
PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011) 17

Crab: A Recommendation Engine Framework for
Python

Marcel Caraciolo‡∗, Bruno Melo‡, Ricardo Caspirro‡

F

Abstract—Crab is a flexible, fast recommender engine for Python that integrates
classic information filtering recommendation algorithms in the world of scientific
Python packages (NumPy,SciPy, Matplotlib). The engine aims to provide a rich
set of components from which you can construct a customized recommender
system from a set of algorithms. It is designed for scability, flexibility and
performance making use of scientific optimized python packages in order to
provide simple and efficient solutions that are acessible to everybody and
reusable in various contexts: science and engineering. The engine takes users’
preferences for items and returns estimated preferences for other items. For
instance, a web site that sells movies could easily use Crab to figure out, from
past purchase data, which movies a customer might be interested in watching to.
This work presents our inniative in developing this framework in Python following
the standards of the well-known machine learning toolkit Scikit-Learn to be an
alternative solution for Mahout Taste collaborative framework for Java. Finally,
we discuss its main features, real scenarios where this framework is already
applied and future extensions.

Index Terms—data mining, machine learning, recommendation systems, infor-
mation filtering, framework, web

Introduction

With the great advancements of machine learning in the past few
years, many new learning algorithms have been proposed and
one of the most recognizable techniques in use today are the
recommender engines [Adoma2005]. There are several services
or sites that attempt to recommend books or movies or articles
based on users past actions [Linden2003] , [Abhinandan2007] .
By trying to infer tastes and preferences, those systems focus to
identify unknown items that are are of interest given an user.
Although people’s tastes vary, they do follow patterns. People
tend to like things that are similar to other items they like.
For instance, because a person loves bacon-lettuce-and-tomato
sandwiches, the recommender system could guess that he would
enjoy a club sandwich, which is mostly the same sandwich, with
turkey. Likewise, people tend to like things that similar people like.
When a friend entered design school, he saw that just about every
other design student owned a Macintosh computer - which was
no surprise, as she already a lifetime Mac User. Recommendation
is all about predicting these patterns of taste, and using them to
discover new and desirable things a person didn’t know about.

* Corresponding author: marcel@muricoca.com
‡ Muricoca Labs

Copyright © 2011 Marcel Caraciolo et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Recommendation engines have been implemented in program-
ming languages such as C/C++, Java, among others and made
publicly available. One of the most popular implementations is the
open-source recommendation library Taste, which was included in
the Mahout framework project in 2008 [Taste] . Mahout is a well-
known machine learning toolkit written in Java for building scal-
able machine libraries [Mahout] . It is specially a great resource
for developers who are willing to take a step into recommendation
and machine learning technologies. Taste has enabled system-
atic comparisons between standard developed recommendation
methods, leading to an increased visibility, and supporting their
broad adoption in the community of machine learning, information
filtering and industry. There are also several another publicly
available implementations of recommender engines toolkits in the
web [EasyRec] , [MyMediaLite]. Each one comes with its own
interface, sometimes even not updated anymore by the project
owners, a small set of recommendation techniques implemented,
and unique benefits and drawbacks.

For Python developers, which has a considerable amount of
machine learning developers and researchers, there is no single
unified way of interfacing and testing these recommendation
algorithms, even though there are some approaches but found
incomplete or missing the required set for creating and evaluating
new methods [PySuggest], [djangorecommender]. This restraints
developers and researchers from fully taking advantage of the
recent developments in recommendation engines algorithms as
also an obstacle for machine learning researchers that will not
want to learn complex programming languages for writing their
recommender approaches. Python has been considered for many
years a excellent choice for programming beginners since it is easy
to learn with simple syntax, portable and extensive. In scientific
computing field, high-quality extensive libraries such as Scipy,
MatPlotlib and Numpy have given Python an attractive alternative
for researchers in academy and industry to write machine learning
implementations and toolkits such as Brain, Shogun, Scikit-Learn,
Milk and many others.

