
92 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Modeling the Earth with Fatiando a Terra

Leonardo Uieda‡∗, Vanderlei C. Oliveira Jr‡, Valéria C. F. Barbosa‡

http://www.youtube.com/watch?v=Ec38h1oB8cc

F

Abstract—Geophysics is the science of using physical observations of the
Earth to infer its inner structure. Generally, this is done with a variety of numerical
modeling techniques and inverse problems. The development of new algorithms
usually involves copy and pasting of code, which leads to errors and poor code
reuse. Fatiando a Terra is a Python library that aims to automate common tasks
and unify the modeling pipeline inside of the Python language. This allows users
to replace the traditional shell scripting with more versatile and powerful Python
scripting. The library can also be used as an API for developing stand-alone
programs. Algorithms implemented in Fatiando a Terra can be combined to build
upon existing functionality. This flexibility facilitates prototyping of new algorithms
and quickly building interactive teaching exercises. In the future, we plan to
continuously implement sample problems to help teach geophysics as well as
classic and state-of-the-art algorithms.

Index Terms—geophysics, modeling, inverse problems

Introduction

Geophysics studies the physical processes of the Earth. Geophysi-
cists make observations of physical phenomena and use them to
infer the inner structure of the planet. This task requires the numer-
ical modeling of physical processes. These numerical models can
then be used in inverse problems to infer inner Earth structure from
observations. Different geophysical methods use different kinds of
observations. Geothermal methods use the temperature and heat
flux of the Earth’s crust. Potential field methods use gravitational
and magnetic field measurements. Seismics and seismology use
the ground motion caused by elastic waves from active (man-
made) and passive (earthquakes) sources, respectively.

The seismic method is among the most widely studied due
to the high industry demand. Thus, a range of well established
open-source software have been developed for seismic processing.
These include Seismic Un*x (SU) [SU], Madagascar [MAD],
OpendTect, and GêBR. A noteworthy open-source project that
is not seismic related is the Generic Mapping Tools (GMT)
project [GMT]. The GMT are a well established collection of
command-line programs for plotting maps with a variety of
different map projections. For geodynamic modeling there is the
Computational Infrastructure for Geodynamics (CIG), which has
grouped various well documented software packages. However,
even with this wide range of well maintained software projects,
many geophysical modeling software that are provided online

* Corresponding author: leouieda@gmail.com
‡ Observatorio Nacional

Copyright © 2013 Leonardo Uieda et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

still have no open-source license statement, have cryptic I/O
files, are hard to integrate into a pipeline, and make code reuse
and remixing challenging. Some of these problems are being
worked on by the Solid Earth Teaching and Research Environment
(SEATREE) [SEATREE] by providing a common graphical inter-
face for previously existing software. The numerical computations
are performed by the pre-existing underlying C/Fortran programs.
Conversely, the SEATREE code (written in Python) handles the
I/O and user interface. This makes the use of these tools easier and
more approachable to students. However, the lack of a common
API means that the code for these programs cannot be easily
combined to create new modeling tools.

Fatiando a Terra aims at providing such an API for geophysical
modeling. Functions in the fatiando package use compatible
data and mesh formats so that the output of one modeling function
can be used as input for another. Furthermore, routines can be
combined and reused to create new modeling algorithms. Fatiando
a Terra also automates common tasks such as griding, map
plotting with Matplotlib [MPL], and 3D plotting with Mayavi
[MYV]. Version 0.1 of Fatiando a Terra is focused on gravity and
magnetic methods because this is the main focus of the developers.
However, simple "toy" problems for seismology and geothermics
are available and can be useful for teaching geophysics.

The following sections illustrate the functionality and design
of Fatiando a Terra using various code samples. An IPython [IPY]
notebook file with these code samples is provided by [SAMPLES]
at http://dx.doi.org/10.6084/m9.figshare.708390.

