
86 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

GraphTerm: A notebook-like graphical terminal
interface for collaboration and inline data visualization

Ramalingam Saravanan‡∗

http://www.youtube.com/watch?v=nO0ceHmTlDQ

F

Abstract—The notebook interface, which blends text and graphics, has been
in use for a number of years in commercial mathematical software and is now
finding more widespread usage in scientific Python with the availability browser-
based front-ends like the Sage and IPython notebooks. This paper describes
a new open-source Python project, GraphTerm, that takes a slightly different
approach to blending text and graphics to create a notebook-like interface.
Rather than operating at the application level, it works at the unix shell level by
extending the command line interface to incorporate elements of the graphical
user interface. The XTerm terminal escape sequences are augmented to allow
any program to interactively display inline graphics (or other HTML content)
simply by writing to standard output.

GraphTerm is designed to be a drop-in replacement for the standard unix
terminal, with additional features for multiplexing sessions and easy deployment
in the cloud. The interface aims to be tablet-friendly, with features like click-
able/tappable directory listings for navigating folders etc. The user can switch,
as needed, between standard line-at-a-time shell mode and the notebook mode,
where multiple lines of code are entered in cells, allowing for in-place editing
and re-execution. Multiple users can share terminal sessions for collaborative
computing.

GraphTerm is implemented in Python, using the Tornado web framework for
the server component and HTML+Javascript for the browser client. This paper
discusses the architecture and capabilities of GraphTerm, and provides usage
examples such as inline data visualization using matplotlib and the notebook
mode.

Index Terms—GUI, CLI, graphical user interface, command line interface, note-
book interface, graphical shell

Introduction

Text and graphics form important components of the user interface
when working with computers. Early personal computers only
supported the textual user interface, more commonly known as
the command line interface (CLI). However, when the Apple
Macintosh popularized the graphical user interface (GUI), it soon
became the preferred means for interacting with the computer. The
GUI is more user-friendly, especially for beginners, and provides
a more pleasant visual experience. The GUI typically provides
buttons and widgets for the most common tasks, whereas the CLI
requires recalling and typing out commands to accomplish tasks.
However, the friendliness of the GUI comes at a cost—it can be

* Corresponding author: sarava@tamu.edu
‡ Texas A&M University

Copyright © 2013 Ramalingam Saravanan. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

much more difficult to perform advanced tasks using the GUI as
compared to using the CLI. Using a GUI is analogous to using
a phrase book to express yourself in a foreign language, whereas
using a CLI is like learning words to form new phrases in the
foreign language. The former is more convenient for first-time and
casual users, whereas the latter provides the versatility required by
more advanced users.

The dichotomy between the textual and graphical modes of
interaction also extends to scientific data analysis tools. Tradi-
tionally, commands for data analysis were typed into a terminal
window with an interactive shell and the graphical output was
displayed in a separate window. Some commercial software, such
as Mathematica and Maple, provided a more integrated notebook
interface that blended text and graphics, thus combining aspects
of the CLI with the GUI. One of the exciting recent developments
in scientific Python has been the development of alternative,
open source, notebook interfaces for scientific computing and
data analysis—the Sage and IPython notebooks [Perez12]. Since
Python is a more general-purpose language than Mathematica or
Maple, the notebook interface could potentially reach a much
wider audience.

A notebook display consists of a sequence of cells, each of
which can contain code, figures, or text (with markup). Although
originally developed for exploratory research, notebooks can be
very useful for presentations and teaching as well. They can
provide step-by-step documentation of complex tasks and can
easily be shared. The cells in a notebook do not necessarily have
to be executed in the sequence in which they appear. In this
respect, the notebook interface can be considered an expression
of "literate programming", where snippets of code are embedded
in natural language documentation that explains what the code
does [Knuth84].

Another emerging area where the notebook interface could
serve as an important tool is reproducible research [Stodden13].
As computational techniques are increasingly being used in all
areas of research, reproducing a research finding requires not just
the broad outline of the research methodology but also documenta-
tion of the software development environment used for the study.
The need for reproducible research is highlighted by the recent
controversy surrounding the highly influential Reinhart-Rogoff
study that identified a negative relationship between a country’s
debt and its economic growth rate. A follow-up study [Herndon13]
identified a simple coding error that affects key findings of the
original study. The self-documenting nature of code and results
presented in a notebook format can make it easy to share and

http://www.youtube.com/watch?v=nO0ceHmTlDQ
mailto:sarava@tamu.edu

GRAPHTERM: A NOTEBOOK-LIKE GRAPHICAL TERMINAL INTERFACE FOR COLLABORATION AND INLINE DATA VISUALIZATION 87

reproduce such computations.