The reason of not having an alternative for python machine
learning developers by providing an unified and easy-to-use rec-
ommendation framework motivated us to develop a recommen-
dation engine toolbox that provides a rich set of features from
which the developer can build a customized recommender system.
The result is a framework, called Crab, with focus on large-
scale recommendations making use of scientific python packages
such as Scipy, Numpy and Matplotlib to provide simple and
efficient solutions for constructing recommender systems that are
acessible and reusable in various contexts. Crab provides a generic

mailto:marcel@muricoca.com

18 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

interface for recommender systems implementations, among them
the collaborative filtering approaches such as User-Based and
Item-Based filtering, which are already available for use. The
recommender interfaces can be easily combined with more than
10 different pairwise metrics already implemented, like the co-
sine, tanimoto, pearson, euclidean using Scipy and Numpy basic
optimized functions [Breese1998]. Moreover, it offers support for
using similarities functions such as user-to-user or item-to-item
and allows easy integration with different input domains like
databases, text files or python dictionaries.

Currently, the collaborative filtering algorithms are widely
supported. In addition to the User-Based and Item-Based filter-
ing techniques, Crab implements several pairwise metrics and
provides the basic interfaces for developers to build their own
customized recommender algorithms. Finally, several widely used
performance measures, such as accuracy, precision, recall are
implemented in Crab.

An important aspect in the design of Crab was to enable very
large-scale recommendations. Crab is currently being rewritten
to support optimized scientific computations by using Scipy and
Numpy routines. Another feature concerned by the current main-
tainers is to make Crab support sparse and large datasets in a way
that there is a little as possible overhead for storing the data and
intermediate results. Moreover, Crab also aims to support scaling
in recommender systems in order to build high-scale, dynamic
and fast recommendations over simple calls. It is also planned to
support distributed recommendation computation by interfacing
with the distributed computation library MrJob written in Python
currently developed by Yelp [MrJob]. What sets Crab apart from
many other recommender systems toolboxes, is that it provides
interactive interfaces to build, deploy and evaluate customized
recommender algorithms written in Python running on several
platforms such as Linux, BSD, MacOS and Windows.

The outline of this paper is as follows. We first discuss the
Crab’s main features by explaining the architecture of the frame-
work. Next, we provide our current approach for representing the
data in our system and current challenges. Then, we also presents
how Crab can be used in production by showing a real scenario
where it is already deployed. Finally, we discuss about our plans
to handle with distributed recommendation computations. Also,
our conclusions and future works are also presented at the end of
this paper.

Recommender Engines

Crab contains a recommender engine, in fact, several types be-
ginning with conventional in the literature user-based and item-
based recommenders. It provides an assortment of components
that may be plugged together and customized to create an ideal
recommender for a particular domain. The toolkit is implemented
using Python and the scientific environments for numerical appli-
cations such as Scipy and NumPy. The decision of choosing those
libraries is because they are widely used in scientific computations
specially in python programs. Another reason is because the
framework uses the Scikit-learn toolkit as dependant, which pro-
vides basic components from our recommender interfaces derive
[Scikitlearn] . The Figure 1 presents the relationship between these
basic components. Not all Crab-based recommenders will look
like this -- some will employ different components with different
relationships, but this gives a sense of the role of each component.

The Data Model implementation stores and provides access to
all the preferences, user and item data needed in the recommenda-

Fig. 1: Simplified illustration of the component interaction in Crab

tion. The Similarity interface provides the notion of how similar
two users or items are; where this could be based on one of many
possible pairwise metrics or calculations. Finally, a Recommender
interface which inherits the BaseEstimator from Scikit-learn pull
all these components together to recommend items to users, and
related functionality.

