a LaTeX document and slightly modifying
the way you compile the document. When a document using
the PythonTeX package is first compiled, all of the Python code
contained in the document is saved to an auxiliary file (with de-
limiters). To execute the Python code, you simply run the provided
script pythontex.py with the document name as an argument.
In a standard PythonTeX installation, a symlink or launching
wrapper for this script is created in your TeX installation’s bin/
directory, so that the script will be on your PATH. The next time
you compile the document, all Python-generated content will be
included.

PythonTeX is compatible with all standard LaTeX engines
(executable binaries): pdfTeX, XeTeX, and LuaTeX. It has been
tested with TeX Live [TL] and MiKTeX [MIK], and should work
with other distributions.

Commands and Environments

PythonTeX provides a number of LaTeX commands and environ-
ments. These can be used to run any valid Python code; even
imports from __future__ are allowed, so long as they occur
before any other code.

The code environment runs whatever code is provided. By
default, any printed content is automatically included in the
document. For example,
\begin{pycode}
my_string = 'A string from Python!'
print(my_string)
\end{pycode}

creates
A string from Python!

The block environment also executes its contents. In this
case, the code is typeset with highlighting from Pygments [PYG].
Printed content is not automatically included, but may be brought
in via the \printpythontex command. For example,

\begin{pyblock}
print(my_string)
\end{pyblock}
\begin{quotation}
\printpythontex
\end{quotation}

typesets

print(my_string)

A string from Python!

All commands and environments take an optional argument
that specifies the session in which the code is executed. If a session
is not specified, code is executed in a default session. In the case
above, the variable my_string was available to be printed in
the block environment because the block environment shares the
same default session as the code environment.

Inline versions of the code and block environments are pro-
vided as the commands \pyc and \pyb. A special command \py

is provided that returns a string representation of its argument. For
example, \py{2**8} yields 256.

PythonTeX also provides a verbatim command \pyv and
environment pyverbatim. These simply typeset highlighted
code; nothing is executed. Descriptions of additional commands
and environments are available in the documentation.

Caching

All Python output is cached. PythonTeX also tracks the exit status
of each session, including the number of errors and warnings
produced (it parses stderr). By default, code is only re-executed
by pythontex.py when it has been modified or when it
produced errors on the last run.

That approach is most efficient for many cases, but sometimes
the user may need finer-grained control over code execution. This
is provided via the package option rerun, which accepts five
values:

• never: Code is never executed; only syntax highlighting
is performed.

• modified: Only modified code is executed.
• errors: Only modified code or code that produced errors

on the last run is executed.
• warnings: Code is executed if it was modified or if it

produced errors or warnings previously.
• always: Code is always executed.

Tracking Dependencies and Created Files

Code may need to be re-executed not just based on its own modi-
fication or exit status, but also based on external dependencies.

PythonTeX includes a Python class that provides several
important utilities. An instance of this class called pytex is
automatically created in each session. The utilities class provides
an add_dependencies() method that allows dependencies
to be specified and tracked. Whenever PythonTeX runs, all
dependencies are checked for modification, and all code with
changed dependencies is re-executed (unless rerun=never).
By default, modification is detected via modification time
(os.path.getmtime()) [OSPATH], since this is fast even for
large data sets. File hashing may be used instead via the package
option hashdependencies.

The PythonTeX utilities class also provides an
add_created() method. This allows created files to be
deleted automatically when the code that created them is
re-executed, preventing unused files from accumulating. For
example, if a figure is saved under one name, and later the name
is changed, the old version would be deleted automatically if it
were tracked.

When there are only a few dependencies or created files, it
may be simplest to specify them manually. For example, the line

pytex.add_dependencies('data.txt')

could be added after data.txt is loaded. In cases where the
manual approach is tedious, the entire tracking process may be
automated. A custom version of open() could be defined in
which each file opened is tracked based on whether it is opened
for reading (dependency) or writing (created).

Synchronizing Errors and Warnings

When pythontex.py runs, it prints an annotated version of the
stderr produced by user code. Before each error or warning, a

76 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

message is inserted that specifies the corresponding line number
in the document. For example, if the code environment

\begin{pycode}
s = 'Python
\end{pycode}

were on line 20 of a document, then when PythonTeX runs, it
would return a message in the form

* PythonTeX stderr - error on line 20:
File "<scriptname>", line 46
s = 'Python

^
SyntaxError: EOL while scanning string literal

where <scriptname> is the name of the temporary script that
was executed. This greatly simplifies debugging.

