
PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010) 67

SpacePy - A Python-based Library of Tools for the
Space Sciences

Steven K. Morley‡∗, Daniel T. Welling‡, Josef Koller‡, Brian A. Larsen‡, Michael G. Henderson‡, Jonathan Niehof‡

F

Abstract—Space science deals with the bodies within the solar system and
the interplanetary medium; the primary focus is on atmospheres and above—at
Earth the short timescale variation in the the geomagnetic field, the Van Allen
radiation belts and the deposition of energy into the upper atmosphere are key
areas of investigation.

SpacePy is a package for Python, targeted at the space sciences, that
aims to make basic data analysis, modeling and visualization easier. It builds on
the capabilities of the well-known NumPy and matplotlib packages. Publication
quality output direct from analyses is emphasized. The SpacePy project seeks
to promote accurate and open research standards by providing an open envi-
ronment for code development. In the space physics community there has long
been a significant reliance on proprietary languages that restrict free transfer
of data and reproducibility of results. By providing a comprehensive library
of widely-used analysis and visualization tools in a free, modern and intuitive
language, we hope that this reliance will be diminished for non-commercial
users.

SpacePy includes implementations of widely used empirical models, statis-
tical techniques used frequently in space science (e.g. superposed epoch analy-
sis), and interfaces to advanced tools such as electron drift shell calculations for
radiation belt studies. SpacePy also provides analysis and visualization tools for
components of the Space Weather Modeling Framework including streamline
tracing in vector fields. Further development is currently underway. External
libraries, which include well-known magnetic field models, high-precision time
conversions and coordinate transformations are accessed from Python using
ctypes and f2py. The rest of the tools have been implemented directly in Python.

The provision of open-source tools to perform common tasks will provide
openness in the analysis methods employed in scientific studies and will give
access to advanced tools to all space scientists, currently distribution is limited
to non-commercial use.

Index Terms—astronomy, atmospheric science, space weather, visualization

Introduction

For the purposes of this article we define space science as the
study of the plasma environment of the solar system. That is, the
Earth and other planets are all immersed in the Sun’s tenuous outer
atmosphere (the heliosphere), and all are affected in some way by
natural variations in the Sun. This is of particular importance at
Earth where the magnetized plasma flowing out from the Sun
interacts with Earth’s magnetic field and can affect technological
systems and climate. The primary focus here is on planetary
atmospheres and above - at Earth the short timescale variation in

* Corresponding author: smorley@lanl.gov
‡ Los Alamos National Laboratory

Copyright © 2010 Steven K. Morley et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

the the geomagnetic field, the Van Allen radiation belts [Mor10]
and the deposition of energy into the upper atmosphere [Mly10]
are key areas of investigation.

SpacePy was conceived to provide a convenient library for
common tasks in the space sciences. A number of routine analyses
used in space science are much less common in other fields
(e.g. superposed epoch analysis) and modules to perform these
analyses are provided. This article describes the initial release of
SpacePy (0.1.0), available from Los Alamos National Laboratory.
at http://spacepy.lanl.gov. Currently SpacePy is available on a non-
commercial research license, but open-sourcing of the software is
in process.

SpacePy organization

As packages such as NumPy, SciPy and matplotlib have become
de facto standards in Python, we have adopted these as the
prerequisites for SpacePy.

The SpacePy package provides a number of modules, for a
variety of tasks, which will be briefly described in this article.
HTML help for SpacePy is generated using epydoc and is bundled
with the package. This can be most easily accessed on import of
SpacePy (or any of its modules) by running the help() function
in the appropriate namespace. A schematic of the organization of
SpacePy is shown in figure 1. In this article we will describe the
core modules of SpacePy and provide some short examples of
usage and output.

The most general of the bundled modules is Toolbox. At
the time of writing this contains (among others): a convenience
function for graphically displaying the contents of dictionaries
recursively; windowing mean calculations; optimal bin width
estimation for histograms via the Freedman-Diaconis method; an
update function to fetch the latest OMNI (solar wind/geophysical
index) database and leap-second list; comparison of two time
series for overlap or common elements.