It is easy to explore recommendations with Crab. Let’s go
through a trivial example. First, we need input to the recom-
mender, data on which to base recommendations. Generally, this
data takes the form of preferences which are associations from
users to items, where these users and items could be anything.
A preference consist of a user ID and an item ID, and usually
a number expressing the strength of the user’s preference for the
item. IDs in Crab can be represented by any type indexable such
as string, integers, etc. The preference value could be anything,
as long as larger values mean strong positive preferences. For
instance, these values can be considered as ratings on a scale of 1
to 5, where the user has assigned "1" to items he can’t stand, and
"5" to his favorites.

Crab is able to work with text files containing information
about users and their preferences. The current state of the frame-
work allows developers to connect with databases via Django’s
ORM or text files containing the user IDs, product IDs and pref-
erences. For instance, we will consider a simple dataset including
data about users, cleverly named "1" to "5" and their preferences
for four movies, which we call "101" through "104". By loading
this dataset and passing as parameter to the dataset loader, all the
inputs will be loaded in memory by creating a Data Model object.

Analyzing the data set shown at Figure 2, it is possible to
notice that Users 1 and 5 seem to have similar tastes. Users 1
and 3 don’t overlap much since the only movie they both express
a preference for is 101. On other hand, users 1 and 2 tastes are
opposite- 1 likes 101 while 2 doesn’t, and 1 likes 103 while 2
is just the opposite. By using one of recommender algorithms
available in Crab such as the User-Based-Filtering with the given
data set loaded in a Data Model as input, just run this script using
your favorite IDE as you can see the snippet code below.
from models.basic_models import FileDataModel
from recommenders.basic_recommenders

import UserBasedRecommender
from similarities.basic_similarities

import UserSimilarity
from neighborhoods.basic_neighborhoods

import NearestUserNeighborhood
from metrics.pairwise import pearson_correlation

user_id = 1
load the dataset
model = FileDataModel('simple_dataset.csv')
similarity = UserSimilarity(model,

pearson_correlation)
neighbor = NearestUserNeighborhood(similarity,

model, 4, 0.0)

CRAB: A RECOMMENDATION ENGINE FRAMEWORK FOR PYTHON 19

Fig. 2: Book ratings data set - intro.csv

create the recommender engine
recommender = UserBasedRecommender(model, similarity,

neighbor, False)
recommend 1 item to user 1
print recommender.recommend(user_id, 1)

The output of running program should be: 104. We asked for
one top recommendation, and got one. The recommender engine
recommended the book 104 to user 1. This happens because it
estimated user 1’s preference for book 104 to be about 4.3 and that
was the highest among all the items eligible for recommendations.
It is important to notice that all recommenders are estimators,
so they estimate how much users may like certain items. The
recommender worked well considering a small data set. Analyzing
the data you can see that the recommender picked the movie 104
over all items, since 104 is a bit more highly rated overall. This
can be refforced since user 1 has similar preferences to the users
4 and 5, where both have highly rated.

For small data sets, producing recommendations appears trivial
as showed above. However, for data sets that are huge and noisy, it
is a different situation. For instance, consider a popular news site
recommending new articles to readers. Preferences are inferred
from article clicks. But, many of these "preferences" may be
noisy - maybe a reader clicked an article but did not like it, or,
had clicked the wrong story. Imagine also the size of the data
set - perhaps billions of clicks in a month. It is necessary for
recommender engines to handle with real-life data sets, and Crab
as Mahout is focusing on how to deal with large and sparse data
as we will discuss in a future section.

Therefore, before deploying recommender engines in Crab
into production, it is necessary to present another main concept
in our framework at the next section: representation of data.

Representing Data

Recommender systems are data-intensive and runtime perfor-
mance is greatly affected by quantity of data and its representation.
In Crab the recommender-related data is encapsulated in the im-
plementations of DataModel. DataModel provides efficient access
to data required by several recommender algorithms. For instance,
a DataModel can provide a count or an array of all user IDs in
the input data, or provide access to all preferences associated to
an item.