PythonTeX provides a sophisticated system that parses
stderr and synchronizes line numbers in errors and warnings
with the document’s line numbering. As PythonTeX assembles
the code to be executed, it creates a record of where each chunk
of code originated in the document. The actual scripts that are
executed are assembled by inserting user code into predefined
templates that provide access to the PythonTeX utilities class and
additional functionality. This means that the line numbers of the
code that is actually executed differ not only from the document’s
line numbering, but also from the user code’s numbering. In the
example above, the error occurred on line 20 of the document, on
line 46 of the code that was actually executed, and on line 1 of
the user code. PythonTeX keeps a running tally of how many lines
originated in user code versus templates, so that the correct line
number in the document may be calculated.

In some cases, errors or warnings may only reference a
line number in the file in which they occur. For example, if
warnings.warn() [WAR] is used in an imported module, a
line number in the module will be referenced, but a line number
in the code that imported the module will not. The previous
approach to synchronization fails. To deal with this scenario,
PythonTeX writes delimiters to stderr before each command
and environment. This allows messages that do not reference a
line number in the user’s code to be tracked back to a single
command or environment in the document.

Converting PythonTeX Documents

One disadvantage of a reproducible document created with
PythonTeX is that it mixes plain LaTeX with Python code. Many
publishers will not accept documents that require specialized
packages. In addition, some format converters for LaTeX docu-
ments only support a subset of LaTeX commands—so PythonTeX
support is not an option.

To address these issues, PythonTeX includes a
depythontex utility. It creates a version of a document
in which all Python code has been replaced by its output. There is
no way to tell that the converted document ever used PythonTeX.
Typically, the converted document is a perfect copy of the
original, though occasionally spacing may be slightly different
based on the user’s choice of depythontex options. A few
features are especially noteworthy.

• Any Python-generated figures that were included in the
original document will be included in the converted docu-
ment; the converted document still checks the same paths
for figures. It is possible to configure PythonTeX so that
figures created by matplotlib [MPL] and other plotting

libraries are automatically included in the document, with-
out the user needing to enter an \includegraphics
command. (Additional details are provided in the doc-
umentation.) Even in these cases, figures are correctly
included in the converted document.

• Any code highlighted by PythonTeX in the original version
can also be highlighted in the depythontex version.
Highlighted code can be converted into the format of
the listings [LST], minted [MINT], or fancyvrb
[FV] packages for LaTeX. Line numbering and syntax
highlighting are preserved if the target package supports
them.

When Python Is Not Enough

While PythonTeX is focused on providing Python-LaTeX integra-
tion, most of the LaTeX interface is language-agnostic. In many
cases, adding support for an additional language is as simple as
providing two templates and creating a new instance of a Python
class that defines languages. For example, support for Ruby has
just been added to PythonTeX. This required two Ruby templates
and a few lines of Python—only about 70 lines of code total.
Most of the Ruby code simply implements a Ruby version of the
PythonTeX utilities class, which manages dependencies, created
files, and LaTeX integration. Part of this process also involved
specifying the format of Ruby errors, warnings, and associated line
numbers, so that Ruby errors and warnings can be synchronized
with the document.

Support for additional languages will be added in the near
future.

Case Study: Average Temperatures in Austin, TX

The remainder of this paper illustrates the application of Python-
TeX through a reproducible analysis of average temperatures in
Austin, TX. I will calculate monthly average high temperatures
in 2012 at the Austin-Bergstrom International Airport from daily
highs. In addition to demonstrating the basic features of Python-
TeX, this example shows how performance may be optimized and
how the final document may be converted to other formats.

Data Set

Daily high temperatures for 2012 at the Austin-Bergstrom Inter-
national Airport were downloaded from the National Oceanic and
Atmospheric Administration (NOAA)’s National Climatic Data
Center [NCDC]. The data center’s website provides a data search
page. Setting the zip code to 78719 and selecting “Daily CHCND”
accesses daily data at the airport. Maximum temperature TMAX
was selected under the “Air temperature” category of daily data,
and the data were downloaded in comma-separated values (CSV)
format. The CSV file contained three columns: station name (the
airport station’s code), date (ISO 8601), and TMAX (temperature
in tenths of a degree Celsius). The first three lines of the file are
shown below:

STATION,DATE,TMAX
GHCND:USW00013904,20120101,172
GHCND:USW00013904,20120102,156

Since the temperatures are in tenths of a degree Celsius, the 172
in the second line is 17.2 degrees Celsius.

