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Abstract—A crucial behavior for assistive robots that operate in unstructured
domestic settings is the ability to efficiently reconstruct the 3D geometry of novel
objects at run time using no a priori knowledge of the object. This geometric
information is critical for the robot to plan grasping and other manipulation
maneuvers, and it would be impractical to employ database driven or other prior
knowledge based schemes since the number and variety of objects that system
may be tasked to manipulate are large.

We have developed a robot vision algorithm capable of reconstructing the
3D geometry of a novel object using only three images of the object captured
from a monocular camera in an eye-in-hand configuration. The reconstructions
are sufficiently accurate approximations such that the system can use the re-
covered model to plan grasping and manipulation maneuvers. The three images
are captured from disparate locations and the object of interest segmented from
the background and converted to a silhouette. The three silhouettes are used to
approximate the surface of the object in the form of a point cloud. The accuracy
of the approximation is then refined by regressing an 11 parameter superquadric
to the cloud of points. The 11 parameters of the recovered superquadric then
serve as the model of the object.

The entire system is implemented in Python and Python related projects.
Image processing tasks are performed with NumPy arrays making use of
Cython for performance critical tasks. Camera calibration and image segmen-
tation utilize the Python bindings to the OpenCV library which are available
in the scikits.image project. The non-linear constrained optimization uses the
fmin_l_bfgs_b algorithm in scipy.optimize. The algorithm was first vetted in a
simulation environment built on top of Enthought Traits and Mayavi.

The hardware implementation utilizes the Python OpenOPC project to
communicate with and control a Kuka KR 6/2 six axis industrial manipulator.
Images are captured via an Axis 207MW wireless network camera by issuing
cgi requests to the camera with the urllib2 module. The image data is converted
from JPEG to RGB raster format with the Python Imaging Library. The core
algorithm runs as a server on a standalone machine and is accessed using
the XML-RPC protocol. Not including the time required for the robot to capture
the images, the entire reconstruction process is executed, on average, in 300
milliseconds.

Index Terms—computer vision, real-time, geometry, robotics

1. Introduction

Recently, the robotics and automation literature has seen an
increase in research focus on the autonomous pose and shape
estimation of general objects. The intent of these studies is that
the pose and shape information of objects can be used to plan
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grasping and manipulation maneuvers. In this context, such object
recognition abilities have a plethora of applications that span mul-
tiple domains including, but not limited to: industrial automation,
assistive devices, and rehabilitation robotics. Up to this point, a
large portion of the research has focused on recognizing objects in
which the system has some form of a priori knowledge; usually
a 3D model or set of images of the object taken from various
angles along with a database of information describing the objects.
Recent examples of work in this area can be found in eg. [Kim09],
[Effendi08], [Schlemmer07], [Liefhebber07], [Kragic05].

We approach this problem with the goal that the system need
not have any prior knowledge of the object it wishes to manipulate.
In the context of assistive or service robotics, requiring such 3D
models or a database of information for every possible object
would be prohibitively tedious and time consuming, thus severely
limiting its usefulness and applicability. In order to achieve this
goal, we attempt to describe generic objects in a bulk fashion. That
is, to autonomously model an object’s actual physical form at run
time with a simplified shape that is an approximation; one which
is also sufficiently accurate to allow for the planning and execution
of grasping maneuvers. In our previous works [Colbert10_1],
[Colbert10_2], we describe in detail the development of an al-
gorithm that accomplishes just this. Only a brief overview of
that theoretical work is presented here. Rather, the majority of
this paper focuses on the implementation of that algorithm on an
industrial manipulator and the accuracy of the reconstruction that
results.

The paper progresses as follows: Section 2 provides the high
level overview of the algorithm with some diagrams and a step-
by-step visual example to ease conceptual understanding, Section
3 describes the software implementation of the algorithm, Sec-
tion 4 describes the robotic hardware implementation to include
networking and control, Section 5 elaborates on the testing and
overall accuracy of the platform and algorithm under real-world
conditions. We round out the paper with some conclusions in
Section 6.

2. Algorithm Overview

This section provides a high-level overview of the theory behind
our object reconstruction algorithm. No equations are presented.
Rather the algorithm is explained qualitatively and the interested
reader is directed to one of our previous works that develop the
theory in detail: [Colbert10_1], [Colbert10_2].
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2.1 Shape from Silhouettes

The first phase or our algorithm generates a rough approximation
to the surface of an object using a method that falls under the
category of shape from silhouettes. Algorithms of this class use
a number of silhouettes of an object of interest captured from
various vantage points and, by back-projecting the visual cones
and finding their union, reconstruct the geometry of the object. As
the number of available silhouettes increases to infinity, the recon-
struction converges on the visual hull of the object [Laurentini94].
That is, the reconstruction will converge to the true shape of the
object, minus any concavities. The method by which the visual
cones are back projected varies from algorithm to algorithm, but
most have typically used a variation of voxel coloring or space
carving [Dyer01]. Our method is a modified version of a recently
introduced new method of shape from silhouettes [Lippiello09].
Our modification to this algorithm utilizes projective geometry to
eliminate the iteration step required in the original algorithm. The
result is a shape from silhouettes algorithm that is conceptually
easier to understand and computationally more efficient than
historical methods.