One of the implementations available in Crab is the in-memory
implementation DictDataModels. This model is appropriate if the
developer wants to construct his data representation in memory by
passing a dictionary of user IDs and their preferences for item IDs.
One of benefits of this model is that it can easily work with JSON
files, which is commonly used as output at web services and REST
APIs, since Python converts the json input into a bult-in dictionary.
from models.basic_models

import DictPreferenceDataModel

dataset = {'1':{'101': 3.0, '102': 3.5},
'2':{'102': 4.0, '103':2.5, '104': 3.5}}

#load the dataset
model = DictPreferenceDataModel(dataset)
print model.user_ids()
#numpy.array(['1','2'])

print model.preference_value('1', '102')
#3.5

print model.preferences_for_item('102')
#numpy.array([('1',3.5),('2',4.0)])

Typically the model that developers will use is the FileDataModel
- which reads data from a file and stores the resulting preference
data in memory, in a DictDataModel. Comma-separated-value
or tab-separated files which each line contains one datum: user
ID, item ID and preference value are acceptable as input to the
model. Zipped and gzipped files will be supported, since they are
commonly used for store huge data in a compressed format.

For data sets which ignore the preference values, that is, ignore
the strength of preference, Crab also has an appropriate DataModel
twin of DictDataModel called BooleanDictDataModel. This is
likewise as in-memory DictDataModel implementation, but one
which internally does not store the preference values. These
preferences also called "boolean preferences" have two states:
exists, or does not exist and happens when preferences values
aren’t available to begin with. For instance, imagine a news site
recommending articles to user based on previously viewed article.
It is not typical for users to rate articles. So the recommender
recommends articles based on previously viewed articles, which
establishes some association between user and item, an interesting
scenario for using the BooleanDictModel.
from models.basic_models

import DictBooleanDataModel

dataset = {'1':['101','102'],
'2':['102','103','104']}

#load the dataset
model = DictBooleanDataModel(dataset)

print model.user_ids()
#numpy.array(['1','2'])

print model.preference_value('1', '102')
#1.0 - all preferences are valued with 1.0

20 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

print model.preferences_for_item('102')
#numpy.array([('1',1.0),('2',1.0)])

Crab also supports store and access preference data from a
relational database. The developer can easily implement their
recommender by using customized DataModels integrated with
several databases. One example is the MongoDB, a NoSQL
database commonly used for non-structured data [MongoDB]. By
using MongoEngine, a ORM adapter for integrating MongoDB
with Django, we could easily set up a customized Data Model
to access and retrieve data from MongoDB databases easily
[Django], [MongoEngine]. In fact, it is already in production at
a recommender engine using Crab for a brazilian social network
called AtéPassar. We will explore more about it in the next
sections.

One of the current challenges that we are facing is how to
handle with all this data in-memory. Specially for recommender
algorithms, which are data intensive. We are currently investi-
gating how to store data in memory and work with databases
directly without using in-memory data representations. We are
concerned that it is necessary for Crab to handle with huge data
sets and keep all this data in memory can affects the performance
of the recommender engines implemented using our framework.
Crab uses Numpy arrays for storing the matrices and in the
organization of this paper at the time we were discussing about
using scipy.sparse packages, a Scipy 2-D sparse matrix package
implemented for handling with sparse a matrices in a efficient
way.

Now that we have discussed about how Crab represents the
data input to recommender, the next section will examine the
recommenders implemented in detail as also how to evaluate
recommenders using Crab tools.