The other modules have more specific aims and are primarily
based on new classes. Time provides a container class for times
in a range of time systems, conversion between those systems and
extends the functionality of datetime for space science use. Coor-
dinates provides a class, and associated functions, for the handling
of coordinates and transformations between common coordinate
systems. IrbemPy is a module that wraps the IRBEM magnetic
field library. Radbelt implements a 1-D radial diffusion code
along with diffusion coefficient calculations and plotting routines.
SeaPy provides generic one- and two-dimensional superposed
epoch analysis classes and some plotting and statistical testing

mailto:smorley@lanl.gov
http://spacepy.lanl.gov

68 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Fig. 1: A schematic of the organization and contents of the SpacePy
package at the time of writing.

for superposed epoch analysis. PoPPy is a module for analysis of
point processes, in particular it provides association analysis tools.
Empiricals provides implementations of some common empirical
models such as plasmapause and magnetopause locations. PyBATS
is an extensive sub-package providing tools for the convenient
reading, writing and display of output from the Space Weather
Modeling Framework (a collection of coupled models of the Sun-
Earth system). PyCDF is a fully object-oriented interface to the
NASA Common Data Format library.

Time conversions

SpacePy provides a time module that enables convenient manip-
ulation of times and conversion between time systems commonly
used in space sciences:

1) NASA Common Data Format (CDF) epoch
2) International Atomic Time (TAI)
3) Coordinated Universal Time (UTC)
4) Gregorian ordinal time (RDT)
5) Global Positioning System (GPS) time
6) Julian day (JD)
7) modified Julian day (MJD)
8) day of year (DOY)
9) elapsed days of year (eDOY)

10) UNIX time (UNX)
This is implemented as a container class built on the function-

ality of the core Python datetime module. To illustrate its use, we
present code which instantiates a Ticktock object, and fetches
the time in different systems:

>>> import spacepy.time as spt
SpacePy: Space Science Tools for Python
SpacePy is released under license.
See __licence__ for details,
and help() for HTML help.
>>> ts = spt.Ticktock([`2009-01-12T14:30:00',
... `2009-01-13T14:30:00'],
... `ISO')
>>> ts
Ticktock([`2009-01-12T14:30:00',

`2009-01-13T14:30:00']),
dtype=ISO

>>> ts.UTC
[datetime.datetime(2009, 1, 12, 14, 30),
datetime.datetime(2009, 1, 13, 14, 30)]
>>> ts.TAI

array([1.61046183e+09, 1.61054823e+09])
>>> ts.isoformat(`microseconds')
>>> ts.ISO
[`2009-01-12T14:30:00.000000',
`2009-01-13T14:30:00.000000']

Coordinate handling

Coordinate handling and conversion is performed by the co-
ordinates module. This module provides the Coords class for
coordinate data management. Transformations between cartesian
and spherical coordinates are implemented directly in Python, but
the coordinate conversions are currently handled as calls to the
IRBEM library.

In the following example two locations are specified in a
geographic cartesian coordinate system and converted to spher-
ical coordinates in the geocentric solar magnetospheric (GSM)
coordinate system. The coordinates are stored as object attributes.
For coordinate conversions times must be supplied as many of the
coordinate systems are defined with respect to, e.g., the position
of the Sun, or the plane of the Earth’s dipole axis, which are time-
dependent.

>>> import spacepy.coordinates as spc
>>> import spacepy.time as spt
>>> cvals = spc.Coords([[1,2,4],[1,2,2]],
... `GEO', `car')
>>> cvals.ticktock = spt.Ticktock(
... [`2002-02-02T12:00:00',
... `2002-02-02T12:00:00'],
... `ISO')
>>> newcoord = cvals.convert(`GSM', `sph')

A new, higher-precision C library to perform time conversions,
coordinate conversions, satellite ephemeris calculations, magnetic
field modeling and drift shell calculations—the LANLGeoMag
(LGM) library—is currently being wrapped for Python and will
eventually replace the IRBEM library as the default in SpacePy.

