PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

77

A Programmatic Interface for Particle Plasma
Simulation in Python

Min Ragan-Kelley**, John Verboncoeur*

Abstract—Particle-in-Cell (PIC) simulations are a popular approach to plasma
physics problems in a variety of applications. These simulations range from
interactive to very large, and are well suited to parallel architectures, such as
GPUs. PIC simulations frequently serve as input to other simulations, as a part
of a larger system. Our project has two goals: facilitate exploitation of increasing
availability of parallel compute resources in PIC simulation, and provide an
intuitive and efficient programmatic interface to these simulations. We plan to
build a modular backend with multiple levels of parallelism using tools such as
PyCUDA/PyOpenCL and IPython. The modular design, following the goals of
our Object-Oriented Particle-in-Cell (OOPIC) code this is to replace, enables
comparison of multiple algorithms and approaches. On the frontend, we will
use a runtime compilation model to generate an optimized simulation based on
available resources and input specification. Maintaining NumPy arrays as the
fundamental data structure of diagnostics will allow users great flexibility for data
analysis, allowing the use of many existing powerful tools for Python, as well as
the definition of arbitrary derivative diagnostics in flight. The general design and
preliminary performance results with the PyCUDA backend will be presented.
This project is early in development, and input is welcome.

Index Terms—simulation, CUDA, OpenCL, plasma, parallel

Introduction

Plasma physics simulation is a field with widely varied problem
scales. Some very large 3D problems are long term runs on the
largest supercomputers, and there are also many simple prototyp-
ing and demonstration simulations that can be run interactively on
a single laptop. Particle-in-Cell (PIC) simulation is one common
approach to these problems. Unlike full particle simulations where
all particle-particle Coulomb interactions are computed, or fully
continuous simulations where no particle interactions are consid-
ered, the PIC model has arrays of particles in continuous space
and their interactions are mediated by fields defined on a grid.
Thus, a basic PIC simulation consists of two base data structures
and three major computation kernels. The data structures are one
(or more) list(s) of particles and the grid problem, with the source
term and fields defined at discrete locations in space. The first
kernel (Weight) is weighing the particle contributions to the source
term on the grid. The second kernel (Solve) updates the fields on
the grid from the source term by solving Poisson’s Equation or
Maxwell’s equations. The third kernel (Push) updates the position
and velocity of the particles based on the field values on the grid,

% Corresponding author: minrk@berkeley.edu
£ University of California, Berkeley

Copyright© 2010 Min Ragan-Kelley et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

which involves interpolating field values from the grid locations
to the particle positions.

Our background in PIC is developing the Object Oriented
Particle in Cell (OOPIC) project [OOPIC]. The motivation for
OOPIC is developing an extensible interactive plasma simulation
with live plotting of diagnostics. As with OO programming in
general, the goal of OOPIC was to be able to develop new
components (new Field Solvers, Boundary Conditions, etc.) with
minimal change to existing code. OOPIC has been quite successful
for small to moderate simulations, but has many shortcomings due
to the date of the design (1995). The only way to interact with
OOPIC is a mouse-based Tk interface. This makes interfacing
OOPIC simulations with other simulation codes (a popular desire)
very difficult. By having a Python frontend replace the existing
Tk, we get a full interactive programming environment as our
interface. With such an environment, and NumPy arrays as our
native data structure, our users are instantly flexible to use the
many data analysis and scripting tools available in Python and
from the SciPy community [NumPy], [SciPy].

The performance component of the design is to use code
generation to build the actual simulation program as late as
possible. The later the program is built, the fewer assumptions
made, which allows our code as well as compilers to maximize
optimization. With respect to OOPIC, it also has the advantage of
putting flexible control code in Python, and simpler performance
code in C/CUDA, rather than building a single large C++ program
with simultaneous goals of performance and flexibility.

Modular Design
1. Input files are Python Scripts.

With OOPIC, simulations are specified by an input file, using
special syntax and our own interpreter. An input file remains, but
it is now a Python script. OOPIC simulations are written in pure
Python and interpreted in a private namespace, which allows the
user to build arbitrary programming logic into the input file itself,
which is very powerful.