Making Recommendations

Crab already supports the collaborative recommender user-based
and item-based approaches. They are considered in some of
the earliest research in the field. The user-based recommender
algorithm can be described as a process of recommending items
to some user, denoted by u, as follows:

for every item i that u has no preference for yet

for every other user v that has preference for i

compute a similarity s between u and v

incorporate v's preference for i, weighted by s,
into a running average

return the top items, ranked by weighted average

The outer loop suggests we should consider every known item that
the user hasn’t already expressed a preference for as a candidate
for recommendation. The inner loop suggests that we should
look to any other user who has expressed a preference for this
candidate item and see what his or her preference value for it
was. In the end, those values are averaged to come up with an
estimate -- a weighted average. Each preference value is weighted
in the average by how similar that user is to the target user.
The more similar a user, the more heavily that we weight his or
her preference value. In the standard user-based recommendation
algorithm, in the step of searching for every known item in the data
set, instead, a "neighborhood" of most similar users is computed
first, and only items known to those users are considered.

In the first section we have already presented a user-based
recommender in action. Let’s go back to it in order to explore the
components the approach uses.

do the basic imports
user_id = 1

load the dataset
model = FileDataModel('simple_dataset.csv')

define the similarity used and the pairwise metric
similarity = UserSimilarity(model,

pearson_correlation)

for neighborhood we will use the k-NN approach
neighbor = NearestUserNeighborhood(similarity,

model, 4, 0.0)

now add all to the UserBasedRecommender
recommender = UserBasedRecommender(model, similarity,

neighbor, False)

#recommend 2 items to user 1
print recommender.recommend(user_id,2)

UserSimilarity encapsulates the concept of similarity amongst
users. The UserNeighborhood encapsulates the notion of a group
of most-similar users. The UserNeighborhood uses a UserSimilar-
ity, which extends the basic interface BaseSimilarity. However, the
developers are encouraged to plug in new variations of similarity
- just creating new BaseSimilarity implementations - and get quite
different results. As you will see, Crab is not one recommender
engine at all, but a set of components that may be plugged
together in order to create customized recommender systems for
a particular domain. Here we sum up the components used in the
user-based approach:

• Data model implemented via DataModel
• User-to-User similarity metric implemented via UserSim-

ilarity
• User neighborhood definition implementd via UserNeigh-

borhood
• Recommender engine implemented via Recommender, in

this case, UserBasedRecommender

The same approach can be used at UserNeighborhood where
developers also can create their customized neighborhood ap-
proaches for defining the set of most similar users. Another
important part of recommenders to examine is the pairwise metrics
implementation. In the case of the User-based recommender, it
relies most of all in this component. Crab implements several
pairwise metrics using the Numpy and Scipy scientific libraries
such as Pearson Correlation, Euclidean distance, Cosine measure
and distance implementations that ignore preferences entirely like
as Tanimoto coefficient and Log-likehood.

Another approach to recommendation implemented in Crab
is the item-based recommender. Item-based recommendation is
derived from how similar items are to items, instead of users to
users. The algorithm implemented is familiar to the user-based
recommender:

for every item i that u has no preference for yet

for every item j that u has a preference for

compute a similarity s between i and j

add u's preference for j, weighted by s,
to a running average

CRAB: A RECOMMENDATION ENGINE FRAMEWORK FOR PYTHON 21

return the top items, ranked by weighted average

In this algorithm it is evaluated the item-item similarity, not user-
user similarity as shown at the user-based approach. Although they
look similar, there are different properties. For instance, the run-
ning time of an item-based recommender scales up as the number
of items increases, whereas a user-based recommender’s running
time goes up as the number of users increases. The performance
advantage in item-based approach is significant compared to the
user-based one. Let’s see how to use item-based recommender in
Crab with the following code.

do the basic imports
user_id = 1

load the dataset
model = FileDataModel('simple_dataset.csv')

define the Similarity used and the pairwise metric
similarity = ItemSimilarity(model, euclidean_distance)

there is no neighborhood in this approach
now add all to the ItemBasedRecommender
recommender = ItemBasedRecommender(model,

similarity, False)

recommend 2 items to user 1
print recommender.recommend(user_id,2)

Here it employs ItemBasedRecommender rather than UserBase-
dRecommender, and it requires a simpler set of dependencies. It
also implements the ItemSimilarity interface, which is similar to
the UserSimilarity that we’ve already seen. The ItemSimilarity
also works with the pairwise metrics used in the UserSimilarity.
There is no item neighborhood, since it compares series of pref-
erences expressed by many users for one item instead of by one
user for many items.