Package structure

The modules and packages of Fatiando a Terra are bundled into
the fatiando package. Each type of geophysical method has
its own package. As of version 0.1, the available modules and
packages are:

• fatiando.gravmag: gravity and magnetic methods;
• fatiando.seismic: seismic methods and seismology;
• fatiando.geothermal: geothermal modeling;
• fatiando.mesher: geometric elements and meshes;
• fatiando.gridder: grid generation, slicing, interpo-

lation, etc;
• fatiando.io: I/O of models and data sets from web

repositories;
• fatiando.utils: miscellaneous utilities;
• fatiando.constants: physical constants;
• fatiando.gui: simple graphical user interfaces;
• fatiando.vis: 2D and 3D plotting;

http://www.youtube.com/watch?v=Ec38h1oB8cc
http://www.cwp.mines.edu/cwpcodes/
http://www.ahay.org/
http://opendtect.org
http://www.gebrproject.com
http://gmt.soest.hawaii.edu/
http://www.geodynamics.org
mailto:leouieda@gmail.com
http://geosys.usc.edu/projects/seatree/
http://www.fatiando.org
http://matplotlib.org
http://code.enthought.com/projects/mayavi
http://ipython.org/
http://dx.doi.org/10.6084/m9.figshare.708390

MODELING THE EARTH WITH FATIANDO A TERRA 93

Fig. 1: Example of 1) generating a random scatter of points (black
dots), 2) using that to make synthetic data, and 3) automatically
gridding and plotting the data using a Fatiando a Terra wrapper
for the Matplotlib contourf function.

• fatiando.inversion: inverse problem solvers and
regularization;

Griding and map plotting

Fatiando a Terra handles map data as 1D Numpy arrays, typically
x-, y-, z-coordinates and an extra array with the correspond-
ing data. However, Matplotlib functions, like contourf and
pcolor, require data to be passed as 2D arrays. Moreover, geo-
physical data sets are often irregularly sampled and require griding
before they can be plotted. Thus, griding and array reshaping are
ideal targets for automation.

The fatiando.vis.mpl module imports all the functions
in matplotlib.pyplot, adds new functions, and overwrites
others to automate repetitive tasks (such as griding). Thus, the ba-
sic functionality of the pyplot interface is maintained while cus-
tomizations facilitate common tasks. The following example illus-
trates the use of the custom fatiando.vis.mpl.contourf
function to automatically grid and plot some irregularly sampled
data (Figure 1):
from fatiando import gridder
from fatiando.vis import mpl
area = [-20, 20, -50, 50]
x, y = gridder.scatter(area, n=100)
data = x**2 + y**2
mpl.figure()
mpl.axis('scaled')
mpl.contourf(y, x, data, shape=(50, 50),

levels=30, interp=True)
mpl.colorbar(orientation='horizontal')
mpl.plot(y, x, '.k')
mpl.xlabel('y (East-West)')
mpl.ylabel('x (North-South)')
mpl.show()

Notice that, in the calls to mpl.contourf and mpl.plot, the
x- and y-axis are switched. That is because it is common practice
in geophysics for x to point North and y to point East.

Map projections in Matplotlib are handled by the Basemap
toolkit. The fatiando.vis.mpl module also provides
helper functions to automate the use of this toolkit. The
fatiando.vis.mpl.basemap function automates the cre-
ation of the Basemap objects with common parameters. This
object can then be passed to the contourf, contour and
pcolor functions in fatiando.vis.mpl and they will au-
tomatically plot using the given projection (Figure 2):

Fig. 2: Example of map plotting with the Robinson projection using
the Matplotlib Basemap toolkit.

mpl.figure()
bm = mpl.basemap(area, projection='robin')
bm.drawmapboundary()
bm.drawcoastlines()
mpl.contourf(x, y, data, shape=(50, 50), levels=30,

interp=True, basemap=bm)
mpl.colorbar(orientation='horizontal')
mpl.show()

Meshes and 3D plotting

The representation of 2D and 3D geometric elements is handled
by the classes in the fatiando.mesher module. Geometric
elements in Fatiando a Terra can be assigned physical prop-
erty values, like density, magnetization, seismic wave velocity,
impedance, etc. This is done through a props dictionary whose
keys are the name of the physical property and values are the
corresponding values in SI units:
from fatiando import mesher
model = [

mesher.Prism(5, 8, 3, 7, 1, 7,
props={'density':200}),

mesher.Prism(1, 2, 4, 5, 1, 2,
props={'density':1000})]