Background

The author had some experience with commercial notebook in-
terfaces before, but used the IPython Notebook interface for the
first time in January 2013, when teaching an introductory un-
dergraduate programming course for geoscientists using Python.
After initially using the command line Python interpreter, the class
switched to using IPython Notebook, whose inline code editing
and graphics display turned out to be really convenient. The
notebook interface was used for presenting lecture material, and
the students used it for their programming assignments, turning in
their notebooks for grading (in PDF format) .

The author had previously been working on a project called
GraphTerm, which implements a "graphical terminal interface"
using a Python backend and a HTML5+Javascript frontend
[GraphTerm]. It was a follow-up to two earlier projects, the
browser-based AjaxTerm, and XMLTerm, a GUI-like browser built
using the Mozilla framework [Sarava00]. GraphTerm is aimed
at being a drop-in replacement for XTerm, the standard unix
terminal, with additional graphical and collaborative features. It
retains all the features of the CLI, including pipes, wildcards,
command recall, tab completion etc., and also incorporates web-
based sharing, as well as GUI-like features, such as clickable
folder navigation, draggable files, inline image display etc. (There
also other terminal projects with similar goals, such as TermKit
for OS X and Terminology for Linux.)

The distinctive features of the notebook interface, such as
inline editing and graphics, are not specific to any particular
programming language or interactive shell. Also, the GraphTerm
code already had the capability to incorporate GUI-like features
into the terminal. Therefore, it seemed worth experimenting with
GraphTerm to see how far it could be extended to support
a generic, language-independent, notebook interface, while still
retaining full backward compatibility with the unix terminal. The
goal was to allow the terminal to be switched to a notebook
mode, regardless of what application was running in the shell.
The backward compatibility requirements and the loose coupling
between the notebook and the underlying application could make
it more fragile and restricted, but that would be an unavoidable
trade-off. The rest of this paper reports on the results of this effort
to combine the CLI, GUI, and the notebook interface.

Implementation

The standard unix terminal supports two types of buffers: (i) the
normal scroll buffer that contains lines of text, and (ii) the full
screen buffer used by text editors like vi etc. Special character
strings known as escape sequences are output by programs to
switch the terminal between the two buffers [XTerm]. GraphTerm
currently supports most of the standard XTerm escape sequences
and introduces additional escape sequences that allow display of
HTML fragments in the scroll buffer and the full screen buffer.
The HTML fragments can contain just about anything that can be
displayed on a web page, including text with markup, tables, and
images.

The GraphTerm server is written in pure python, using the
Tornado web framework, with websocket support. The browser
client uses standard HTML5+Javascript+CSS (with jQuery). The
code is released under the BSD License and the repository is
available on Github.

Fig. 1: Architecture of GraphTerm. Browser client connects to Tor-
nado server using websockets. Hosts connect to server using TCP.

The GraphTerm server may be run on the desktop or on a
remote computer. Users create and access terminal sessions by the
connecting to the Graphterm server on the default port 8900, either
directly or through SSH port forwarding (Figure 1). By default, the
localhost on the computer where the GraphTerm server is running
is available for opening terminal sessions. Other computers can
also connect to the GraphTerm server, on a different port (8899),
to make them accessible as hosts for connection from the browser.

A pseudo-tty (pty) device is opened on the host for each
terminal session. By setting the PROMPT_COMMAND environment
variable, GraphTerm determines when the standard output of the
previous command ends, and the prompt for the new command
begins. The connection between the browser and the GraphTerm
server is implemented using websockets (bi-directional HTTP).
The GraphTerm server acts as a router sending input from control-
ling browser terminal sessions to the appropriate pty on the host
computer, and transmitting output from each pty to all connected
browser terminal sessions.

All the scroll buffer and full screen buffer content is stored
on the server, which means that the terminal is persistent across
different browser sessions. For example, you can leave the termi-
nal on your desktop computer at work and access the exact same
content on your laptop browser when you get home. This allows
GraphTerm to be used like the GNU screen or tmux programs.
Storing the content on the server also allows multiple users to
share access to the same terminal session for collaboration, similar
to, e.g., Google Docs. This means that multiple users will be able
to view and modify a GraphTerm notebook session in real time.