REPRODUCIBLE DOCUMENTS WITH PYTHONTEX 77

Document Setup

I will use the same IEEEtran document class used by the SciPy
proceedings, with a minimal preamble. All Python sessions in-
volved in the analysis should have access to the pickle module
[PKL] and to lists of the names of the months. PythonTeX
provides a pythontexcustomcode environment that is used
to add code to all sessions of a given type. I use that environment
to add the pickle import and the lists to all sessions for the
py family of commands and environments (pycode, pyblock,
\pyc, \pyb, \py, etc.).

\documentclass[compsoc]{IEEEtran}
\usepackage{graphicx}
\usepackage{pythontex}

\begin{pythontexcustomcode}{py}
import pickle
months = ['January', 'February', 'March', 'April',

'May', 'June', 'July', 'August',
'September', 'October', 'November',
'December']

months_abbr = [m[:3] for m in months]
\end{pythontexcustomcode}

\title{Monthly Average Highs in Austin,
TX for 2012}

\author{Geoffrey M. Poore}
\date{May 18, 2013}

\begin{document}

\maketitle

Loading Data and Tracking Dependencies

The first step in the analysis is loading the data. Since the data
set is relatively small (daily values for one year) and in a simple
format (CSV), it may be completely loaded into memory with the
built-in open() function.

\subsection*{Load the data}

\begin{pyblock}[calc]
data_file = '../austin_tmax.csv'
f = open(data_file)
pytex.add_dependencies(data_file)
raw_data = f.readlines()
f.close()
\end{pyblock}

Notice the optional argument calc for the pyblock environ-
ment. I am creating a session calc in which I will calculate the
monthly average highs. Later, I will save the final results of the
calculations, so that they will be available to other sessions for
plotting and further analysis. In this simple example, dividing the
tasks among multiple sessions provides little if any performance
benefit. But if I were working with a larger data set and/or
more intensive calculations, it could be very useful to separate
such calculations from the plotting and final analysis. That way,
the calculations will only be performed when the data set or
calculation code is modified.

The data file austin_tmax.csv is located in my docu-
ment’s root directory. Since the PythonTeX working directory is
by default a PythonTeX directory created within the document
directory, I have to specify a relative path to the data file. I
could have set the working directory to be the document directory
instead, via \setpythontexworkingdir{.}. But this way
all saved files will be isolated in the PythonTeX directory unless a
path is specified, keeping the document directory cleaner.

The data file austin_tmax.csv is now a dependency of
the analysis. The analysis should be rerun in the event the data
file is modified, for example, if a better data set is obtained.
Since this is a relatively simple example, I add the dependency
manually via add_dependencies(), rather than creating a
custom version of open() that tracks dependencies and created
files automatically.

Data Processing

Now that the data are loaded, they may be processed. The first
row of data is a header, so it is ignored. The temperature readings
are sorted into lists by month. Temperatures are converted from
tenths of a degree Celsius to degrees Celsius. Finally, the averages
are calculated and saved. The processed data file is added to the
list of created files that are tracked, so that it is deleted whenever
the code is run again. This ensures that renaming the file wouldn’t
leave old versions that could cause confusion.

\subsection*{Process the data}

\begin{pyblock}[calc]
monthly_data = [[] for x in range(0, 12)]
for line in raw_data[1:]:

date, temp = line.split(',')[1:]
index = int(date[4:-2]) - 1
temp = int(temp)/10
monthly_data[index].append(temp)

ave_tmax = [sum(t)/len(t) for t in
monthly_data]

f = open('ave_tmax.pkl', 'wb')
pytex.add_created('ave_tmax.pkl')
pickle.dump(ave_tmax, f)
f.close()
\end{pyblock}

Plotting

Once the calculations are finished, it is time to plot the results.
This is performed in a new session. Notice that pickle and the
list of months are already available since they were added to all
sessions via pythontexcustomcode. As before, dependencies
and created files are specified. In this particular case, I have also
matched the fonts in the plot to the document’s fonts.