The IRBEM library

ONERA (Office National d’Etudes et Recherches Aerospatiales)
provide a FORTRAN library, the IRBEM library [Bos07], that pro-
vides routines to compute magnetic coordinates for any location
in the Earth’s magnetic field, to perform coordinate conversions,
to compute magnetic field vectors in geospace for a number of
external field models, and to propagate satellite orbits in time.

A number of key routines in the IRBEM library have been
wrapped uing f2py, and a ‘thin layer’ module IrbemPy has been
written for easy access to these routines. Current functionality
includes calls to calculate the local magnetic field vectors at any
point in geospace, calculation of the magnetic mirror point for
a particle of a given pitch angle (the angle between a particle’s
velocity vector and the magnetic field line that it immediately
orbits such that a pitch angle of 90 degrees signifies gyration
perpendicular to the local field) anywhere in geospace, and cal-
culation of electron drift shells in the inner magnetosphere.

As mentioned in the description of the Coordinates module,
access is also provided to the coordinate transformation capa-
bilities of the IRBEM library. These can be called directly, but
IrbemPy is easier to work with using Coords objects. This is
by design as we aim to incorporate the LGM library and replace
the calls to IRBEM with calls to LGM without any change to the
Coordinates syntax.

SPACEPY - A PYTHON-BASED LIBRARY OF TOOLS FOR THE SPACE SCIENCES 69

OMNI

The OMNI database [Kin05] is an hourly resolution, multi-source
data set with coverage from November 1963; higher temporal
resolution versions of the OMNI database exist, but with cov-
erage from 1995. The primary data are near-Earth solar wind,
magnetic field and plasma parameters. However, a number of
modern magnetic field models require derived input parameters,
and [Qin07] have used the publicly-available OMNI database
to provide a modified version of this database containing all
parameters necessary for these magnetic field models. These data
are currently updated and maintained by Dr. Bob Weigel and are
available through ViRBO (Virtual Radiation Belt Observatory)1.

In SpacePy this data is made available on request on install; if
not downloaded when SpacePy is installed and attempt to import
the omni module will ask the user whether they wish to download
the data. Should the user require the latest data, the update
function within spacepy.toolbox can be used to fetch the
latest files from ViRBO.

As an example, we fetch the OMNI data for the powerful
“Hallowe’en” storms of October and November, 2003. These geo-
magnetic storms were driven by two solar coronal mass ejections
that reached the Earth on October 29th and November 20th.

>>> import spacepy.time as spt
>>> import spacepy.omni as om
>>> import datetime as dt
>>> st = dt.datetime(2003,10,20)
>>> en = dt.datetime(2003,12,5)
>>> delta = dt.timedelta(days=1)
>>> ticks = spt.tickrange(st, en, delta, `UTC')
>>> data = om.get_omni(ticks)

data is a dictionary containing all the OMNI data, by variable, for
the timestamps contained within the Ticktock object ticks

Superposed Epoch Analysis

Superposed epoch analysis is a technique used to reveal consistent
responses, relative to some repeatable phenomenon, in noisy data
[Chr08]. Time series of the variables under investigation are
extracted from a window around the epoch and all data at a given
time relative to epoch forms the sample of events at that lag.
The data at each time lag are then averaged so that fluctuations
not consistent about the epoch cancel. In many superposed epoch
analyses the mean of the data at each time u relative to epoch,
is used to represent the central tendency. In SeaPy we calculate
both the mean and the median, since the median is a more robust
measure of central tendency and is less affected by departures
from normality. SeaPy also calculates a measure of spread at each
time relative to epoch when performing the superposed epoch
analysis; the interquartile range is the default, but the median
absolute deviation and bootstrapped confidence intervals of the
median (or mean) are also available. The output of the example
below is shown in figure 2.