2. Interfaces determine the simulation construction.

The mechanism for building a Device object from an input
file follows an interface-based design, via zope.interface
[Zope]. The constructor scans the namespace in which the input
file was executed for object that provide our interfaces and
performs the appropriate construction. This allows users to extend
our functionality without altering our package, thus supporting
new or proprietary components.

mailto:minrk@berkeley.edu

78

3. Python Objects generate C/CUDA kernels or code snippets.

Once the Device has been fully specified, the user invokes a
compile method, which prompts the device to walk through its
various components to build the actual simulation code. In the
crudest cases, this amounts to simply inserting variables and code
blocks in code templates and compiling them.

4. The simulation is run interactively

The primary interface is to be an IPython session [[Python].
Simple methods, such as run () will advance the simulation in
time, save () dumps the simulation state to a file. But a method
exposing the full power of a Python interface is runUntil ().
runUntil () takes a function and argument list, and executes
the function at a given interval. The simulation continues to run
until the function returns true. Many PIC simulations are run until
a steady state is achieved before any actual analysis is done. If the
user can quantify the destination state in terms of the diagnostics,
then runUntil can be used to evolve the system to a precisely
defined point that may occur at an unknown time.

5. Diagnostics can be fetched, plotted, and declared on the fly

All diagnostics are, at their most basic level, exposed to the user
as NumPy arrays. This allows the use of all the powerful data
analysis and plotting tools available to Python users. Since the
simulation is dynamic, diagnostics that are not being viewed are
not computed. This saves on the communication and possible
computation cost of moving/analyzing data off of the GPU. The
Device has an attribute Device.diagnostics, which is a dict of all
available diagnostics, and a second list, Device.activeDiagnostics,
which is only the diagnostics currently being computed. Users
can define new diagnostics, either through the use of provided
methods, such as cross (A, B), which will efficiently add a diag-
nostic that computes the cross product two diagnostics, or even the
fully arbitrary method of passing a function to the constructor of
DerivativeDiagnostic, which will be evaluated each time
the diagnostic is to be updated. This can take a method, and any
other diagnostics to be passed to the function as arguments. This
way, perfectly arbitrary diagnostics can be registered, even if it
does allow users to write very slow functions to be evaluated in
the simulation loop.

Interfaces

Interface based design, as learned developing the parallel comput-
ing kernel of IPython, provides a good model for developing plug-
gable components. Each major component presents an interface.
For instance, a whole simulation presents the interface IDevice.
New field solvers present ISolver, all diagnostics present a simple
set of methods in IDiagnostic, and more specific diagnostic groups
provide extended sets, such as ITimeHistory and IFieldDiagnostic.
Some common interface elements are provided below.

IDiagnostic

IDiagnostic provides the basic interface common to all Diagnos-
tics:
e save (): save the data to a file, either ascii
or numpy.tofile ()
e« data: a NumPy array, containing the data
¢ interval: an integer, the interval at which the
Diagnostic’s data is to be updated

PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

IDevice
IDevice is the full simulation interface:

e save (fname): dumps the full simulation
state to a file

e restore (fname): reciprocal of save()

e run(steps=None): run either continuously,
or a specified number of steps

e« step(): equivalent to run(1)

e runUntil (interval, f, args): run in
batches of interval steps until f(*args) returns
True.

e« diagnostics: alist of diagnostics available

e activeDiagnostics: a list of diagnostics
currently being evaluated

e addDiagnostic (d): registers a new diag-
nostic to be computed, such as derivative diag-
nostics

Diagnostics

Diagnostics will have two classes. First class diagnostics are fast,
native diagnostics, computed as a part of the compute kernel in
C/CUDA. The second class of diagnostics, Derivative Diagnostics,
are more flexible, but potential performance sinks because users
can define arbitrary new diagnostics interactively, which can be
based on any Python function.

PyCUDA tests

We built a simple test problem with PyCUDA [PyCUDA]. It is
a short-range n-body particle simulation where particles interact
with each other within a cutoff radius. The density is controlled,
such that each particle has several (~10) interactions. The sim-
ulation was run on two NVIDIA GPUs (C1060 and GTX 260-
216) with various numbers of threads per block (tpb) [C1060],
[GTX260]. This was mainly a test of simple data structures,
and we found promising performance approaching 40% of the
theoretical peak performance on the GPUs in single precision
[Figure 1].

The sawtooth pattern in Figure 1 is clarified by plotting a
normalized runtime of the same data [Figure 2]. The runtime plot
reveals that adding particles does not increase the runtime until
a threshold is passed, because many particles are computed in
parallel. The threshold is that number of particles. Since there is
one particle per thread, the steps are located at intervals of the
number of threads-per-block (tpb) times the number of blocks that
can be run at a time (30 for C1060, and 27 for GTX-260).