The fatiando.vis.myv module contains functions to auto-
mate 3D plotting using Mayavi [MYV]. The mayavi.mlab
interface requires geometric elements to be formatted as TVTK
objects. Thus, plotting functions in fatiando.vis.myv auto-
matically create TVTK representations of fatiando.mesher
objects and plot them using a suitable function of mayavi.mlab.
Also included are utility functions for drawing axes,
walls on the figure bounding box, etc. For example, the
fatiando.vis.myv.figure function creates a figure and
rotates it so that the z-axis points down, as is standard in geo-
physics. The following example shows how to plot the 3D right
rectangular prism model that we created previously (Figure 3):
from fatiando.vis import myv
bounds = [0, 10, 0, 10, 0, 10]
myv.figure()
myv.prisms(model, 'density')
myv.axes(myv.outline(bounds))
myv.wall_bottom(bounds)
myv.wall_north(bounds)
myv.show()

http://matplotlib.org/basemap
http://matplotlib.org/basemap

94 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Fig. 3: Example of plotting a list of right rectangular prisms in
Mayavi.

Fig. 4: Example of generating and visualizing a structured prism
mesh.

The fatiando.mesher module also contains classes for
collections of elements (e.g., meshes). A good exam-
ple is the PrismMesh class that represents a structured
mesh of right rectangular prisms. This class behaves as
a list of fatiando.mesher.Prism objects and can be
passed to functions that ask for a list of prisms, like
fatiando.vis.myv.prisms. Physical properties can be as-
signed to the mesh using the addprop method (Figure 4):

mesh = mesher.PrismMesh(bounds, shape=(3, 3, 3))
mesh.addprop('density', range(mesh.size))
myv.figure()
myv.prisms(mesh, 'density')
myv.axes(myv.outline(bounds))
myv.show()

Often times the mesh is used to make a detailed model of an
irregular region of the Earth’s surface. In such cases, it is necessary
to consider the topography of the region. The PrismMesh class

Fig. 5: Example of generating and visualizing a prism mesh with
masked topography.

has a carvetopo method that masks the prisms that fall above
the topography. The example below illustrates this functionality
using synthetic topography (Figure 5):

from fatiando import utils
x, y = gridder.regular(bounds[:4], (50, 50))
heights = -5 + 5*utils.gaussian2d(x, y, 10, 5,

x0=10, y0=10)
mesh = mesher.PrismMesh(bounds, (20, 20, 20))
mesh.addprop('density', range(mesh.size))
mesh.carvetopo(x, y, heights)
myv.figure()
myv.prisms(mesh, 'density')
myv.axes(myv.outline(bounds))
myv.wall_north(bounds)
myv.show()

When modeling involves the whole Earth, or a large area of it,
the geophysicist needs to take into account the Earth’s curvature.
In such cases, rectangular prisms are inadequate for modeling
and tesseroids (e.g., spherical prisms) are better suited. The
fatiando.vis.myv module contains auxiliary functions to
plot along with tesseroids: an Earth-sized sphere, meridians and
parallels, as well as continental borders (Figure 6):

model = [
mesher.Tesseroid(-60, -55, -30, -27, 500000, 0,

props={'density':200}),
mesher.Tesseroid(-66, -55, -20, -10, 300000, 0,

props={'density':-100})]
fig = myv.figure(zdown=False)
myv.tesseroids(model, 'density')
myv.continents(linewidth=2)
myv.earth(opacity=1)
myv.meridians(range(0, 360, 45), opacity=0.2)
myv.parallels(range(-90, 90, 45), opacity=0.2)
Rotate the camera to get a good view
scene = fig.scene
scene.camera.position = [21199620.406122234,

-12390254.839673528, -14693312.866768979]
scene.camera.focal_point = [-535799.97230670298,

-774902.33205294283, 826712.82283183688]
scene.camera.view_angle = 19.199999999999996
scene.camera.view_up = [0.33256519487680014,

-0.47008782429014295, 0.81756824095039038]
scene.camera.clipping_range = [7009580.0037488714,

MODELING THE EARTH WITH FATIANDO A TERRA 95

Fig. 6: Example of creating a tesseroid (spherical prism) model and
visualizing it in Mayavi.