Our algorithm begins by capturing three images of the ob-
ject of interest from three disparate locations, and segmenting
the object from the background. The segmented object is then
converted to a silhouette. Then, using these silhouettes along
with the known camera parameters, the 3D centroid of the object
of interest is estimated. Along with the centroid, we estimate a
radius of the object, which we define as a distance from the
estimated centroid that would define the radius of a sphere that
would fully encompass the object. Once this centroid and radius
are determined, a virtual sphere of points can be constructed
which fully encompasses the object. For each of the points in the
sphere, the point is projected into the silhouette image and tested
for intersection. If the point intersects the silhouette, nothing is
done. However, if the point does not intersect the silhouette, its
position in 3-space is modified such that its projected location
in the image lies on the boundary of the silhouette. When this
process is repeated for each silhouette, the resulting set of points
will approximate the surface of the object. The geometry can be
described with the following procedure and associated graphic:

1) Let the center of the camera be c0.
2) Let the center of the sphere be x0.
3) Let xi be any point in the sphere other than x0.
4) Let xinew be the updated position of point xi.
5) Let the projection of the center of the sphere into the

image be x′0.
6) Then, for each point xi:

a) Project xi into the silhouette image to get x′i.
b) If x′i does not intersect the silhouette:

i) Find the pixel point p′ that lies on the edge
of the silhouette along the line segment x′ix′0.

ii) Reproject p′ into R3 to get the point p.
iii) Let the line c0p be L1.
iv) Let the line x0xi be L2.
v) Let xinew be the point of intersection of lines

L1 and L2.

7) Repeat steps 2-6 for each silhouette image.

Fig. 1: The geometry of point xinew , which is the intersection of lines
L1 and L2. The line L2 is defined by known points xi and x0. The line
L1 is defined by point c0, which is the camera center, and point p,
which is the reprojection of the image point p′ into R3.

2.2 Superquadrics

The resulting set of points will, in general, be only a rough ap-
proximation of the surface of the object of interest. As previously
mentioned, as the number of captured images becomes large,
this approximation will become ever more accurate, but at the
expense of increasingly long computation times. Our aim is to
achieve usable results with a minimum number of images. To
achieve a more accurate representation of the object using just
three images, we fit a superquadric to the set of points which
approximate the surface in such a manner that the superquadric
largely rejects disturbances due to perspective projection effects
and localized noise. The fitted superquadric then serves as a
parametrized description of the object which encodes its position,
orientation, shape, and size.

Our fitting routine is based on the methods proposed in
[Jaklic00], whose work on superquadrics is authoritative. We made
a modification to their cost function which heavily penalizes points
lying inside the boundaries of the superquadric. This modification
has the effect of forcing the fitting routine to ignore disturbances
caused by perspective projection effects. For a few number of
images, these disturbances can be large, and thus this modification
is crucial to achieving a satisfactory reconstruction with only three
images.

The reconstruction of a simulated shape is shown in the follow-
ing figure. From the figure, it is clear that the fitted superquadric
provides a substantially better approximation to the original shape
than what can be achieved from the point cloud alone, when only
three images of the object are available.

3. Software Implementation

The algorithm was developed and implemented entirely in Python.
Images take the form of NumPy arrays with FOR loop dependent
geometric image calculations performed in Cython. The Cython
bindings to the OpenCV library (available in the scikits.image
project) were used to build up the image segmentation routine.
The fmin_l_bfgs_b non-linear constrained optimization routine
(available in SciPy) was adopted for purposes of finding the
best fitting superquadric for the point cloud. The gradient of the
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Fig. 2: A simulated reconstruction. Clockwise from upper left: (1) The
original shape. (2) The generated sphere of points. (3) The point cloud
after the points have been shrunk to the silhouette boundaries. Error
due to perspective projection is clearly seen. (4) The superquadric
that was fit to the point cloud. Original shape shown as a wire
frame. Notice the ability of the superquadric to ignore the perspective
projection error.

superquadric function (a hefty 296 SLOC) was implemented in
Cython.

This software stack has proven to be quite performant. The
average reconstruction time takes approximately 300 milliseconds.
This includes image segmentation times but obviously does not
include the time to actually capture the images. Compare this to
the time taken for the reconstruction in [Yamazaki08] where a
reconstruction using over 100 images required ~100 seconds of
processing time for an equivalent accuracy.