>>> import spacepy.seapy as se
>>> import spacepy.omni as om
>>> import spacepy.toolbox as tb
>>> epochs = se.readepochs(`SI_GPS_epochs_OMNI.txt')
>>> st, en = datetime.datetime(2005,1,1),
... datetime.datetime(2009,1,1)
>>> einds, oinds = tb.tOverlap([st, en],
... om.omnidata[`UTC'])
>>> omni1hr = array(om.omnidata[`UTC'])[oinds]
>>> delta = datetime.timedelta(hours=1)

1. http://virbo.org/QinDenton

Fig. 2: A typical output from the SpacePy Sea class using OMNI
solar wind velocity data. The black line marks the superposed epoch
median, the red dashed line marks the superposed epoch mean, and
the blue fill marks the interquartile range. This figure was generated
using the code in the text and a list of 67 events published by [Mor10].

>>> window= datetime.timedelta(days=3)
>>> sevx = se.Sea(om.omnidata[`velo'][oinds],
... omni1hr, epochs, window, delta)
>>> sevx.sea()
>>> sevx.plot(epochline=True, yquan=`V$_{sw}$',

xunits=`days', yunits=`km s$^{-1}$')

More advanced features of this module have been used in analyses
of the Van Allen radiation belts and can be found in the peer-
reviewed literature [Mor10].

Association analysis

This module provides a point process class PPro and methods for
association analysis (see, e.g., [Mor07]). This module is intended
for application to discrete time series of events to assess statistical
association between the series and to calculate confidence limits.
Since association analysis is rather computationally expensive, this
example shows timing. To illustrate its use, we here reproduce the
analysis of [Wil09] using SpacePy. After importing the necessary
modules, and assuming the data has already been loaded, PPro
objects are instantiated. The association analysis is performed by
calling the assoc method and bootstrapped confidence intervals
are calculated using the aa_ci method. It should be noted that
this type of analysis is computationally expensive and, though
currently implemented in pure Python may be rewritten using
Cython or C to gain speed.

>>> import datetime as dt
>>> import spacepy.time as spt
>>> onsets = spt.Ticktock(onset_epochs, `CDF')
>>> ticksR1 = spt.Ticktock(tr_list, `CDF')
>>> lags = [dt.timedelta(minutes=n)
... for n in xrange(-400,401,2)]
>>> halfwindow = dt.timedelta(minutes=10)
>>> pp1 = poppy.PPro(onsets.UTC, ticksR1.UTC,
... lags, halfwindow)
>>> pp1.assoc()
>>> pp1.aa_ci(95, n_boots=4000)
>>> pp1.plot()

The output is shown in figure 3 and can be compared to figure 6a
of [Wil09].

http://virbo.org/QinDenton

70 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Fig. 3: Reproduction of the association analysis done by [Wil09],
using the PoPPy module of SpacePy. The figure shows a significant
association around zero time lag between the two point processes
under study (northward turnings of the interplanetary magnetic field
and auroral substorm onsets).

NASA Common Data Format

At the time of writing, limited support for NASA CDF2 has
been written in to SpacePy. NASA themselves have worked with
the developers of both IDL™ and MatLab™. In addition to the
standard C library for CDF, they provide a FORTRAN interface
and an interface for Perl—the latest addition is support for C#.
As Python is not supported by the NASA team, but is growing
in popularity in the space science community we have written a
module to handle CDF files.

The C library is made available in Python using ctypes and an
object-oriented "thin layer" has been written to provide a Pythonic
interface. For example, to open and query a CDF file, the following
code is used:

>>> import spacepy.pycdf as cdf
>>> myfile = cdf.CDF()
>>> myfile.keys()

The CDF object inherits from the
collections.MutableMapping object and provides
the user a familiar ’dictionary-like’ interface to the file contents.
Write and edit capabilities are also fully supported, further
development is being targeted towards the generation of ISTP-
compliant CDF files3 for the upcoming Radiation Belt Storm
Probes (RBSP) mission.

