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Protein Folding with Python on Supercomputers
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Abstract—Today’s supercomputers have hundreds of thousands of compute
cores and this number is likely to grow. Many of today’s algorithms will have to
be rethought to take advantage of such large systems. New algorithms must
provide fine grained parallelism and excellent scalability. Python offers good
support for numerical libraries and offers bindings to MPI that can be used to
develop parallel algorithms for distributed memory machines.

PySMMP provides bindings to the protein simulation package SMMP.
Combined with mpi4py, PySMMP can be used to perform parallel tempering
simulations of small proteins on the supercomputers JUGENE and JuRoPA. In
this paper, the performance of the Fortran implementation of parallel tempering
in SMMP is compared with the Python implementation in PySMMP. Both codes
use the same Fortran code for the calculation of the energy.

The performance of the implementations is comparable on both machines,
but some challenges remain before the Python implementation can replace the
Fortran implementation for all production runs.

Index Terms—parallel, MPI, biology, protein structure

Introduction

Many of the problems well known to high-performance computing
(HPC) are becoming main stream. Processors add more and more
cores, but the performance of a single core does not improve as
drastically as it used to. Suddenly everybody has to deal with
tens or hundreds of processes or threads. To take advantage of
graphics hardware another factor of 100 in the number of threads
is needed. Issues such as task management, load balancing, and
race conditions are starting to become known to everybody who
wants to write efficient programs for PCs. But things work the
other way around, too. High-level programming languages such
as Python that were not developed to get peak performance but to
make good use of the developers time are becoming increasingly
popular in HPC.

The Simulation Laboratory Biology at the Juelich Supercom-
puting Centre (JSC) uses Python to script workflows, implement
new algorithms, perform data analysis and visualization, and to
run simulations on the supercomputers JUGENE and JuRoPA.
Often, we combine existing packages such as Biopython [BioPy],
Modeller [MOD], matplotlib [PyLab], or PyQt [PyQt] with our
own packages to tackle the scientific problems we are interested
in. In this paper I will focus on using Python for protein folding
studies on JuRoPA and JUGENE.
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Proteins

Proteins bind oxygen and carbon dioxide, transport nutrients and
waste products. They catalyze reactions, transfer information, and
perform many other important functions. Proteins don’t act in
isolation. They are part of an interaction network that allows a cell
to perform all the necessary operations of life. A very important
feature of a protein is its shape. Only when it obtains its correct
three dimensional structure does it provide the right interface for
its reaction partners. In fact, changing the interface is a way to
turn proteins on and off and regulate their activity.

Proteins are long chains of amino acids. The sequence of
amino acids determines a protein’s native shape. The sequence
is encoded in the genome and assembled by the ribosome—itself
a complex of RNA and proteins—amino acid by amino acid.

Proteins need anywhere from a few micro seconds to several
minutes to obtain their native structure. This process is called
protein folding. It occurs reliably in our body many times each
second yet it is still poorly understood.

For some globular proteins it has been shown that they can
unfold and refold in a test tube. At least for these proteins folding
is driven purely by classical physical interactions. This is the basis
for folding simulations using classical force fields.

The program package SMMP first released in 2001 [SMMP]
implements several Monte Carlo algorithms that can be used to
study protein folding. It uses a simplified model of a protein
that keeps the bond angles and lengths fixed and only allows
changes of the dihedral angles. To calculate the energy of a given
conformation of a protein, SMMP also implements several energy
functions, the so called force fields. A force field is defined by a
functional form of the energy function and its parametrization.

In 2007, we released version 3 of SMMP [SMMP3]. With
this version we provided Python bindings PySMMP that made the
properties of the proteins, the algorithms, and the calculation of
energy available from Python. In addition to the wrapper library
created with f2py, we included three modules: universe, protein,
and algorithms that make setting up a simulation and accessing the
properties of a protein much more convenient. The wrapper mod-
ules were inspired by the Molecular Modeling Toolkit [MMTK],
but implement a flat hierarchy. We did not, however, include the
parallelized energy functions, which requires MPI to work.