Challenges

There are a few points where we anticipate challenges in this
project.

First, and most basic, is simply mapping PIC to the GPU.
Ultimately we intend to have backends for multi-machine simula-
tions leveraging both multicore CPUs and highly parallel GPUs,
likely with a combination of OpenCL and MPI. However, the first
backend is for 1 to few NVidia GPUs with CUDA/PyCUDA.
This is a useful starting point because the level of parallelism
for modestly sized problems is maximized on this architecture.
We should encounter many of the data structure and API issues
involved. PIC is primarily composed of two problems: grid-based
field solve, and many particle operations. Both of these models

A PROGRAMMATIC INTERFACE FOR PARTICLE PLASMA SIMULATION IN PYTHON

250
200
» 150F
o
S C1060: 256 tpb
S o0l — GTX 260: 256 tpb| |
— C1060: 64 tpb
— GTX 260: 64 tpb
501, — C1060: 32 tpb
— GTX 260: 32 tpb
OO 20600 40600 60600 80600 100000

N

Fig. 1: FP performance vs number of particles in the simulation (N).
230 GFLOPS is 37% of the 622 GFLOPS theoretical peak of a C1060,
when not using dual-issue MAD+MUL. ’tpb’ indicates threads-per-
block - the number of threads allowed in each threadblock.

240 T T T
; : : +— C1060: 256 tpb ||
GTX 260: 256 tpb

+—t

1 I I I I 1 I
§8000 45000 50000 55000 60000 65000 70000 75000 80000
N

Fig. 2: Normalized runtime increases at discrete steps of thp* # of
blocks: 256*30=7680 for C1060, and 256*27=6912 for GTX-260.

are popular to investigate on GPUs, but there is still much to be
learned about the coupling of the two.

Diagnostics also pose a challenge because it is important that
computing and displaying diagnostics not contribute significantly
to execution time. Some target simulations run at interactive
speeds, and an important issue to track when writing Python code
in general, and particularly multi-device code, is data copying.

Code generation is another challenge we face. Our intention is
to build a system where the user specifies as little of the backend
as possible. They enter the physics, and likely the spatial and time
resolution, and our Python code generates C+CUDA code that will
run efficiently. This is not easily done, but once complete will be
quite valuable.

Future Plans

Ultimately we intend to have a GUI, likely built with Chaco/ETS,
to replicate and extend functionality in OOPIC, as well as extend-
ing backends to fully general hardware [ETS]. But for now, there
is plenty of work to do exploring simpler GPU simulations and
code generation strategies behind the interactive Python interface.

The code will be licensed under the GNU Public License
(GPL) once it is deemed ready for public use [GPL].

79

REFERENCES

[OOPIC] J.P. Verboncoeur, A.B. Langdon and N.T. Gladd, An Object-
Oriented Electromagnetic PIC Code, Comp. Phys. Comm., 87,
Mayl1, 1995, pp. 199-211.

[NumPy] http://numpy.scipy.org

[SciPy] http://www.scipy.org

[Zope] http://www.zope.org/Products/Zopelnterface

[IPython] http://ipython.scipy.org

[PyCUDA] http://mathema.tician.de/software/PyCUDA

[GTX260] http://www.nvidia.com/object/product_geforce_gtx_260_us.html

[C1060] http://www.nvidia.com/object/product_tesla_c1060_us.html
[ETS] http://code.enthought.com/projects
[GPL] http://www.gnu.org/licenses/gpl.html

http://numpy.scipy.org
http://www.scipy.org
http://www.zope.org/Products/ZopeInterface
http://ipython.scipy.org
http://mathema.tician.de/software/PyCUDA
http://www.nvidia.com/object/product_geforce_gtx_260_us.html
http://www.nvidia.com/object/product_tesla_c1060_us.html
http://code.enthought.com/projects
http://www.gnu.org/licenses/gpl.html

	Introduction
	Modular Design
	1. Input files are Python Scripts.
	2. Interfaces determine the simulation construction.
	3. Python Objects generate C/CUDA kernels or code snippets.
	4. The simulation is run interactively
	5. Diagnostics can be fetched, plotted, and declared on the fly

	Interfaces
	IDiagnostic
	IDevice

	Diagnostics
	PyCUDA tests
	Challenges
	Future Plans
	References