As an example of this use, creating a new CDF from a master
(skeleton) CDF has similar syntax to opening one:

>>> cdffile = cdf.CDF('cdf_file.cdf',
... 'master_cdf_file.cdf')

This creates and opens cdf_filename.cdf as a copy of
master_cdf_filename.cdf. The variables can then be pop-
ulated by direct assignment, as one would populate any new
object. Full documentation can be found both in the docstrings
and on the SpacePy website.

2. http://cdf.gsfc.nasa.gov/
3. http://spdf.gsfc.nasa.gov/sp_use_of_cdf.html

Radiation belt modeling

Geosynchronous communications satellites are especially vulner-
able to outer radiation belt electrons that can penetrate deep into
the system and cause electrostatic charge buildup on delicate
electronics. The complicated physics combined with outstanding
operational challenges make the radiation belts an area of intense
research. A simple yet powerful numerical model of the belts is
included in SpacePy in the RadBelt module. This module allows
users to easily set up a scenario to simulate, obtain required
input data, perform the computation, then visualize the results.
The interface is simple enough to allow users to easily include
an analysis of radiation belt conditions in larger magnetospheric
studies, but flexible enough to allow focused, in-depth radiation
belt research.

The model is a radial diffusion model of trapped electrons
of a single energy and a single pitch angle. The heart of the
problem of radiation belt modeling through the diffusion equation
is the specification of diffusion coefficients, source and loss terms.
Determining these values is a complicated problem that is tackled
in a variety of different ways, from first principles approaches to
simpler empirical relationships. The RadBelt module approaches
this with a paradigm of flexibility: while default functions that
specify these values are given, many are available and additional
functions are easy to specify. Often, the formulae require input
data, such as the Kp or Dst indices. This is true for the RadBelt
defaults. These data are obtained automatically from the OMNI
database, freeing the user from the tedious task of fetching data
and building input files. This allows simple comparative studies
between many different combinations of source, loss, and diffu-
sion models.

Use of the RadBelt module begins with instantiation of an
RBmodel object. This object represents a version of the radial
diffusion code whose settings are controlled by its various object
attributes. Once the code has been properly configured, the time
grid is created by specifying a start and stop date and time along
with a step size. This is done through the setup_ticks instance
method that accepts datetime or Ticktock arguments. Finally, the
evolve method is called to perform the simulation, filling the
PSD attribute with phase space densities for all L and times
specified during configuration. The instance method plot yields
a quick way to visualize the results using matplotlib functionality.
The example given models the phase space density during the
“Hallowe’en” storms of 2003. The results are displayed in figure
4. In the top frame, the phase space density is shown. The white
line plotted over the spectrogram is the location of the last closed
drift shell, beyond which the electrons escape the magnetosphere.
Directly below this frame is a plot of the two geomagnetic indices,
Dst and Kp, used to drive the model. With just a handful of
lines of code, the model was setup, executed, and the results were
visualized.

>>> from spacepy import radbelt as rb
>>> import datetime as dt
>>> r = rb.RBmodel()
>>> starttime = dt.datetime(2003,10,20)
>>> endtime = dt.datetime(2003,12,5)
>>> delta = dt.timedelta(minutes=60)
>>> r.setup_ticks(starttime, endtime,
... delta, dtype=`UTC')
>>> r.evolve()
>>> r.plot(clims=[4,11])

http://cdf.gsfc.nasa.gov/
http://spdf.gsfc.nasa.gov/sp_use_of_cdf.html

SPACEPY - A PYTHON-BASED LIBRARY OF TOOLS FOR THE SPACE SCIENCES 71

Fig. 4: RadBelt simulation results for the 2003 Hallowe’en storms.
The top frame shows phase space density as a function of drift shell
and time. The bottom frame shows the geomagnetic Kp and Dst
indices during the storm.