For the work described in this paper, I decided to use mpi4py
as MPI bindings for the Python code for its completeness and
its integration with Scientific Python and Cython. An important
feature of mpi4py is that it provides easy access to communicators
in a way that can be passed to the Fortran subroutine called.
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Compiling the Modules

JUGENE is a 72-rack IBM Blue Gene/P (BG/P) system installed
at JSC. Each rack consists of 1024 compute nodes. Each compute
node has a 4-core PowerPC 450 processor running at 850 MHz
and 2 GB of memory for a total of 294912 cores and 147 TB of
memory. The nodes are connected via a three dimensional torus
network. Each node is linked to its six neighbors. In addition
to the torus network, BG/P features a tree network that is used
for global communication. The nodes are diskless. They forward
IO requests to special IO nodes, which in turn talk to the GPFS
file system. JUGENE’s peak performance is about one petaflop
and it reaches about 825 teraflops in the Linpack benchmark.
This makes it Europe’s fastest computer and the number 5 in the
world [Top500]. While the slow clock rate makes the system very
energy efficient (364 MFlops/W), it also makes code that scales
well a must, since each individual core provides only about one
third of the peak performance of an Intel Nehalem core and the
performance gap is even larger in many applications. Production
runs on JUGENE should use at least one rack.

Programs that run on JUGENE are usually cross-compiled for
the compute nodes. The compute nodes run a proprietary 32-bit
compute node kernel with reduced functionality whereas the login
nodes use Power6 processors with a full 64-bit version of SUSE
Linux Enterprise Server 10. Cross compiling can be tricky. It is
important to set all the environment variables and paths correctly.
First, we need to make sure to use the correct compiler

export BGPGNU=/bgsys/drivers/ppcfloor/gnu-linux
export F90=$BGPGNU/powerpc-bgp-linux/bin/gfortran

Then we need to use f2py with the correct Python interpreter, for
example

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$BGPGNU/lib
$BGPGNU/bin/python /bgsys/local/numpy/1.2.1/bin/f2py

Now, f2py produces libraries that can be loaded on the compute
nodes.

Launching Python on thousands of cores

A first step for any Python program is to load the interpreter and
the default modules. While this is usually not a problem if we start
a few instances, it can become troublesome on a large system such
as JUGENE.

Taking a look at the first two columns in Table 1 we see that
already for a single rack, it takes more than 5 minutes to run a
simple helloworld program using the default Python installation
location. A C++ program for comparison takes only 5 s. Plotting
the run time of the helloworld program, we quickly see that the
time increases linearly with the number of MPI tasks at a rate of
0.1 s per task (Blue squares in Figure 1). Extrapolating this to all
294912 cores of JUGENE, it would take more than 8 hours to start
the Python interpreter resulting in 25 lost rack days (70 CPU years
with 4 cores per CPU) and almost 10 metric tons of CO2.

The linear behavior hints at serialization when the Python
interpreter is loaded. As mentioned above, JUGENE’s, compute
nodes don’t have their own disks. All IO is done via special IO
nodes from a parallel file system and all nodes access the same
Python image on the disk.

A similar behavior was discussed for the GPAW code in the
mpi4py forum [PyOn10k]. GPAW [GPAW] uses its own Python
MPI interface. Their work around was to use the ram disks of the
IO nodes on Blue Gene/P.

