
80 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

PySPH: A Python Framework for Smoothed Particle
Hydrodynamics

Prabhu Ramachandran‡∗, Chandrashekhar Kaushik‡

F

Abstract—[PySPH] is a Python-based open source parallel framework for
Smoothed Particle Hydrodynamics (SPH) simulations. It is distributed under a
BSD license. The performance critical parts are implemented in [Cython]. The
framework provides a load balanced, parallel execution of solvers. It is designed
to be easy to extend. In this paper we describe the architecture of PySPH and
how it can be used.

At it’s core PySPH provides a particle kernel, an SPH kernel and a solver
framework. Serial and parallel versions of solvers for some standard problems
are also provided. The parallel solver uses [mpi4py]. We employ a simple but el-
egant automatic load balancing strategy for the parallelization. Currently, we are
able to perform free surface simulations and some gas dynamics simulations.
PySPH is still a work in progress and we will discuss our future plans for the
project.

Index Terms—parallel, Cython, fluid dynamics, simulation

Introduction

SPH Primer

Smoothed Particle Hydrodynamics (SPH) is a computational sim-
ulation technique. It was developed to simulate astral phenomena
by [Gingold77] and [Lucy77] in 1977. Since then, it has been used
in numerous other fields including fluid-dynamics, gas-dynamics
and solid mechanics.

The central idea behind SPH is the use of integral interpolants.
Consider a function f (r). It can be represented by the equation

f (r) =
∫

f (r′)δ (r− r′)dr′ (1)

Replacing the delta distribution with an approximate delta func-
tion, W , gives us:

f (r) =
∫

f (r′)W (r− r′,h)dr′. (2)

The above equation estimates the value of function f at a point r in
space using the weighted values of f at points near it. The weight
decreases as the distance between r and r′ increase. h in the above
equation represents the particle interaction radius. The support of
the kernel W is some small multiple of h. Outside the support,
the value of W is set to zero. Compact support is computationally
advantageous since it allows us to avoid an N2 interaction among
particles.

* Corresponding author: prabhu@aero.iitb.ac.in
‡ IIT Bombay

Copyright © 2010 Prabhu Ramachandran et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

The above equation can be written in summation form as

f (ri) = ∑
j

f (r j)
m j

ρ j
W (ri− r j,h) (3)

The above equation forms the core of all SPH calculations. The
index j loops over all neighboring particles. m j is the mass of a
particle and ρ j is the density of the particle. The term

m j

ρ j
,

can be thought of as representing a volume element [Morris96].
Gradients and divergence encountered in the equations repre-
senting fluid motion are represented using similar summations.
SPH finds widespread use in many domains. [Monaghan05] and
[Morris97] give extensive details about the SPH method.

Related Work

Despite the age of SPH and its applicability to many domains,
there does not seem to be much effort in developing a unified
framework for SPH. [SPHysics] is a FORTRAN-based open
source package for performing SPH. It’s primary objective is to
model free-surface flows. From the provided documentation we
feel that it is not easy to set up simulations in this package.
[SPH2000] is another parallel framework for SPH written in C++.
This code however does not seem to be in active development
currently. Moreover, they show exactly one example simulation
with their code. Neither package has a publicly accessible source
code repository. Therefore, an open source package that is easy
to experiment with and extend will be a useful contribution to
the community, especially when combined with the flexibility of
Python [Oliphant07].

PySPH [PySPH] was created to address this need. It is an open
source, parallel, framework for Smoothed Particle Hydrodynamics
(SPH) implemented in Python.

Choice of implementation language

We use a combination of Python and [Cython] to implement the
framework. Python is a high-level, object-oriented, interpreted
programming language which is easy to learn. Python code is also
very readable. There are numerous packages (both scientific and
otherwise) that can be used to enhance the productivity of applica-
tions. A Python-based SPH implementation can take advantage of
these packages, which could enhance it in various aspects, from
providing plotting facilities (2D and 3D), to generating GUI’s,
to running SPH simulations from the web, to parallelization.
All these features can also be accessed through an interactive

mailto:prabhu@aero.iitb.ac.in

PYSPH: A PYTHON FRAMEWORK FOR SMOOTHED PARTICLE HYDRODYNAMICS 81

interpreter. [Oliphant07] discusses how Python can be used for
scientific computing.