The GraphTerm API

Programs running within a GraphTerm shell communicate with
it by writing to its standard output a block of text using a format
similar to a HTTP response, preceded and followed by XTerm-like
escape sequences:

\x1b[?1155;<cookie>h
{"content_type": "text/html", ...}

<div>
...
</div>
\x1b[?1155l

http://acko.net/blog/on-termkit
http://www.enlightenment.org/p.php?p=about/terminology
http://tornadoweb.org
https://github.com/mitotic/graphterm

88 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Fig. 2: Output of helloworld.sh within GraphTerm, showing
inline HTML text and image.

where <cookie> denotes a numeric value stored in the environ-
ment variable GTERM_COOKIE. This random cookie is a security
measure that prevents malicious files from accessing GraphTerm.
The opening escape sequence is followed by an optional dictio-
nary of header names and values, using JSON format. This is
followed by a blank line, and then any data (such as the HTML
fragment to be displayed).

A simple bash shell script, hello_world.sh, illustrates
this API:

#!/bin/bash
A Hello World program using the GraphTerm API

prefix=https://raw.github.com/mitotic/graphterm
url=$prefix/master/graphterm/www/GTYY500.png
esc=`printf "\033"`
code="1155"
Prefix escape sequence
echo "${esc}[?${code};${GTERM_COOKIE}h"
Display text with HTML markup
echo 'Hello'
echo '<b style="color: red;">World!<p>'
Display inline image
echo "<a>"
Suffix escape sequence
echo "${esc}[?${code}l"

If run within GraphTerm, the script produces the output shown in
Figure 2.

Features

GraphTerm is written in pure Python and the only dependency
is the tornado web server module. It can be installed using
easy_install or setuptools. Once the GraphTerm server
program is started, it listens on port 8900 on localhost by
default, and any browser can be used to connect to it and open new
terminal sessions using the URL http://localhost:8900.
At this point, GraphTerm can be used like a regular terminal,
with commands like ls, vi, etc. However, to use the graphical
capabilities of GraphTerm, one needs to use GraphTerm-aware
versions of these commands, with names like gls and gvi, that
are part of the command toolchain that is bundled with the code.
The toolchain commands communicate using pipes and may be
written any language, e.g., Bash shell script, Python etc., using
the API described above. The GUI-like features of GraphTerm
implemented using this toolchain are discussed and illustrated
below.

Clickable folders and files

The output of the standard ls command displays the directory
listing as plain text, whereas the gls command from the toolchain
displays a hyperlinked ("clickable") directory listing (Figure 3).

Fig. 3: Output of ls and gls commands for the same directory.
The names displayed by gls are hyperlinked, and may be clicked to
navigate to a folder or open a file.

Fig. 4: Output of gls with icon display enabled. Clicking on
the folder icon for 00_vanderwalt (red rectangle) executes the
command cd 00_vanderwalt; gls -f via the command line
(green rectangle) to navigate to the folder and list its directory
contents. (This action also overwrites any immediate previous file
navigation command in the GraphTerm command history, to avoid
command clutter.)

By default, gls does not display icons or images in the
directory listing. However, icon display can be enabled using the
GraphTerm menubar (Figure 4).

You can navigate folders in GraphTerm using GUI-like ac-
tions, like you would do in the Windows Explorer or the Mac
Finder, while retaining the ability to drop back to the CLI at
any time. If the current command line is empty, clicking on a
hyperlinked folder will insert a new command line of the form:

cd newdir; gls -f

which will change the current directory to newdir and list
its contents. Clicking on a hyperlinked filename will generate a
new command line to invoke platform-dependent commands like
open or xdg-open to open the file using the default program
for its file type. This feature illustrates one of the basic design
goals of GraphTerm, that each GUI-like action should generate a
corresponding shell command that actually carries out that action.
This allows the action to be logged and reproduced later.

Drag and drop

GraphTerm currently provides limited support for drag-and-drop
operations, including support for uploading/copying files between
terminal sessions on different computers connected to the same

GRAPHTERM: A NOTEBOOK-LIKE GRAPHICAL TERMINAL INTERFACE FOR COLLABORATION AND INLINE DATA VISUALIZATION 89

Fig. 5: File fig2.png is dragged from the Downloads folder
from the source terminal and dropped into the . (current directory)
folder icon displayed by gls in the destination terminal. This executes
the command mv /user/rsarava/Downloads/fig2.png .
in the destination terminal to move the file.

Fig. 6: Two shared views of a GraphTerm terminal session showing
the output of the command head -20 episodeIV.txt on a
computer running OS X Lion. The left view is in a Firefox window
with the default theme and the right view shows the same terminal
in a Chrome window, using the stars3D perspective theme (which
currently does not work on Firefox).