# of Cores Time [s] Time [s] Comments
1 5
128 50 20 A single node card
512 55 Midplane in SMP mode
1024 100 Only rank 0 writes
2048 376 195 s if only rank 0 writes
4096 321 130 1 rack (smallest size for pro-

duction runs)
8192 803 246 2 racks
16384 1817 371 4 racks. For comparison, a

C++ program takes 25 s.
20480 389 5 racks
32768 667 8 racks
65536 927 16 racks
131071 1788 32 rack

TABLE 1: Time measured for a simple MPI hello world program
written using mpi4py on the Blue Gene/P JUGENE. The second
column gives the times using the default location for Python on Blue
Gene. The third column lists the times if Python is installed in the
Work file system.
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Fig. 1: Scaling of the startup time of the Python interpreter on
JUGENE before and after optimization. Using the default location
of the Python installation, the startup time increases linearly with the
number of MPI tasks. Moving the Python installation to the faster
Work file system reduces the scaling exponent from 1 to 0.77.

Based on this data, we filed a service request with IBM. After
some experimentation, IBM finally suggested to install Python on
the Work file system. The Work file system is usually used as
a skratch space for simulation data that is written during a run.
Its block size of 2 MB is optimized for large files and it reaches
a bandwidth of 30 GB/s. Files written to the Work file system
usually are deleted automatically after 90 days. In comparison the
system and home file systems use a block size of 1 MB and reach
a bandwidth of 8 GB/s.

With Python installed on the Work file system, the scaling of
the runtime of the helloworld program becomes sublinear with an
exponent of about 0.77 (see column three in Table 1 and green
disks in Figure 1). This make production runs of up to 32 racks
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Fig. 2: Cartoon rendering of the three-helix bundle GS-α3W. The
rendering was done with PyMOL [PyMOL].

(131071 cores) feasible. Extrapolating the data to 72 racks, it
would now take less than an hour to start a run on the entire
machine.

I also ran the same test on our second supercomputer, JuRoPA.
JuRoPA is an Intel Nehalem cluster. Each of its 3288 nodes has
two quad-core processors with 24 GB of memory for a total
of 26304 cores and 79 TB of main memory. It has a peak
performance of 308 teraflops and is currently number 14 in the Top
500 list with 90% efficiency in the Linpack benchmark [Top500].
It uses Infiniband in a fat tree topology for communication and a
Lustre file system for storage. In contrast to JUGENE, each node
has its own local disk, where Python is installed. While the time
to start Python and load mpi4py.MPI still increases linearly with
the number of nodes, the prefactor is only 0.005 s per process.

Parallel energy calculation

As mentioned above, the energy calculation for the ECEPP/3
force field and the associated implicit solvent term are par-
allelized. Before they can be used, however, the appropriate
communicator needs to be defined. For most simulations, ex-
cept parallel tempering (see Section Parallel tempering), the
communicator is a copy of the default communicator that in-
cludes all processes. To start, such a simulation, we need to
assign this communicator to smmp.paral.my_mpi_comm. This
must be the appropriate Fortran reference, which we can get
using mpi4py.MPI.COMM_WORLD.py2f(). With this setup, we
can now compare the speed and the scaling of the energy function
when called from Python and Fortran.

Scaling in parallel programs refers to the speedup when the
program runs on p processors compared to running it on one
processor. If the run time with p processors is given by t(p) then
the speedup s is defined as s(p) = t(1)/t(p) and the efficiency of
the scaling is given by e(p) = s(p)/p. An efficiency of 50% is
often considered acceptable.

As a benchmark system, I used the three-helix bundle GS-
α3W (PDB code: 1LQ7) with 67 amino acids and 1110 atoms
(see Figure 2).

On JuRoPA, I used f2py’s default optimization options for the
Intel compiler to create the bindings. The Fortran program was
compiled with the -fast option, which activates most optimizations
and includes interprocedural optimizations. For a single core, the
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Fig. 3: Parallel scaling of the duration of the energy calculation for
the three-helix bundle GS-α3W on JuRoPA (red) and JUGENE (blue).
The speedup is relative to the time needed by the Fortran program for
the calculation of the energy on a single core. The square symbols
represent SMMP, the disks PySMMP.

Fortran program is about 10% faster. The scaling on a single node
is comparable, but it breaks down for PySMMP if more than
one node is used (see Figure 3). This may be due to interactions
between mpi4py and JuRoPA’s MPI installation.