Now that we have seen some techniques implemented at Crab,
which produces recommendations for a user, it is now time to
answer another question, "what are the best recommendations for
a user ?". A recommender engine is a tool and predicts user
preferences for items that he haven’t expressed any preference
for. The best possible recommender is a tool that could somehow
know, before you do, exactly estimate how much you would
like every possible item available. The remainder of this section
will explore evaluation of a recommender, an important step in
the construction of a recommender system, which focus on the
evaluating the quality of the its estimated preference values - that
is, evaluating how closely the estimated preferences match the
actual preferences.

Crab supports several metrics widely used in the recom-
mendation literature such as the RMSE (root-mean-square-error),
precision, recall and F1-Score. Let’s see the previous example
code and instead evaluate the simple recommender we created, on
our data set:

from evaluators.statistics
import RMSRecommenderEvaluator

initialize the recommender
initialize the RMSE Evaluator
evaluator = RMRecommenderEvaluator()

using training set with 70% of data and 30% for test
print evaluator.evaluate(recommender,

model, 0.7, 1.0)
#0.75

Fig. 3: PrecisionxRecall Graph with F1-Score.

Most of the action happens in evaluate(). The RecommenderEval-
uator handles splitting the data into a training and test set, builds a
new training DataModel and Recommender to test, and compares
its estimated preferences to the actual test data. See that we pass
the Recommender to this method. This is because the evaluator
will need to build a Recommender around a newly created training
DataModel. This simple code prints the result of the evaluation:
a score indicating how well the Recommender performed. The
evaluator is an abstract class, so the developers may build their
custom evaluators, just extending the base evaluator.

For precision, recall and F1-Score Crab provides also a simple
way to compute these values for a Recommender:

from evaluators.statistics
import IRStatsRecommenderEvaluator

initialize the recommender
initialize the IR Evaluator
evaluator = IRStatsRecommenderEvaluator()

call evaluate considering the top 4 items recommended.
print evaluator.evaluate(recommender, model, 2, 1.0)
{'precision': 0.75, 'recall': 1.0,

'f1Score': 0.6777}

The result you see would vary significantly due to random selec-
tion of training data and test data. Remember that precision is the
proportion of top recommendations that are good recommenda-
tions, recall is the proportion of good recommendations that appear
in top recommendations and F1-Score is a score that analyzes the
proportion against precision and recall. So Precision at 2 with
0.75 means on average about a three quarters of recommendations
were good. Recall at 2 with 1.0; all good recommendations are
among those recommendations. In the following graph at Figure
3, it presents the PrecisionxRecall with F1-Scores evaluated. A
brief analysis shows that more training set size grows, more the
accuracy score grows. It is important to notice that the evaluator
doe not measure if the algorithm is better or faster. It is necessary
to make a comparison between the algorithms to check the
accuracy specially on other data sets available.

Crab supports several tools for testing and evaluating recom-
menders in a painless way. One of the future releases will support
the plot of charts to help the developers to better analyze and
visualized their recommender behavior.

Taking Recommenders to Production

So far we have presented the recommender algorithms and variants
that Crab provides. We also presented how Crab handles with

22 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Fig. 4: Crab Web Services server-side interaction over HTTP

accuracy evaluation of a recommender. But another important
step for a recommender life-cycle is to turn it into a deployable
production-ready web service.