55829873.658824757]
scene.camera.compute_view_plane_normal()
scene.render()
myv.show()

Forward modeling

In geophysics, the term "forward modeling" is used to describe
the process of generating synthetic data from a given Earth model.
Conversely, geophysical inversion is the process of estimating
Earth model parameters from observed data.

The Fatiando a Terra packages have separate modules
for forward modeling and inversion algorithms. The forward
modeling functions usually take as arguments geometric ele-
ments from fatiando.mesher with assigned physical prop-
erties and return the synthetic data. For example, the mod-
ule fatiando.gravmag.tesseroid is a Python imple-
mentation of the program Tesseroids (http://leouieda.github.io/
tesseroids) and calculates the gravitational fields of tesseroids
(e.g., spherical prisms). The following example shows how to
calculate the gravity anomaly of the tesseroid model generated
in the previous section (Figure 7):
from fatiando import gravmag
area = [-80, -30, -40, 10]
shape = (50, 50)
lons, lats, heights = gridder.regular(area, shape,

z=2500000)
gz = gravmag.tesseroid.gz(lons, lats, heights, model)
mpl.figure()
bm = mpl.basemap(area, 'ortho')
bm.drawcoastlines()
bm.drawmapboundary()
bm.bluemarble()
mpl.title('Gravity anomaly (mGal)')
mpl.contourf(lons, lats, gz, shape, 30, basemap=bm)
mpl.colorbar()
mpl.show()

The module fatiando.gravmag.polyprism implements
the method of [PLOUFF] to forward model the gravity fields of a
3D right polygonal prism. The following code sample shows how
to interactively generate a polygonal prism model and calculate its
gravity anomaly (Figures 8 and 9):

Fig. 7: Example of forward modeling the gravity anomaly using the
tesseroid model shown in Figure 6.

Draw a polygon and make a polygonal prism
bounds = [-1000, 1000, -1000, 1000, 0, 1000]
area = bounds[:4]
mpl.figure()
mpl.axis('scaled')
vertices = mpl.draw_polygon(area, mpl.gca(),

xy2ne=True)
model = [mesher.PolygonalPrism(vertices, z1=0,

z2=500, props={'density':500})]
Calculate the gravity anomaly
shape = (100, 100)
x, y, z = gridder.scatter(area, 300, z=-1)
gz = gravmag.polyprism.gz(x, y, z, model)
mpl.figure()
mpl.axis('scaled')
mpl.title("Gravity anomaly (mGal)")
mpl.contourf(y, x, gz, shape=(50, 50),

levels=30, interp=True)
mpl.colorbar()
mpl.polygon(model[0], '.-k', xy2ne=True)
mpl.set_area(area)
mpl.m2km()
mpl.show()
myv.figure()
myv.polyprisms(model, 'density')
myv.axes(myv.outline(bounds),

ranges=[i*0.001 for i in bounds])
myv.wall_north(bounds)
myv.wall_bottom(bounds)
myv.show()

Gravity and magnetic methods

Geophysics uses anomalies in the gravitational and magnetic fields
generated by density and magnetization contrasts within the Earth
to investigate the inner Earth structure. The Fatiando a Terra
0.1 release has been focused on gravity and magnetic methods.
Therefore, the fatiando.gravmag package contains more
advanced and state-of-the-art algorithms than the other packages.

The module fatiando.gravmag.imaging implements
the imaging methods described in [FP]. These methods aim to
produce an image of the geologic source from the observed gravity
or magnetic data. The following code sample uses the "sandwich

http://leouieda.github.io/tesseroids
http://leouieda.github.io/tesseroids

96 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Fig. 8: Screen-shot of interactively drawing the contour of a 3D
polygonal prism, as viewed from above.

Fig. 9: Example of forward modeling the gravity anomaly of a 3D
polygonal prism. a) forward modeled gravity anomaly. b) 3D plot of
the polygonal prism.