GraphTerm server. As shown in Figure 5, when a file is dragged
from the source terminal and dropped into a folder displayed in
the destination terminal, a mv command is generated to perform
the task. Thus the GUI action is recorded in the command line for
future reference.

Session sharing and theming

GraphTerm terminal sessions can be shared between multiple
computers, with different types of access levels for additional
users accessing the same terminal, such as read-only access or
full read-write access. Since a GraphTerm terminal session is just
a web page, it also supports theming using CSS stylesheets. The
terminal sharing and theming are decoupled, which means that two
users can view the same terminal using different themes (Figure
6)!

Inline graphics

Since GraphTerm can display arbitrary HTML fragments, it is
easy to display graphical output from programs. The gimage

Fig. 7: Inline display of a 2-dimensional filled contour plot of surface
air temperature on the globe, generated by matplotlib. The code
for this plot is taken from the textbook by [Lin12].

command in the toolchain can be used to display inline images.
The toolchain also includes the yweather command to display
the current weather forecast graphically using the Yahoo Weather
API. Other toolchain commands include glandslide to use the
Python-based landslide presentation tool and greveal that uses
reveal.js to display slideshows within a GraphTerm window.

GraphTerm can be used for inline display of graphical output
from matplotlib (Figure 7). The API bundled with GraphTerm
uses the StringIO module to capture the binary plot data using
the png image output produced by the Agg renderer and then
displays the image using GraphTerm escape sequences. A module
called gmatplot is supplied with GraphTerm to provide explicit
access to this plotting API. Another module gpylab is also
provided, for monkey patching existing plotting code to work
within GraphTerm with little or no changes. For example, if the
Python interpreter is invoked using the following command:

python -i $GTERM_DIR/bin/gpylab.py

then pylab functions like draw, figure, and show will
automatically use the Graphterm API to display inline graphics
(e.g. see the notebook example shown in Figure 8).

Since communication with GraphTerm occurs solely via the
standard output of a program, inline graphics can be displayed
from any plotting program, including commercial software like
IDL and other plotting packages like the NCAR Command Lan-
guage (NCL). Inline graphics display can also be used across SSH
login boundaries by including support for the GraphTerm API in
the plotting program on the remote machine.

Notebook mode

GraphTerm can be switched from the normal terminal mode to a
blank notebook mode using the key sequence Shift-Enter or using
the menubar. The user can also click on a notebook file displayed
in the gls directory listing to open it and pre-fill the notebook
cells with content from the file (Figure 8). The notebook mode
supports the normal terminal operations, such as reading from the
standard input (i.e., raw_input in Python) and using debuggers,
as well as GraphTerm extensions like inline graphics. (Full screen
terminal operations are not supported in the notebook mode.)

https://github.com/adamzap/landslide
http://lab.hakim.se/reveal-js

90 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Fig. 8: GraphTerm notebook mode, where the notebook contents are
read from a file saved using the ipynb format. The first cell contains
Markdown text and the second cell contains python code to generate
a simple plot using matplotlib. Note the use of raw_input to
prompt the user for terminal input.

Users can save the contents of the displayed notebook to a file
at any time. Users exit the notebook mode and revert to the normal
terminal mode using the menubar or simply by typing Control-C.
When exiting the notebook mode, users can choose to either merge
all the notebook content back into the terminal session or discard
it (Figure 9).

The notebook implementation in GraphTerm attempts to pre-
serve interoperability with the IPython Notebook to the extent
possible. GraphTerm can read and write notebooks using the
IPython Notebook format (*.ipynb), although it uses the Mark-
down format for saving notebook content. (Markdown was chosen
as the native format because it is more human-friendly than
ReStructuredText or JSON, allows easy concatenation or splitting
of notebook files, and can be processed by numerous Markdown-
aware publishing and presentation programs like landslide and
reveal.js.) GraphTerm supports many of the same keyboard
shortcuts as IPython Notebook. GraphTerm can also be used
with the command-line version of IPython. However, the generic,
loosely-coupled notebook interface supported by GraphTerm will
never be able to support all the features of IPython Notebook.

Here is how the notebook mode is implemented within Graph-
Term: when the user switches to the notebook mode, a separate
scroll buffer is created for each cell. When the user executes a
line of code within a GraphTerm notebook cell, the code output
is parsed for prompts to decide whether to continue to display
the output in the output cell, or to return focus to the input cell.
This text-parsing approach does make the GraphTerm notebook
implementation somewhat fragile, compared to other notebook
implementations that have a tighter coupling with the underlying
code interpreter (or kernel). However it allows GraphTerm to work
with interactive shells for any platform, such as R (Figure 10) (or

Fig. 9: When switching back to the terminal mode after exiting the
notebook mode, the notebook contents can either be discarded or be
appended like normal terminal output, as shown above.

any interactive program with prompts, including closed source
binaries for languages like IDL).