\subsection*{Plot average monthly TMAX}

\begin{pyblock}[plot]
from matplotlib import pyplot as plt
from matplotlib import rc

rc('text', usetex=True)
rc('font', family='serif',

serif='Times', size=10)

f = open('ave_tmax.pkl', 'rb')
pytex.add_dependencies('ave_tmax.pkl')
ave_tmax = pickle.load(f)
f.close()

fig = plt.figure(figsize=(3,2))
plt.plot(ave_tmax)
ax = fig.add_subplot(111)
ax.set_xticks(range(0,11,2))
labels = [months_abbr[x]

for x in range(0,11,2)]
ax.set_xticklabels(labels)
plt.title('Monthly Average Highs')
plt.xlabel('Month')
plt.ylabel('Average high (Celsius)')

78 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

plt.xlim(0, 11)
plt.ylim(16, 39)
plt.savefig('ave_tmax.pdf',

bbox_inches='tight')
pytex.add_created('ave_tmax.pdf')
\end{pyblock}

\includegraphics[width=3in]{ave_tmax.pdf}

Summary of Results

It might be nice to add a summary of the results. In this case,
I simply add a sentence giving the maximum monthly average
temperature and the month in which it occurred. Notice the way in
which Python content is interwoven with the text. If a data set for a
different year were used, the sentence would update automatically.

\subsection*{Summary}

\begin{pyblock}[summary]
f = open('ave_tmax.pkl', 'rb')
pytex.add_dependencies('ave_tmax.pkl')
ave_tmax = pickle.load(f)
f.close()

tmax = max(ave_tmax)
tmax_month = months[ave_tmax.index(tmax)]
\end{pyblock}

The largest monthly average high was
\py[summary]{round(tmax, 1)} degrees
Celsius, in \py[summary]{tmax_month}.

\end{document}

Output and Conversion

I compile the document to PDF by running pdflatex, then
pythontex.py, and finally pdflatex on the file. The output
is shown in Figure 1.

To compile this particular document, I have to run
pythontex.py twice in a row. The first run creates the saved
data in ave_tmax.pkl. The second run gives the plot and
summary sessions access to the saved data. Since all sessions are
executed in parallel, there is no guarantee that the data file will be
created before the plot and summary sessions try to access it.
If the data file does not exist, these sessions produce errors during
the first run and are automatically re-executed during the second
run.

The analysis is complete at this point if a PDF is all that is
desired. But perhaps the analysis should also be posted online in
HTML format. A number of LaTeX-to-HTML converters exist,
including TeX4ht [TEX4HT], HEVEA [HEVEA], and Pandoc
[PAN]. I will use Pandoc in this example since the document has a
simple structure that Pandoc fully supports. A different converter
might be more appropriate for a more complex document.

Since Pandoc only supports a basic subset of LaTeX, it is
not aware of the PythonTeX commands and environments and
cannot convert the document in its current form. This is where
the depythontex utility is needed. To use depythontex, I
modify the case study document by adding the depythontex
option when the PythonTeX package is loaded:

\usepackage[depythontex]{pythontex}

I also edit the document so that the figure is saved as a PNG rather
than a PDF, so that it may be included in a webpage. Next, I
compile the document with LaTeX, run the PythonTeX script, and

compile again. This creates an auxiliary file that depythontex
needs. Then I run depythontex on the case study document:

depythontex casestudy.tex --listing=minted

This creates a file depythontex_casestudy.tex in which
all PythonTeX commands and environments have been re-
placed by their output. The depythontex utility provides a
--listing option that determines how PythonTeX code listings
are translated. In this case, I am having them translated into the
syntax of the minted package [MINT], since Pandoc can inter-
pret minted syntax. Next, I run Pandoc on the depythontex
output:

pandoc --standalone depythontex_casestudy.tex
-o casestudy.html

Together, casestudy.html and ave_tmax.png provide an
HTML version of casestudy.tex, including syntax highlight-
ing (Figure 2).

Conclusion

PythonTeX provides an efficient, user-friendly system for creating
reproducible documents with Python and LaTeX. Since code out-
put is cached and user-defined sessions run in parallel, document
compile times are minimized. Errors and warnings are synchro-
nized with the document’s line numbering so that debugging is
simple. Because PythonTeX documents can be converted to plain
LaTeX documents, the system is suitable for writing journal papers
and documents that must be converted to other formats.