Fig. 10: Example of using the "sandwich model" imaging method to
recover a 3D image of a geologic body based on its gravity anomaly.
The colored blocks are a cutoff of the imaged body. The black contours
are the true source of the gravity anomaly.

model" method [SNDW] to image the polygonal prism, produced
in the previous section, based on its gravity anomaly (Figure 10):
estimate = gravmag.imaging.sandwich(x, y, z, gz,

shape, zmin=0, zmax=1000, nlayers=20, power=0.2)
body = mesher.vfilter(1.3*10**8, 1.7*10**8,

'density', estimate)
myv.figure()
myv.prisms(body, 'density', edges=False)
p = myv.polyprisms(model, 'density',

style='wireframe', linewidth=4)
p.actor.mapper.scalar_visibility = False
p.actor.property.color = (0, 0, 0)
myv.axes(myv.outline(bounds),

ranges=[i*0.001 for i in bounds])
myv.wall_north(bounds)
myv.wall_bottom(bounds)
myv.show()

Also implemented in Fatiando a Terra are some recent develop-
ments in gravity and magnetic inversion methods. The method
of "planting anomalous densities" by [UB] is implemented in
the fatiando.gravmag.harvester module. In contrast to
imaging methods, this is an inversion method, i.e., it estimates a
physical property distribution (density in the case of gravity data)
that fits the observed data. This particular method requires the user
to specify a "seed" (Figure 11) around which the estimated density
distribution grows (Figure 12):
Make a mesh and a seed
mesh = mesher.PrismMesh(bounds, (15, 30, 30))
seeds = gravmag.harvester.sow(

[[200, 300, 100, {'density':500}]],
mesh)

myv.figure()
myv.prisms([mesh[s.i] for s in seeds])
p = myv.polyprisms(model, 'density',

style='wireframe', linewidth=4)
p.actor.mapper.scalar_visibility = False
p.actor.property.color = (0, 0, 0)
myv.axes(myv.outline(bounds),

ranges=[i*0.001 for i in bounds])
myv.wall_north(bounds)
myv.wall_bottom(bounds)
myv.show()
Now perform the inversion
data = [gravmag.harvester.Gz(x, y, z, gz)]
estimate = gravmag.harvester.harvest(data, seeds,

mesh, compactness=0.1, threshold=0.0001)[0]

MODELING THE EARTH WITH FATIANDO A TERRA 97

Fig. 11: The small blue prism is the seed used by
fatiando.gravmag.harvester to perform the inversion of a
gravity anomaly. The black contours are the true source of the gravity
anomaly.

Fig. 12: The blue prisms are the result of a gravity inversion using
module fatiando.gravmag.harvester. The black contours
are the true source of the gravity anomaly. Notice how the inversion
was able to recover the approximate geometry of the true source.

mesh.addprop('density', estimate['density'])
body = mesher.vremove(0, 'density', mesh)
myv.figure()
myv.prisms(body, 'density')
p = myv.polyprisms(model, 'density',

style='wireframe', linewidth=4)
p.actor.mapper.scalar_visibility = False
p.actor.property.color = (0, 0, 0)
myv.axes(myv.outline(bounds),

ranges=[i*0.001 for i in bounds])
myv.wall_north(bounds)
myv.wall_bottom(bounds)
myv.show()

A toy seismic tomography

The following example uses module
fatiando.seismic.srtomo to perform a simplified
2D tomography on synthetic seismic wave travel-time data.
To generate the travel-times we used a seismic wave velocity
model constructed from an image file. The colors of the

image are converted to gray-scale and the intensity is mapped
to seismic wave velocity by the img2prop method of the
fatiando.mesher.SquareMesh class. This model (Figure
13) is then used to calculate the travel-times between a random
set of earthquake locations and seismic receivers (seismometers):
import urllib
from fatiando import mesher, utils, seismic
from fatiando.vis import mpl
area = (0, 500000, 0, 500000)
shape = (30, 30)
model = mesher.SquareMesh(area, shape)
link = '/'.join(["http://fatiando.readthedocs.org",