On JUGENE, the behavior is quite different. PySMMP was
compiled with gfortran, SMMP with IBM’s xlf compiler, which
produces code that is almost three times faster on a single core.
The shape of the scaling is comparable and saturates at about 128
cores.

Parallel tempering

Parallel tempering [PT], also known as replica exchange, is a
method to sample a rough energy landscape more efficiently.
Several copies of a system are simulated at different temperatures.
In addition to regular Monte Carlo [MC] moves that change a
configuration, we introduce a move that exchanges conformations
of two different temperatures. The probability for such a move is
PPT = exp(∆β∆E), where β = 1/kBT , T is the temperature and
kB is the Boltzmann constant. With this exchange probability the
statistics at each temperature remains correct, yet conformations
can move to higher temperatures where it is easier to overcome
large barriers. This allows for a more efficient sampling of the
conformational space of a protein.

Parallel tempering is by its very nature a parallel algorithm. At
each temperature, we perform a regular canonical MC simulation.
After a number of updates nup, we attempt an exchange between
temperatures. If we create our own MPI communicators, we can
use two levels of parallelism. For each temperature Ti, we use
a number of processors pi to calculate the energy in parallel.
Usually, pi is the same for all temperatures, but this is not a
requirement. Assuming that pi = p , and using nT temperatures,
we use a total of ptot = nT ∗ p processors. For an average protein
domain consisting of about 150 amino acids and 3000 atoms,
p = 128, and nT = 64 is a reasonable choice on a Blue Gene/P, for
a total of ptot = 8192—a good size for a production run.

http://www.rcsb.org/pdb/explore/explore.do?structureId=1lq7
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Fig. 4: Efficiency of the scaling of parallel tempering. Parallel
tempering is an example for weak scaling. The problem size, i.e.,
the number of temperatures, increases proportional to the number of
processors. Ideally, the time stays constant and the efficiency is one.
For JuRoPA (red), both lines are nearly constant. The Python imple-
mentation (disks) of parallel tempering takes only about 5% longer
than the Fortran version (squares). On JUGENE (blue) each replica
uses 128 cores for the energy calculation. The Python implementation
takes about 20% longer for 2 replica than the Fortran implementation
but for 16 replica the difference is down to about 10%.

Parallel tempering is implemented in Fortran as part of SMMP.
The speed of the Fortran implementation is the reference, for the
following investigation of my implementation of parallel temper-
ing in Python. Parallel tempering and canonical Monte Carlo are
implemented as classes in the algorithms module. The canonical
Monte Carlo class optionally uses the Fortran implementation
of the Metropolis step. For the following comparison, only the
calculation of the energy of a conformation is done in Fortran.

For parallel tempering, the number of processes increases
proportionally with the number of replicas. This kind of scaling
is called weak scaling. Ideally, the time stays constant. Figure 4
shows the scaling of parallel tempering on JuRoPA and JUGENE
with respect to the pure Fortran program. On JuRoPA, one node
was used per replica. On JUGENE 128 cores were used per
replica. The overhead of implementing the algorithm in Python is
about 5% on JuRoPA and the scaling is comparable to the Fortran
code. On JUGENE, the overhead of the Python implementation is
about 20% for 2 replicas. But the scaling of PySMMP is better and
for 16 replicas, the Python version takes only about 10% longer.

Clustering

In addition to scalar properties such as energy, volume, secondary
structure content, and distance to the native structure, we can save
the conformation, i.e., the coordinates of the structures, we have
seen. We can create histograms that show us for each temperature,
how often, we found structures that had a distance to the native
conformation that fell into a certain range. A commonly used
measure is the root-mean-square deviation (rmsd) of the current
conformation to the native one. Rmsd measures the average
change in position of all atoms compared to a reference structure.
Unfortunately, rmsd is not a very good measure. For small rmsd
values, two structures that have a similar rmsd to the native
structure, will also be similar to each other, but for larger rmsd

values this is not the case. To determine, the recurrence and
therefore the statistical weight of structures that are very different
from a given reference structure, we can use clustering algorithms.
A cluster can be defined in many different ways. Three intuitive
definitions are

• Elements belong to the same cluster if their distance to
each other is less than a given distance dcluster.