Most of the key elements planned for PythonTeX are already
in place, but several significant enhancements are coming in
the future. Support for additional languages will be added soon.
Better support for macro programming with PythonTeX that mixes
Python and LaTeX code is also under development. Several
usability enhancements are in preparation, including the option to
automatically include stderr in the document, next to its source,
as an aid in debugging.

PythonTeX is under active development and provides many
features not discussed here. Additional information and the latest
release are available at https://github.com/gpoore/pythontex.

REFERENCES

[Schwab] M. Schwab, M. Karrenbach, and J. Claerbout. Making scientific
computations reproducible. Computing in Science & Engineering,
2(6):61-67, Nov/Dec 2000.

[MAD] Madagascar. http://www.ahay.org/.
[VIS] VisTrails. http://www.vistrails.org/.
[Leisch] F. Leisch. Sweave: Dynamic generation of statistical reports using

literate data analysis, in Wolfgang Härdle and Bernd Rönz, editors,
Compstat 2002 - Proceedings in Computational Statistics, pages 575-
580. Physica Verlag, Heidelberg, 2002. ISBN 3-7908-1517-9. http:
//www.statistik.lmu.de/~leisch/Sweave/.

[Xie] Y. Xie. "knitr: Elegant, flexible and fast dynamic report generation
with R." http://yihui.name/knitr/.

[Ramsey] N. Ramsey. Literate programming simplified. IEEE Software,
11(5):97-105, September 1994. http://www.cs.tufts.edu/~nr/noweb/.

[Knuth] D. E. Knuth. Literate Programming. CSLI Lecture Notes, no. 27.
Stanford, California: Center for the Study of Language and Informa-
tion, 1992.

[Brandl] G. Brandl. "SPHINX: Python Documentation Generator." http://
sphinx-doc.org/.

[Pastell] M. Pastell. "Pweave - reports from data with Python." http://mpastell.
com/pweave/.

[IPY] The IPython development team. "The IPython Notebook." http:
//ipython.org/notebook.html.

[Ehmsen] M. R. Ehmsen. "Python in LaTeX." http://www.ctan.org/pkg/
python.

https://github.com/gpoore/pythontex
http://www.ahay.org/
http://www.vistrails.org/
http://www.statistik.lmu.de/~leisch/Sweave/
http://www.statistik.lmu.de/~leisch/Sweave/
http://yihui.name/knitr/
http://www.cs.tufts.edu/~nr/noweb/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://mpastell.com/pweave/
http://mpastell.com/pweave/
http://ipython.org/notebook.html
http://ipython.org/notebook.html
http://www.ctan.org/pkg/python
http://www.ctan.org/pkg/python

REPRODUCIBLE DOCUMENTS WITH PYTHONTEX 79

1

Monthly Average Highs in Austin, TX for 2012
Geoffrey M. Poore

F

Load the data

data_file = '../austin_tmax.csv'
f = open(data_file)
pytex.add_dependencies(data_file)
raw_data = f.readlines()
f.close()

Process the data

monthly_data = [[] for x in range(0, 12)]
for line in raw_data[1:]:

date, temp = line.split(',')[1:]
index = int(date[4:-2]) - 1
temp = int(temp)/10
monthly_data[index].append(temp)

ave_tmax = [sum(t)/len(t) for t in
monthly_data]

f = open('ave_tmax.pkl', 'wb')
pytex.add_created('ave_tmax.pkl')
pickle.dump(ave_tmax, f)
f.close()

Plot average monthly TMAX

from matplotlib import pyplot as plt
from matplotlib import rc

rc('text', usetex=True)
rc('font', family='serif',

serif='Times', size=10)

f = open('ave_tmax.pkl', 'rb')
pytex.add_dependencies('ave_tmax.pkl')
ave_tmax = pickle.load(f)
f.close()

fig = plt.figure(figsize=(3,2))
plt.plot(ave_tmax)
ax = fig.add_subplot(111)
ax.set_xticks(range(0,11,2))
labels = [months_abbr[x]

for x in range(0,11,2)]
ax.set_xticklabels(labels)
plt.title('Monthly Average Highs')
plt.xlabel('Month')

plt.ylabel('Average high (Celsius)')
plt.xlim(0, 11)
plt.ylim(16, 39)
plt.savefig('ave_tmax.pdf',

bbox_inches='tight')
pytex.add_created('ave_tmax.pdf')