Visualizing space weather models

The Block Adaptive Tree Solar wind Roe-type Upwind Scheme
code, or BATS-R-US, is a widely used numerical model in the
space science community. It is a magnetohydrodynamic (MHD)
code [Pow99], which means it combines Maxwell’s equations for
electromagnetism with standard fluid dynamics to produce a set
of equations suited to solving spatially large systems while using
only modest computational resources. It is unique among other
MHD codes in the space physics community because of its au-
tomatic grid refinement, compile-time selection of many different
implementations (including multi fluid, Hall resistive, and non-
isotropic MHD), and its library of run-time options (such as solver
and scheme configuration, output specification, and much more).
It has been used in a plethora of space applications, from planetary
simulations (including Earth [Wel10b] and Mars [Ma07]) to solar
and interplanetary investigations [Coh09]. As a key component of
the Space Weather Modeling Framework (SWMF) [Tot07], it has
been coupled to many other space science numerical models in
order to yield a true ‘sun to mud’ simulation suite that handles
each region with the appropriate set of governing equations.

Visualizing output from the BATS-R-US code comes with its
own challenges. Good analysis requires a combination of two and
three dimensional plots, the ability to trace field lines and stream
lines through the domain, and the slicing of larger datasets in
order to focus on regions of interest. Given that BATS-R-US is
rarely used by itself, it is also important to be able to visualize
output from the coupled codes used in conjunction. Professional
computational fluid dynamic visualization software solutions excel
at the first points, but are prohibitively expensive and often leave
the user searching for other solutions when trying to combine
the output from all SWMF modules into a single plot. Scientific
computer languages, such as IDL™ and MatLab™, are flexible
enough to tackle the latter issue, but do not contain the proper
tools required by fluid dynamic applications. Because all of these
solutions rely on proprietary software, there are always license
fees involved before plots can be made.

The PyBats package of SpacePy attempts to overcome these
difficulties by providing a free, platform independent way to read

Fig. 5: Typical output desired by users of BATS-R-US and the SWMF.
The upper left frame is a cut through the noon-midnight meridian
of the magnetosphere as simulated by BATS-R-US at 7:15 UT on
September 1, 2005. The dial plots to the left are the ionospheric
electric potential and Hall conductivity at the same time as calculated
by RIM. Below are the solar wind conditions driving both models.

and visualize BATS-R-US output as well as output from models
that are coupled to it. It builds on the functionality of NumPy
and matplotlib to provide specialized visualization tools that allow
the user to begin evaluating and exploring output as quickly as
possible.

The core functionality of PyBats is a set of classes that
read and write SWMF file formats. This includes simple ASCII
log files, ASCII input files, and a complex but versatile self-
descriptive binary format. Because many of the codes that are
integrated into the SWMF use these formats, including BATS-R-
US, it is possible to begin work right away with these classes.
Expanded functionality is found in code-specific modules. These
contain classes to read and write output files, inheriting from the
PyBats base classes when possible. Read/write functionality is
expanded in these classes through object methods for plotting,
data manipulation, and common calculations.

Figure 5 explores the capabilities of PyBats. The figure is a
typical medley of desired output from a basic simulation that used
only two models: BATS-R-US and the Ridley Ionosphere Model.
Key input data that drove the simulation is shown as well. Creating
the upper left frame of figure 5, a two dimensional slice of
the simulated magnetosphere saved in the SWMF binary format,
would require far more work if the base classes were chosen.
The bats submodule expands the base capability and makes short
work of it. Relevant syntax is shown below. The file is read by
instantiating a Bats2d object. Inherited from the base class is
the ability to automatically detect bit ordering and the ability to
carefully walk through the variable-sized records stored in the file.
The data is again stored in a dictionary as is grid information; there
is no time information for the static output file. Extra information,
such as simulation parameters and units, are also placed into object
attributes. The unstructured grid is not suited for matplotlib, so
the object method regrid is called. The object remembers that it
now has a regular grid; all data and grid vectors are now two
dimensional arrays. Because this is a computationally expensive
step, the regridding is performed to a resolution of 0.25 Earth

72 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

radii and only for a subset of the total domain. The object method
contourf, a wrapper to the matplotlib method of the same
name, is used to add the pressure contour to an existing axis,
ax. The wrapped function accepts keys to the grid and data
dictionaries of the Bats2d object to prevent the command from
becoming overly verbose. Extra keyword arguments are passed to
matplotlib’s contourf method. If the original file contains the
size of the inner boundary of the code, this is reflected in the object
and the method add_body is used to place it in the plot.