Since all GraphTerm content is stored on the server, the
notebook can be accessed by multiple users simultaneously for
collaboration. Like inline graphics, the notebook mode works
transparently when executing interactive shells after a remote SSH
login, because all communication takes place via the standard
output of the shell. The non-graphical notebook mode can be used
without the remote program ever being aware of the notebook
interface. However, the remote program will need to use the
GraphTerm escape sequences to display inline graphics within the
notebook.

Conclusion

The GraphTerm project extends the standard unix terminal to sup-
port many GUI-like capabilities, including inline graphics display
for data analysis and visualization. Adding features like clickable
folder navigation to the CLI also makes it more touch-friendly,
which is likely to be very useful on tablet computers. Incorporating
GUI actions within the CLI allows recording of many user actions
as scriptable commands, facilitating reproducibility.

GraphTerm also demonstrates that the notebook interface can
be implemented as an extension of the CLI, by parsing the
textual output from interactive shells. This allows the notebook
interface to be "bolted on" to any interactive shell program and
to be used seamlessly even across SSH login boundaries. The
notebook features and the real-time session sharing capabilities
could make GraphTerm an useful tool for collaborative computing
and research.

REFERENCES

[GraphTerm] GraphTerm home page http://code.mindmeldr.com/graphterm

http://daringfireball.net/projects/markdown
http://daringfireball.net/projects/markdown
http://code.mindmeldr.com/graphterm

GRAPHTERM: A NOTEBOOK-LIKE GRAPHICAL TERMINAL INTERFACE FOR COLLABORATION AND INLINE DATA VISUALIZATION 91

Fig. 10: Inline graphics in notebook mode when running the standard
R interpreter within GraphTerm.

[Herndon13] T. Herndon, M. Ash, and R. Pollin. Does High Public Debt
Consistently Stifle Economic Growth? A Critique of Reinhart
and Rogoff http://www.peri.umass.edu/fileadmin/pdf/working_
papers/working_papers_301-350/WP322.pdf

[Knuth84] D. Knuth. Literate Programming. The Computer Journal
archive. Vol. 27 No. 2, May 1984, pp. 97-111 http://
literateprogramming.com/knuthweb.pdf

[Lin12] J. Lin. A Hands-On Introduction to Using Python in the Atmo-
spheric and Oceanic Sciences [Chapter 9, Exercise 29, p. 162]
http://www.johnny-lin.com/pyintro

[Perez12] F. Perez. The IPython notebook: a historical retrospec-
tive. Jan 2012 http://blog.fperez.org/2012/01/ipython-notebook-
historical.html

[Sarava00] R. Saravanan. XMLterm: A Mozilla-based Semantic User In-
terface. XML.com, June 2000 http://www.xml.com/pub/a/2000/
06/07/xmlterm/

[Stodden13] V. Stodden, D. H. Bailey, J. Borwein, R. J. LeVeque, W. Rider,
and W. Stein. Setting the Default to Reproducible: Reproducibil-
ity in Computational and Experimental Mathematics. February
2013 http://stodden.net/icerm_report.pdf

[XTerm] XTerm Control Sequences http://invisible-island.net/xterm/
ctlseqs/ctlseqs.html

http://www.peri.umass.edu/fileadmin/pdf/working_papers/working_papers_301-350/WP322.pdf
http://www.peri.umass.edu/fileadmin/pdf/working_papers/working_papers_301-350/WP322.pdf
http://literateprogramming.com/knuthweb.pdf
http://literateprogramming.com/knuthweb.pdf
http://www.johnny-lin.com/pyintro
http://blog.fperez.org/2012/01/ipython-notebook-historical.html
http://blog.fperez.org/2012/01/ipython-notebook-historical.html
http://www.xml.com/pub/a/2000/06/07/xmlterm/
http://www.xml.com/pub/a/2000/06/07/xmlterm/
http://stodden.net/icerm_report.pdf
http://invisible-island.net/xterm/ctlseqs/ctlseqs.html
http://invisible-island.net/xterm/ctlseqs/ctlseqs.html

	Introduction
	Background
	Implementation
	The GraphTerm API
	Features
	Clickable folders and files
	Drag and drop
	Session sharing and theming
	Inline graphics

	Notebook mode
	Conclusion
	References