Python, however, is an interpreted language. Thus, compute-
intensive tasks implemented in pure Python will be prohibitively
slow. To overcome this, we delegate all performance-critical tasks
to a language called Cython [Cython]. Cython makes writing C
extensions for Python nearly as simple as writing Python code
itself. A Cython module is compiled by a compiler into a C exten-
sion module. When the C code is compiled, it becomes a module
that may be imported from Python. Most of Python’s features are
available in Cython. Thus, by delegating all performance-critical
components to Cython, we are able to overcome the performance
hit due to the interpreted nature of Python and still use all of
Python’s features.

An overview of features

PySPH currently allows a user to set up simulations involving
incompressible fluids and free surfaces in two and three dimen-
sions. The framework supports complex geometries. However,
only a few simple shapes have been currently implemented. The
framework has been designed from the ground up to be parallel.
We use mpi4py [mpi4py] for the parallel solver. The parallel solver
is automatically load balanced.

In the following, we outline the framework, discuss the current
status and future improvements that are planned.

The Framework

The whole framework was designed to enable simple simulations
to be set up very easily, and yet be flexible enough to add
complex features. We present a high level view of a particle-based
simulation in the following.

Guiding Principle - High level view of a simulation

A simulation always involves a few key objects:
• Solver: The solver is an object that manages
the entire simulation. It typically delegates its
activities to other objects like integrators, com-
ponent managers and arrays of particles.

• Entities: The simulation involves distinct collec-
tions of particles each representing a particular
physical entity. Each entity is a derived class from
the base class EntityBase. For example, Fluid and
Solid are two different classes and a user may
create a collection of fluids and solids using this.
This allows a user to set up a simulation with a
collection of physical entities.

The high level view outlined in Figure 1 served as the guiding
principle while designing various components of the framework.

The various tasks shown in Figure 1 are explained below:

• Create and set up the solver: Initially, we
create an appropriate solver object for the sim-
ulation. Different solvers are used for different
kinds of simulations. We also set up various
parameters of the solver.

• Create physical entities: In this step, we add
the physical entities (made of up particles), that
will take part in the simulation. Multiple sets of
particles could be added, one for each physical
entity involved.

Fig. 1: Outline of tasks to set up a simulation.

• Additional operations to the solver: We may
require the solver to perform additional oper-
ations (apart from the main simulation), like
writing data to file, plotting the data etc. This
is configured during this step.

• Start the solver: The solver iterations are
started.

The outline given above is very generic. This set of steps is
useful in setting up almost any particle-based simulation. Parallel
simulations too should adhere to the basic outline given above.
Given below is pseudo-Python code to run a simple serial simula-
tion:

Imports...
solver = FSFSolver(time_step=0.0001,

total_simulation_time=10.,
kernel=CubicSpline2D())

create the two entities.
dam_wall = Solid(name='dam_wall')
dam_fluid = Fluid(name='dam_fluid')

The particles for the wall.
rg = RectangleGenerator(...)
dam_wall.add_particles(

rg.get_particles())
solver.add_entity(dam_wall)
Particles for the left column of fluid.
rg = RectangleGenerator(...)
dam_fluid.add_particles(

rg.get_particles())
solver.add_entity(dam_fluid)

start the solver.
solver.solve()

82 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Fig. 2: Architecture of the framework

Architecture Overview

The architecture may be broadly split into the following:

• the particle kernel,
• the SPH kernel,
• the solver framework,
• serial and parallel solvers.

The overall architecture of the framework is shown in Figure
2. We discuss this in detail in the following sections.

Particle kernel

A fast implementation of arrays in Cython forms the foundation
of the framework. Arrays are ubiquitous in the implementation,
hence the implementation is made as fast as possible (close to
C performance) using Cython. The base class for these arrays
is called BaseArray and subclasses of these in the form of
IntArray, FloatArray etc. are made available. These expose
a get_npy_array method which returns a numpy array which
internally uses the same C data buffer. Our arrays may be resized
and are up to 4 times faster than numpy arrays when used from
Cython.

The ParticleArray module uses these arrays extensively and
allows us to represent collections of particles in the framework. It
is also implemented in Cython to achieve maximum performance.
Each ParticleArray maintains a collection of particle properties
and uses the arrays to store this data. Since the arrays allow the
developer to manipulate them as numpy arrays, it becomes easy to
perform calculations on the particle properties, if required.

One of the central requirements of the SPH is to find the
nearest neighbors of a given particle. This is necessary in order
to calculate the influence of each particle on the others. We do
this using a nearest neighbor algorithm (Nearest Neighbor Particle
Search - NNPS) which bins the domain into a collection of fixed
size cells. Particles are organized into a dictionary keyed on a tuple
indicative of the location of the particle. The nearest neighbor
search is collectively performed by the CellManager class and
the nnps modules. Both are implemented in Cython.