>>> import pybats.bats as bats
>>> obj = bats.Bats2d(`filename')
>>> obj.regrid(0.25, [-40, 15], [-30,30])
>>> obj.contourf(ax, `x', `y', `p')
>>> obj.add_body(ax)
>>> obj.add_planet_field(ax)

The placement of the magnetic field lines is a strength of the
bats module. Magnetic field lines are simply streamlines of the
magnetic field vectors and are traced through the domain numer-
ically using the Runge-Kutta 4 method. This step is implemented
in C to expedite the calculation and wrapped using f2py. The
Bats2d method add_planet_field is used to add multiple
field lines; this method finds closed (beginning and ending at the
inner boundary), open (beginning or ending at the inner boundary,
but not both), or pure solar wind field lines (neither beginning or
ending at the inner boundary) and attempts to plot them evenly
throughout the domain. Closed field lines are colored white to
emphasize the open-closed boundary. The user is naive to all of
this, however, as one call to the method works through all of the
steps.

The last two plots, in the upper right hand corner of figure
5, are created through the code-specific rim module, designed to
handle output from the Ridley Ionosphere Model (RIM) [Rid02].

PyBats capabilities are not limited to what is shown here.
The Stream class can extract values along the streamline as it
integrates, enabling powerful flow-aligned analysis. Modules for
other codes coupled to BATS-R-US, including the Ring current
Atmosphere interactions Model with Self-Consistent Magnetic
field (RAM-SCB, ram module) and the Polar Wind Outflow Model
(PWOM, pwom module) are already in place. Tools for handling
virtual satellites (output types that simulate measurements that
would be made if a suite of instruments could be flown through
the model domain) have already been used in several studies.
Combining the various modules yields a way to richly visualize
the output from all of the coupled models in a single language.
PyBats is also in the early stages of development, meaning that
most of the capabilities are yet to be developed. Streamline
capabilities are currently being upgraded by adding adaptive step
integration methods and advanced placement algorithms. Bats3d
objects are being developed to complement the more frequently
used two dimensional counterpart. A GUI interface is also under
development to provide users with a point-and-click way to add
field lines, browse a time series of data, and quickly customize
plots. Though these future features are important, PyBats has
already become a viable free alternative to current, proprietary
solutions.

SpacePy in action

A number of key science tasks undertaken by the SpacePy team
already heavily use SpacePy. Some articles in peer-reviewed
literature have been primarily produced using the package (e.g.

[Mor10], [Wel10a]). The Science Operations Center for the RBSP
mission is also incorporating SpacePy into its processing stream.

The tools described here cover a wide range of routine analysis
and visualization tasks utilized in space science. This software is
currently available on a non-commercial research license, but the
process to release it as free and open-source software is underway.
Providing this package in Python makes these tools accessible
to all, provides openness in the analysis methods employed in
scientific studies and will give access to advanced tools to all space
scientists regardless of affiliation or circumstance. The SpacePy
team can be contacted at spacepy-info@lanl.gov.

REFERENCES

[Bos07] D. Boscher, S. Bourdarie, P. O’Brien and T. Guild ONERA-DESP
library v4.1, http://irbem.sourceforge.net/, 2007.

[Chr08] C. Chree Magnetic declination at Kew Observatory, 1890 to 1900,
Phil. Trans. Roy. Soc. A, 208, 205–246, 1908.

[Coh09] O. Cohen, I.V. Sokolov, I.I. Roussev, and T.I. Gombosi Validation
of a synoptic solar wind model, J. Geophys. Res., 113, 3104,
doi:10.1029/2007JA012797, 2009.