"en/Version0.1/_static/logo.png"])
urllib.urlretrieve(link, 'model.png')
model.img2prop('model.png', 4000, 10000, 'vp')
quake_locations = utils.random_points(area, 40)
receiver_locations = utils.circular_points(area, 20,

random=True)
quakes, receivers = utils.connect_points(

quake_locations, receiver_locations)
traveltimes = seismic.ttime2d.straight(model, 'vp',

quakes, receivers)
noisy = utils.contaminate(traveltimes, 0.001,

percent=True)

Now the noise-corrupted synthetic travel-times can be used in our
simplified tomography:
mesh = mesher.SquareMesh(area, shape)
slowness, residuals = seismic.srtomo.run(noisy,

quakes, receivers, mesh, smooth=10**6)
velocity = seismic.srtomo.slowness2vel(slowness)
mesh.addprop('vp', velocity)
Make the plots
mpl.figure(figsize=(9, 7))
mpl.subplots_adjust(top=0.95, bottom=0.05,

left=0.05, right=0.95)
mpl.subplot(2, 2, 1)
mpl.title('Velocity model (m/s)')
mpl.axis('scaled')
mpl.squaremesh(model, prop='vp', cmap=mpl.cm.seismic)
mpl.colorbar(pad=0.01)
mpl.points(quakes, '*y', label="Sources")
mpl.points(receivers, '^g', label="Receivers")
mpl.m2km()
mpl.subplot(2, 2, 2)
mpl.title('Ray paths')
mpl.axis('scaled')
mpl.squaremesh(model, prop='vp', cmap=mpl.cm.seismic)
mpl.colorbar(pad=0.01)
mpl.paths(quakes, receivers)
mpl.points(quakes, '*y', label="Sources")
mpl.points(receivers, '^g', label="Receivers")
mpl.m2km()
mpl.subplot(2, 2, 3)
mpl.title('Estimated velocity (m/s)')
mpl.axis('scaled')
mpl.squaremesh(mesh, prop='vp', cmap=mpl.cm.seismic,

vmin=4000, vmax=10000)
mpl.colorbar(pad=0.01)
mpl.m2km()
mpl.subplot(2, 2, 4)
mpl.title('Residuals (s)')
mpl.hist(residuals, bins=10)
mpl.show()

Even though the implementation in
fatiando.seismic.srtomo is greatly simplified and
not usable in real tomography problems, the result in Figure
13 illustrates interesting inverse problem concepts. Notice how
the estimated velocity is blurred in the corners where no rays
pass through. This is because the data (travel-times) provide no
information about the velocity in those areas. Areas like those
constitute the null space of the inverse problem [MENKE], where
any velocity value estimated will provide an equal fit to the

98 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Fig. 13: Example run of a simplified 2D tomography. The top-left
panel shows the true velocity model with the locations of earthquakes
(yellow stars) and receivers (green triangles). The top-right panel
shows the ray-paths between earthquakes and receivers. The bottom-
left panel is the velocity estimated by the tomography. The bottom-
right panel is a histogram of the travel-time residuals of the tomogra-
phy. Notice how the majority of residuals are close to 0 s, indicating
a good fit to the data.

data. Thus, the tomography problem requires the use of prior
information in the form of regularization. Most commonly used in
tomography problems is the Tikhonov first-order regularization,
e.g., a smoothness constraint [MENKE]. The amount of
smoothness imposed on the solution is controlled by the smooth
argument of function fatiando.seismic.srtomo.run.
That is how we are able to estimate a unique and stable solution
and why the result is specially smoothed where there are no rays.

Conclusion

The Fatiando a Terra package provides an API to develop model-
ing algorithms for a variety of geophysical methods. The current
version (0.1) has a few state-of-the-art gravity and magnetic
modeling and inversion algorithms. There are also toy problems in
gravity, seismics and seismology that are useful for teaching basic
concepts of geophysics, modeling, and inverse problems.

Fatiando a Terra enables quick prototyping of new algorithms
because of the collection of fast forward modeling routines and
the simple syntax and high level of the Python language. After
prototyping, the performance bottlenecks of these algorithms can
be easily diagnosed using the advanced profiling tools available
in the Python language. Optimization of only small components
of code can be done without loss of flexibility using the Cython
language [CYTHON].