SPH kernel

The SPH kernel consits of the sph module which contains classes
to perform the SPH summation (as given in the equations in the
introductory section) and also to represent particle interactions.
This includes a variety of kernels. These are implemented so as
to use the nnps and other modules discussed earlier. These are all
implemented in Cython for performance.

Solver framework

Finally, bringing all the underlying modules together is the Solver
framework. The framework is component based, and allows users
to write components, which are subclasses of SolverComponent,
with a standard interface set. The SolverComponent is the base
class for all classes that perform any operation on any of the
entities. Many abstractions required for a solver have been imple-
mented, and a user can inherit from various classes to implement
new formulations. The ComponentManager manages all the
SolverComponents used by the solver. It is also responsible for
the property requirements of each of the components involved
in a calculation. Thus, if an entity is operated by a component
that requires a particular property to be available, the manager
ensures that the entity is suitably set up. An Integrator class
handles the actual time integration. The Integrator is also a
SolverComponent. These are implemented in a combination of
Python and Cython.

Solvers

New solvers are written using the various abstractions devel-
oped in the solver framework and all of them derive from the
SolverBase class. Serial and parallel solvers are written using the
functionality made available in the solver framework.

Parallelization

In SPH simulations, particles simply influence other particles in
a small neighborhood around them. Thus, in order to perform a
parallel simulation one needs to:

• partition the particles among different pro-
cessors, and

• share neighboring particle information between
some of the processors.

For an SPH simulation, this does require a reasonable amount
of communication overhead since the particles are moving and
the neighbor information keeps changing. In addition to this, we
would like the load on the processors to be reasonably balanced.
This is quite challenging.

Our objective was to maintain an outline similar to the serial
code for setting up simulations that run in parallel. For paralleliza-
tion of the framework, ideally only the CellManager needs to be
aware of the parallelism. The components in the solver framework
simply operate on particle data that they are presented with. This
is achievable to a good extent, except when a component requires
global data, in which case the serial component may need to
subclassed and a parallel version written, which collects the global
data before executing the serial version code. A good example for
this is when a component needs to know the maximum speed of
sound in the entire domain in order to limit the time-step say.

The pseudo-code of a typical parallel simulation is the same as
the serial example given earlier with just one change to the solver
as below:

solver = ParallelFSFSolver(
time_step=0.0001,
total_simulation_time=10.,
kernel=CubicSpline2D())

Code to load particles in proc with
rank 0.

In the above pseudo-code, the only thing that changes is the
fact that we instantiate a parallel solver rather than a serial one.

PYSPH: A PYTHON FRAMEWORK FOR SMOOTHED PARTICLE HYDRODYNAMICS 83

CellManager

Processor 1 Processor 2

Particles

Solver components

Particles

Solver components

Parallel case

ParallelCellManager ParallelCellManager

Serial case

Particles

Solver components

Fig. 3: The parallel solvers simply use a ParallelCellManager instead
of a CellManager.

We also ensure that the particles are all loaded only on the
first processor. The ParallelCellManager manages the parallel
neighbor information. It also performs automatic load-balancing
by distributing the particles to different processors on demand
based on the number of particles in each processor.

The full details of the parallelization are beyond the scope of
this article but we provide a brief outline of the general approach.
More details can be obtained from [Kaushik09].

The basic idea of the parallelization involves the following key
steps:

• Particles are organized into small cubical
Cells. Each cell manages a set of particles. Cells
are created and destroyed on demand depending
on where the particles are present.

• A region consists of a set of usually (but not
always) connected cells. Each region is managed
by one processor.

• The domain of particles is decomposed into cells
and regions and allocated to different processors.

• Cells are moved between processors in order to
balance the load.

In addition, the ParallelCellManager ensures that each pro-
cessor has all the necessary information such that an SPH compu-
tation may be performed on the the particles it manages.

Figure 3 outlines how the parallel and serial solvers are set
up internally. In both cases, solver components operate on cell
managers to obtain the nearest neighbors and get the particles, the
only difference being the ParallelCellManager, which manages
the load distribution and communication in the parallel case.

It is important to note that the basic ideas for the parallel
algorithm were implemented and tested in pure Python using
mpi4py. This was done in highly fragmented time and was possi-
ble only because of the convenience of both Python and mpi4py.
Mpi4py allows us to send Python objects to processors and this
allowed us to focus on the algorithm without worrying about
the details of MPI. The use of Python enabled rapid prototyping
and its libraries made it easy to visualize the results. In roughly

Fig. 4: Initial condition of a square block of water falling towards a
vessel with water.