[Kin05] J.H. King and N.E. Papitashvili Solar wind spatial scales in and
comparisons of hourly Wind and ACE plasma and magnetic field
data, J. Geophys. Res., 110, A02209, 2005.

[Ma07] Y.J. Ma, A.F. Nagy, G. Toth, T.E. Cravens, C.T. Russell, T.I.
Gombosi, J.-E. Wahlund, F.J. Crary, A.J. Coates, C.L. Bertucci,
F.M. Neubauer 3D global multi-species Hall-MHD simulation of
the Cassini T9 flyby, Geophys. Res. Lett., 34, 2007.

[Mly10] M.G. Mlynczak, L.A. Hunt, J.U. Kozyra, and J.M. Russell III
Short-term periodic features observed in the infrared cooling of the
thermosphere and in solar and geomagnetic indexes from 2002 to
2009 Proc. Roy. Soc. A, doi:10.1098/rspa.2010.0077, 2010.

[Mor07] S.K. Morley and M.P. Freeman On the association between north-
ward turnings of the interplanetary magnetic field and substorm
onset, Geophys. Res. Lett., 34, L08104, 2007.

[Mor10] S.K. Morley, R.H.W. Friedel, E.L. Spanswick, G.D. Reeves, J.T.
Steinberg, J. Koller, T. Cayton, and E. Noveroske Dropouts of
the outer electron radiation belt in response to solar wind stream
interfaces: Global Positioning System observations, Proc. Roy. Soc.
A, doi:10.1098/rspa.2010.0078, 2010.

[Pow99] K. Powell, P. Roe, T. Linde, T. Gombosi, and D.L. De Zeeuw A
solution-adaptive upwind scheme for ideal magnetohydrodynamics,
J. Comp. Phys., 154, 284-309, 1999.

[Qin07] Z. Qin, R.E. Denton, N. A. Tsyganenko, and S. Wolf Solar wind
parameters for magnetospheric magnetic field modeling, Space
Weather, 5, S11003, 2007.

[Rid02] A.J. Ridley and M.W. Liemohn A model-derived storm time asym-
metric ring current driven electric field description J. Geophys.
Res., 107, 2002.

[Tot07] Toth, G., D.L.D. Zeeuw, T.I. Gombosi, W.B. Manchester, A.J. Rid-
ley, I.V. Sokolov, and I.I. Roussev Sun to thermosphere simulation
of the October 28-30, 2003 storm with the Space Weather Modeling
Framework, Space Weather, 5, S06003, 2007.

[Vai09] R. Vainio, L. Desorgher, D. Heynderickx, M. Storini, E. Fluckiger,
R.B. Horne, G.A. Kovaltsov, K. Kudela, M. Laurenza, S. McKenna-
Lawlor, H. Rothkaehl, and I.G. Usoskin Dynamics of the Earth’s
Particle Radiation Environment, Space Sci. Rev., 147, 187--231,
2007.

[Wel10a] D.T. Welling, and A.J. Ridley Exploring sources of magnetospheric
plasma using multispecies MHD, J. Geophys. Res., 115, 4201, 2010.

[Wel10b] D.T. Welling, V. Jordanova, S. Zaharia, A. Glocer, and G. Toth
The effects of dynamic ionospheric outflow on the ring current, Los
Alamos National Laboratory Technical Report, LA-UR 10-03065,
2010.

[Wil09] J.A. Wild, E.E. Woodfield, and S.K. Morley, On the triggering
of auroral substorms by northward turnings in the interplanetary
magnetic field, Ann. Geophys., 27, 3559-3570, 2009.

mailto:spacepy-info@lanl.gov
http://irbem.sourceforge.net/

	Introduction
	SpacePy organization
	Time conversions
	Coordinate handling
	The IRBEM library
	OMNI
	Superposed Epoch Analysis
	Association analysis
	NASA Common Data Format
	Radiation belt modeling
	Visualizing space weather models
	SpacePy in action
	References