A simulation environment was also developed in concert with
the algorithm for testing purposes. The environment uses Mayavi
as a rendering engine and TraitsUI for the GUI. The environment
allows simulating a number of various shapes and modifying their
parameters in real-time. It also allows the images of the object
to be captured from any position. Once the images are captured,
the simulator then performs the reconstruction and displays the
recovered superquadric as an overlay on the current shape. The
computed accuracy of the reconstruction, based on the recovered
superquadric parameters versus the known ground truth, is shown
in a sidebar. Various intermediate stages of the reconstruction
process are also stored as hidden layers for debugging purposes.
These layers can be turned on after the reconstruction via dialog
options. All of the reconstruction images in this text were gener-
ated with either the simulator or the underlying Mayavi engine. A
screenshot of the simulator is shown below.

Fig. 3: A screenshot of the simulator which is built on Mayavi and
TraitsUI.

4. Hardware Implementation

The implementation hardware consists of three main entities: the
robotic manipulator which performs the required motions, the
camera to capture the images, and the network which consists
of the various components responsible for controlling the robot,
the camera, and performing the actual object reconstruction com-
putations.

It is desired to have these various systems interconnected in the
most decoupled and hardware/operating system agnostic manner
in order to facilitate software reuse on and with other platforms,
robots, and cameras. Thus, portability was a chief goal behind the
system design. The following sections describe each subsystem
component in detail.

4.1 Robot

The robotic arm used for testing is a KUKA KR6/2, manufactured
by KUKA Roboter GmbH. It is a six axis, low payload, industrial
manipulator with high accuracy and a repeatability of <0.1mm. It’s
smaller size (though still too large for use on a mobile platform)
and large workspace makes it well suited for laboratory use and a
wide range of experiments. The robot setup, including the camera
described in Section 4.2 is shown in the following figure.

The KUKA control software provides a proprietary user in-
terface environment developed in Windows XP Embedded, which
in turn runs atop the real time VxWorks operating system. The
platform provides a programming interface to the robot utilizing
the proprietary KUKA Robot Language (KRL) as well as an OPC
server that allows for connections from outside computers and
the reading and writing of OLE system variables. As KRL does
not provide facilities for communicating with outside processes or
computers, the OPC server connection was used in conjunction
with a simple KRL program to export control to an outside
machine. The details of this are delayed until Section 4.3.

4.2 Camera

The camera used for image acquisition is an Axis 207MW wireless
network camera. It is relatively inexpensive and has megapixel
resolution. The main beneficial feature of the camera is that it
contains a built in HTTP web server with support for acquiring
images via CGI requests. This means that the camera can be used
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Fig. 4: The robot platform with the camera mounted in the gripper.

by any programming language with libraries supporting HTTP
connections. Needless to say, the list of qualifying languages is
extensive.

In order to transform the camera into a completely wireless
component, a wireless power supply was developed. Namely, a
custom voltage regulator was designed and fabricated to regulate
the voltage of a battery pack down to the required 5V for the
camera. The regulator will operate with any DC voltage from 7 -
25V, allowing interoperation with a wide variety of battery packs.

4.3 Network

In order to achieve our goal of portability, the network was
designed around distributed components that use free and open
source standards for interprocess communication. Each compo-
nent in the network is capable of operating independently on
its own machine from anywhere that has access to the central
switch. In the case of our experiments, the central switch is a local
802.11 router providing WLAN access to the local computers in
the laboratory. In our network setup, there are four components
that share information across the LAN:

1) The KUKA robot computer running KRL programs and
the OPC server

2) The Axis 207MW wireless network camera
3) The object reconstruction software
4) The external KUKA control software

The logical arrangement of these components, their intercon-
nection, and the communication protocols used are illustrated

Fig. 5: Network and communication layout.

in following figure and are explained in detail in the following
sections.

4.3.1 External KUKA Controller and the OPC Server:
As previously mentioned, the KUKA robot software provides an
OPC server that can be used to read and write system variables at
run time. While OPC itself is an open standard, using it remotely
requires extensive DCOM configuration which is both tedious and
error prone, as well as limiting in that it requires the client machine
to run a Microsoft Windows operating system. The OpenOPC
project provides a solution to this problem. Built on Python,
OpenOPC provides a platform agnostic method of making remote
OPC requests. It runs a service on the host machine (in our case
Windows XP embedded) which responds to requests from the
client machine. The host service then proxies the OPC request
to the (now local) OPC server, thus bypassing all DCOM related
issues. The network communication transmits serialized Python
objects ala the Pyro library.

A simple program was written in the KRL language and runs
on the KUKA robot computer in parallel with the OPC server. This
program sits in an idle loop monitoring the system variables until
a command variable changes to True. At this point, the program
breaks out of the loop and moves the robot to a position dictated by
other system variables which are also set by the client machine. At
the completion of the motion, the program re-enters the idle loop
and the process repeats.