• Elements belong to the same cluster if they have more
connections to each other than to other elements.

• Two clusters are distinct if the density of elements within
the cluster is much higher than between clusters.

The first definition works well with rmsd as distance measure
if we choose dcluster small enough and is an intuitive definition
for clusters of structures, but it is computationally expensive. We
usually have several tens of thousands of structures requiring
billions of rmsd calculations to complete the distance matrix.
We therefore started to look at alternatives. One alternative is
to look for dense regions in high-dimensional spaces (the third
definition). MAFIA [MAFIA] is a adaptive grid algorithm to
determine such clusters. It looks for dense regions in increasingly
higher dimension. A one-dimensional region is considered dense
if the number of elements is larger than a threshold nt = α n̄w,
where α is a parameter, n̄ is the average density of elements in
that dimension, and w is the width of the region. An n-dimensional
region is considered dense if the number of elements it contains is
larger than the threshold of each of its one-dimensional sub spaces
For each dimension, MAFIA divides space into nbins uniform bins
(see Figure 5). For each bin, it counts the number of elements in
that bin creating a histogram. The next step is to reduce the number
of bins by enveloping the histogram using nwindows windows. The
value of each window is the maximum of the bins it contains.
To build an adaptive grid, neighboring windows are combined
into larger cells if their values differ by less than a factor β . For
each adaptive-grid cell, the threshold nt is calculated. The one-
dimensional dense cells are used to find two dimensional candidate
dense units. The algorithm combines the dense units found to find
increasingly higher-dimensional dense units. It takes advantage of
the fact that all n−1-dimensional projections of an n-dimensional
dense unit are also dense to quickly reduce the number of higher-
dimensional cells that need to be tested.

Since, we couldn’t find an implementation of MAFIA, I
implemented a Python version using NumPy and mpi4py. MAFIA
combines task and data parallelism making it a good candidate
for parallel compute clusters. The implementation consists of less
than 380 lines of code, scales well, and can deal easily with tens
of thousands of data points.

We are currently testing the usefulness of various ways to
describe protein conformations as multi-dimensional vectors for
clustering using PyMAFIA.

Conclusions

Today’s supercomputers consist of tens to hundreds of thousands
of cores and the number of cores is likely to grow. Using these
large systems efficiently requires algorithms that provide a lot of
parallelism. Python with mpi4py provides an avenue to implement
and test these algorithms quickly and cleanly. The implementation
of MAFIA shows that prototyping of a parallel program can be
done efficiently in pure Python

On JuRoPA, the overhead of using Python instead of Fortran
for the parallel tempering algorithm, is only about 3% if the energy
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Fig. 5: An illustration of MAFIA using a simple two-dimensional
example with α = 1.5. The light green columns and the light blue row
are one-dimensional dense units. The areas where they cross are two-
dimensional candidates for dense units, but only the darker cyan area
is dense. It contains more particles than required by the thresholds of
its one-dimensional components.

calculation is done on a single node. But the scaling of the energy
calculation when called from Fortran is better than the scaling
of the same function called from Python. This may be due to
the interplay between mpi4py and JuRoPA’s MPI installation and
needs further investigation.

Vendors are interested in making Python work on their ma-
chines. IBM helped us to improve the scaling of the startup time
of Python on our Blue Gene/P. This now makes production runs
with more than 100000 cores feasible and reduces the extrapolated
time to start Python on the entire machine from more than eight
hours to less than one hour.

Still, the goal remains to bring the startup time of the Python
interpreter on JUGENE down near that of a regular binary pro-
gram. We will continue to investigate.
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