Fig. 5: Square block of water after it strikes a vessel containing water
simulated with the SPH.

1500 lines we had implemented the core ideas, added support
for visualization, logging and command line options. The initial
design was subsequently refined and parts of it implemented in
Cython. Thus, the use of Python clearly allowed us to prototype
rapidly and yet obtain good performance with Cython.

Current status

Figures 4, 5 show the fluid at a particular instant when a square
block of water strikes a vessel filled with water. This is a two-
dimensional simulation.

Figure 6 shows a typical 3D dam-break problem being sim-
ulated with 8 processors. The fluid involved is water. The colors
indicate the processor on which the particles are located.

The current capabilities of PySPH include the following:

• Fully automatic, load balanced, parallel
framework.

• Fairly easy to script.
• Good performance.
• Relatively easy to extend.
• Solver for incompressible free surface flows.

84 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Fig. 6: 3D dam-break problem simulated on 8 processors with
particles colored as per processor ID indicating a load balanced
simulation.

Most importantly, we have a working framework and a rea-
sonable design which provides good performance. However, there
are several things we need to improve.

Future work

Our code is available in the form of a Mercurial repository on
Google’s project hosting site [PySPH]. However, the code is not
ready for a proper release yet because we would like to perform a
redesign of some parts of the solver framework. At the moment,
they are a little too complex. Once this is done we would like to
do the following:

• Improve the documentation.
• Reduce any compulsory dependence on VTK or

TVTK.
• Improve testing on various platforms.
• A full-fledged release.
• Support for gas-dynamics problems.
• Support for solid mechanics problems.

This would take a few more months and at which point we
will make a formal release.

Conclusions

We have provided a high-level description of the current capabili-
ties and architecture of PySPH. We have also mentioned what we
believe are the future directions we would like to take. We think
we have made an important beginning and believe that PySPH
will help enable open research and computing using particle-based
computing in the future. It is important to note that Python has
been centrally important in the development of PySPH by way
of its rapid prototyping capability and access to a plethora of
libraries.

REFERENCES

[Cython] http://www.cython.org

[Gingold77] R. A. Gingold and J. J. Monaghan. Smoothed particle hydro-
dynamics: theory and application to non-spherical stars, Mon.
Not. R. astr. Soc., 181:375-389, 1977.

[Kaushik09] Chandrashekhar P. Kaushik. A Python based parallel frame-
work for Smoothed Particle Hydrodynamics, M.Tech. disser-
tation, Department of Computer Science and Engineering, IIT
Bombay, 2009.

[Lucy77] L. B. Lucy. A numerical approach to testing the fission hypoth-
esis, The Astronomical Journal, 82(12):1013-1024, December
1977.

[Monaghan05] J. J. Monaghan. Smoothed particle hydrodynamics, Reports on
Progress in Physics, 68(8):1703-1759, 2005.

[Morris96] J. P. Morris. Analysis of smoothed particle hydrodynamics with
applications, PhD Thesis, Monash University, Australia, 1996.

[Morris97] J. P. Morris, P. J. Fox and Yi Zhu. Modeling low Reynolds
number incompressible flows using SPH, Journal of Computa-
tional Physics, 136(1):214-226, 1997.

[mpi4py] http://mpi4py.scipy.org
[Oliphant07] Travis E. Oliphant. Python for scientific computing, Comput-

ing in science and engineering, 9:10-20, 2007.
[PySPH] http://pysph.googlecode.com
[SPH2000] S. Ganzenmuller, S. Pinkenburg and W. Rosenstiel. SPH2000:

A Parallel Object-Oriented Framework for Particle Simula-
tions with SPH, Lecture notes in computer science, 3648:1275-
1284, 2005.

[SPHysics] Gòmez-Gesteira M., Rogers, B.D., Dalrymple, R.A., Crespo,
A.J.C. and Narayanaswamy, M. User guide for the SPHysics
code 1.4, http://wiki.manchester.ac.uk/sphysics.

http://www.cython.org
http://mpi4py.scipy.org
http://pysph.googlecode.com
http://wiki.manchester.ac.uk/sphysics

	Introduction
	SPH Primer
	Related Work
	Choice of implementation language
	An overview of features

	The Framework
	Guiding Principle - High level view of a simulation
	Architecture Overview
	Particle kernel
	SPH kernel
	Solver framework
	Solvers

	Parallelization
	Current status
	Future work
	Conclusions
	References