The external KUKA controller (the client) runs on a separate
machine under Ubuntu Linux. This machine makes a connection to
the OpenOPC service running on the KUKA computer and makes
the appropriate requests to read and write the system variables.
In this manner, this external machine is able to specify a desired
robot position, either absolute or relative, and then, by setting the
command variable to True, forces the robot to execute the motion.
This machine also acts as the main control logic, synchronizing the
robot motion with the image capturing and object reconstruction.

4.3.2 Wireless Camera and Object Reconstruction: The
wireless camera presents itself on the network as an HTTP server
where images can be obtained by making CGI requests. These
requests are trivial to make using the Python urllib2 module. The
data is received in the form of raw JPEG data which must be
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Fig. 6: The objects used for testing. Clockwise from upper-left: (1) A
battery box. (2) A stack of cups. (3) A cardinal statue. (4) A ball of
yarn.

converted to RGB raster format for purposes of image processing.
This conversion is done using the Python Imaging Library. So
that the data need not traverse the network twice, the connection
to the camera is made from the object reconstruction program
and images are captured and converted upon request by the main
control program.

The connection between the main controller and object re-
construction program utilizes the XML-RPC protocol. The object
reconstruction programs exports the majority of its capability in
the form of methods on a SimpleXMLRPCServer instance from
the Python xmlrpclib module.

5. Testing and Results

After verifying the accuracy of the algorithm in simulation, it was
implemented on the hardware platform and tested on a variety of
real world objects: a prismatic battery box, an elongated cylinder
composed of two stacked cups, a ball of yarn, and a small cardinal
statue. The first three objects represent the range of geometric
shapes frequently encountered in domestic settings: cylindrical,
prismatic, and ellipsoidal. It was expected that the algorithm
would achieve accurate reconstructions for these shapes. The last
object is amorphous and was included to test the robustness of
the algorithm when presented with data that is incapable of being
accurately described by the superquadric model. In all cases, the
test objects were red in color to ease the task of segmentation and
facilitate reliable silhouette generation. The four objects tested are
shown in the following figure.

As seen previously in the simulated reconstruction, the recov-
ered superquadric models the original object to high a degree of
accuracy. On the real world objects, the accuracy of the algorithm
was seen to degrade only slightly. Indeed, most parameters were
recovered to within few percent of known ground truth. It must be
kept in mind, however, that there are several sources of error that

Fig. 7: The reconstruction of the battery box.

Fig. 8: The reconstruction of the yarn ball.

are compounded into these reconstructions which are not present
in the simulation:

• Uncertain camera calibration: intrinsics and extrinsics
• Robot kinematic uncertainty
• Imperfect segmentation
• Ground truth measurement uncertainty

The last bullet is particularly noteworthy. Since the object is
placed randomly in the robot’s workspace, the only practical way
of measuring the ground truth position and orientation is to use a
measuring device attached to the end effector of the robot. Though
more accurate than attempting to manually measure from the robot
base, the error is compounded by both machine inaccuracy and
human error.

In the following figures, the results of the reconstruction for
each of the cases is shown by a rendering of the known ground
truth of the object accompanied by an overlay of the calculated
superquadric. The ground truth is shown as a wire frame and the
reconstruction as an opaque surface.

Fig. 9: The reconstruction of the cup stack.

Fig. 10: The reconstruction of the cardinal statue. This original object
is shown in terms of the computed point cloud, given the difficulty of
modeling the amorphous shape as a wireframe.



30 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

We feel that the results of the cardinal statue reconstruction
are due a bit of explanation. We included this case to test how
our algorithm performs when provided with data that does not fit
well with our reconstruction model and assumptions, e.g. that the
original object can be modeled well by a superquadric. From the
figure, it is clear that there would be no way to infer from the
box shape that is the final reconstruction that the original object
was a cardinal figurine. However, it is interesting to note that the
reconstruction is very close to what a human would likely provide
if asked to select a bounding box that best describes the object.
That is, the reconstructed shape does an excellent job of capturing
the bulk form of the statue despite the fact that the data is ill
formed with respect to our modeling assumptions.

This example shows that, even when the object does not take
a form that can be accurately modeled by a single superquadric,
our proposed algorithm still generates useful results.

6. Conclusions

We have given an overview of our robotic vision algorithm that
is implemented in Python. Our algorithm enables the recovery of
the shape, pose, position and orientation of unknown objects using
just three images of the object. The reconstructions have sufficient
accuracy to allow for the planning of grasping and manipulation
maneuvers.

Both the algorithm and software side of the hardware imple-
mentation are implemented entirely in Python and related projects.
Notable libraries used include: NumPy, SciPy, Cython, OpenOPC,
and scikits.image. This software stack was proven to provide high
performance with our algorithm executing in less time than other
implementations in the literature.
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