The biggest challenge that Fatiando a Terra faces in the near
future is the development of a user and, consequently, a developer
community. This is a key part for the survival of any open-source
project.

Acknowledgments

The authors were supported by a scholarship (L. Uieda) from
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES), a scholarship (V.C. Oliveira Jr) from Conselho Nacional

de Desenvolvimento Científico e Tecnológico (CNPq), and a
fellowship (V.C.F. Barbosa) from CNPq. Additional support was
provided by the Brazilian agencies CNPq (grant 471693/2011-1)
and FAPERJ (grant E-26/103.175/2011).

REFERENCES

[CYTHON] Behnel, S., R. Bradshaw, C. Citro, L. Dalcin, D. S. Sel-
jebotn, and K. Smith (2011), Cython: The Best of Both
Worlds, Computing in Science & Engineering, 13(2), 31-39,
doi:10.1109/MCSE.2010.118.

[FP] Fedi, M., and M. Pilkington (2012), Understanding imag-
ing methods for potential field data, Geophysics, 77(1), G13,
doi:10.1190/geo2011-0078.1.

[MPL] Hunter, J. D. (2007), Matplotlib: A 2D Graphics Environ-
ment, Computing in Science & Engineering, 9(3), 90-95,
doi:10.1109/MCSE.2007.55.

[MAD] Madagascar Development Team (2013), Madagascar Software,
http://www.ahay.org, accessed May 2013.

[MENKE] Menke, W. (1984), Geophysical Data Analysis: Discrete Inverse
Theory, Academic Press Inc., San Diego, California, 285pp.

[SEATREE] Milner, K., T. W. Becker, L. Boschi, J. Sain, D. Schorlemmer, and
H. Waterhouse (2009), The Solid Earth Research and Teaching
Environment: a new software framework to share research tools
in the classroom and across disciplines, Eos Trans. AGU, 90(12).

[SNDW] Pedersen, L. B. (1991), Relations between potential fields
and some equivalent sources, Geophysics, 56, 961–971, doi:
10.1190/1.1443129.

[IPY] Perez, F., and B. E. Granger (2007), IPython: A System for
Interactive Scientific Computing, Computing in Science & Engi-
neering, 9(3), 21-29, doi:10.1109/MCSE.2007.53.

[PLOUFF] Plouff, D. (1976), Gravity and magnetic fields of polygonal
prisms and application to magnetic terrain corrections, Geo-
physics, 41(4), 727, doi:10.1190/1.1440645.

[MYV] Ramachandran, P., and G. Varoquaux (2011), Mayavi: 3D Visual-
ization of Scientific Data, Computing in Science & Engineering,
13(2), 40-51, doi:10.1109/MCSE.2011.35

[SU] Stockwell Jr., J. W. (1999), The CWP/SU: Seismic
Un*x package, Computers & Geosciences, 25(4), 415-419,
doi:10.1016/S0098-3004(98)00145-9

[UB] Uieda, L., and V. C. F. Barbosa (2012), Robust 3D gravity
gradient inversion by planting anomalous densities, Geophysics,
77(4), G55-G66, doi:10.1190/geo2011-0388.1.

[SAMPLES] Uieda, L., V. C. Oliveira Jr, and V. C. F. Barbosa (2013), Code
samples in "Modeling the Earth with Fatiando a Terra", figshare,
Accessed May 29 2013, http://dx.doi.org/10.6084/m9.figshare.
708390.

[GMT] Wessel, P. and W. H. F. Smith (1991), Free software helps map
and display data, EOS Trans. AGU, 72, 441.

http://www.ahay.org
http://dx.doi.org/10.6084/m9.figshare.708390
http://dx.doi.org/10.6084/m9.figshare.708390

	Introduction
	Package structure
	Griding and map plotting
	Meshes and 3D plotting
	Forward modeling
	Gravity and magnetic methods
	A toy seismic tomography
	Conclusion
	Acknowledgments
	References