Jan Mar May Jul Sep Nov
Month

20

25

30

35

A
ve

ra
ge

hi
gh

(C
el

si
us

)

Monthly Average Highs

Summary
f = open('ave_tmax.pkl', 'rb')
pytex.add_dependencies('ave_tmax.pkl')
ave_tmax = pickle.load(f)
f.close()

tmax = max(ave_tmax)
tmax_month = months[ave_tmax.index(tmax)]

The largest monthly average high was 36.3 degrees
Celsius, in August.

Fig. 1: The PDF version of the temperature case study.

80 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Fig. 2: A screenshot of part of the HTML version of the case study.

[Drake] D. Drake. "The SageTeX package." https://bitbucket.org/ddrake/
sagetex/.

[Molteno] T. Molteno. "The sympytex package." https://github.com/tmolteno/
SympyTeX/.

[MULT] Python Software Foundation. "multiprocessing — Process-
based ’threading’ interface." http://docs.python.org/2/library/
multiprocessing.html.

[TL] TeX Live. http://www.tug.org/texlive/.
[MIK] MiKTeX. http://www.miktex.org/.
[WAR] Python Software Foundation. "warnings — Warning control."

http://docs.python.org/2/library/warnings.html.
[PYG] The Pocoo Team. "Pygments: Python Syntax Highlighter." http://

pygments.org/.
[MPL] J. D. Hunter. Matplotlib: A 2D Graphics Environment, in Computing

in Science & Engineering, Vol. 9, No. 3. (2007), pp. 90-95. http:
//matplotlib.org/.

[LST] C. Heinz and B. Moses. "The Listings Package." http://www.ctan.
org/tex-archive/macros/latex/contrib/listings/.

[FV] T. Van Zandt, D. Girou, S. Rahtz, and H. Voß. "The ’fancyvrb’ pack-
age: Fancy Verbatims in LaTeX." http://www.ctan.org/pkg/fancyvrb.

[NCDC] National Climatic Data Center. http://www.ncdc.noaa.gov.
[PKL] Python Software Foundation. "pickle — Python object serializa-

tion." http://docs.python.org/2/library/pickle.html.

[OSPATH] Python Software Foundation. "os.path — Common pathname
manipulations." http://docs.python.org/2/library/os.path.html.

[TEX4HT] TeX User’s Group. http://www.tug.org/applications/tex4ht/.
[HEVEA] L. Maranget. "HEVEA." http://hevea.inria.fr/.
[PAN] J. MacFarlane. "Pandoc: a universal document converter." http:

//johnmacfarlane.net/pandoc/.
[MINT] K. Rudolph. "The minted package: Highlighted source code in

LaTeX." https://code.google.com/p/minted/.

https://bitbucket.org/ddrake/sagetex/
https://bitbucket.org/ddrake/sagetex/
https://github.com/tmolteno/SympyTeX/
https://github.com/tmolteno/SympyTeX/
http://docs.python.org/2/library/multiprocessing.html
http://docs.python.org/2/library/multiprocessing.html
http://www.tug.org/texlive/
http://www.miktex.org/
http://docs.python.org/2/library/warnings.html
http://pygments.org/
http://pygments.org/
http://matplotlib.org/
http://matplotlib.org/
http://www.ctan.org/tex-archive/macros/latex/contrib/listings/
http://www.ctan.org/tex-archive/macros/latex/contrib/listings/
http://www.ctan.org/pkg/fancyvrb
http://www.ncdc.noaa.gov
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/os.path.html
http://www.tug.org/applications/tex4ht/
http://hevea.inria.fr/
http://johnmacfarlane.net/pandoc/
http://johnmacfarlane.net/pandoc/
https://code.google.com/p/minted/

	Introduction
	PythonTeX Overview
	Commands and Environments
	Caching
	Tracking Dependencies and Created Files
	Synchronizing Errors and Warnings
	Converting PythonTeX Documents
	When Python Is Not Enough

	Case Study: Average Temperatures in Austin, TX
	Data Set
	Document Setup
	Loading Data and Tracking Dependencies
	Data Processing
	Plotting
	Summary of Results
	Output and Conversion

	Conclusion
	References