We are extending Crab in order to allow developers to deploy
a recommender as a stand-alone component of your application
architecture, rather than embed it inside your application. One
common approach is to expose the recommendations over the
web via simple HTTP or web services protocols such as SOAP or
REST. One advantage using this service is that the recommender is
deployed as a web- accessible service as independent component
in a web container or a standalone process. In the other hand, this
adds complexity, but it allows other applications written in other
languages or running at remote machines to access the service. We
are considering use framework web Django with the the Django-
Piston RESTful builder to expose the recommendations via a
simple API using REST over HTTP [DjangoPiston]. Our current
structure is illustrated in Figure 4, which wraps the recommender
implementation using the django models and piston handlers to
provide the external access.

There is a recommender engine powered by Crab in pro-
duction using REST APIs to access the the recommendations.
The recommender engine uses collaborative filtering algorithms
to recommend users, study groups and videos in a brazilian
educational social network called AtéPassar [AtePassar] . Besides
the suggestions, the recommender was also extended to provide
the explanations for each recommendation, in a way that the
user not only receives the recommendation but also why the
given recommendation was proposed to him. The recommender
is in production since January 2011 and suggested almost 60.000
items for more than 50.000 users registered at the network. The
following Figure 5 shows the web interface with the recommender
engine in action at AtéPassar. One contribution of this work
was a new Data Model for integrating with MongoDB database
for retrieving and storing the recommendations and it is being
rewritten for the new release of Crab supporting Numpy and Scipy
libraries.

Crab can comfortably digest medium and small data sets on
one machine and produce recommendations in real time. But it
still lacks a mechanism that handles a much larger data set. One
common approach is distribute the recommendation computations,
which will be detailed in the next section.

Distributing Recommendation Computations

For large data sets with millions of preferences, the current
approaches for single machines would have trouble processing
recommendations in the way we have seen in the last sections. It is
necessary to deploy a new type of recommender algorithms using a
distributed and parallelized computing approach. One of the most
popular paradigms is the MapReduce and Hadoop [Hadoop].

Fig. 5: AtéPassar recommendation engine powered by Crab Frame-
work

Crab didn’t support at the time of writing this paper distributed
computing, but we are planning to develop variations on the item-
based recommender approach in order to run it in the distributed
world. One of our plans is to use the Yelp framework mrJob which
supports Hadoop and it is written in Python, so we may easily
integrate it with our framework. One of the main concerns in
this topic is to give Crab a scalable and efficient recommender
implementation without having high memory and resources con-
sumption as the number of items grows.

Another concern is to investigate and develop other distributed
implementations such as Slope One, Matrix Factorization, giving
the developer alternatives for choosing the best solution for its
need specially when handling with large data sets using the
power of Hadoop’s MapReduce computations. Another important
optimization is to use the JIT compiler PyPy for Python which is
being development and will bring faster computations on NumPy
[NumpyFollowUp].

Conclusion and Future Works

In this paper we have presented our efforts in building a recom-
mender engine toolkit in Python, which we believe that may be
useful and make an increasing impact beyond the recommendation
systems community by benefiting diverse applications. We are
confident that Crab will be an interesting alternative for machine
learning researchers and developers to create, test and deploy their
recommendation algorithms writing a few lines of code with the
simplicity and flexibility that Python with the scientific libraries
Numpy and Scipy offers. The project uses as dependency the
Scikit-learn toolkit, which forces the Crab framework to cope with
high standards of coding and testing, turning it into a madure

CRAB: A RECOMMENDATION ENGINE FRAMEWORK FOR PYTHON 23

and efficient machine learning toolkit. Discussing the technical
aspects, we are also always improving the framework by planning
to develop new recommender algorithms such as Matrix Factoriza-
tion, SVD and Boltzmann machines. Another concern is to bring
to the framework not only collaborative filtering algorithms but
also content based filtering (content analysis), social relevance
proximity graphs (social/trust networks) and hybrid approaches.
Finally it is also a requirement to a recommender engine to be
scalable, that is, to handle with large and sparse data sets. We are
planning to develop a scalable recommendation implementation
by using Yelp framework mrJob which supports Hadoop and
MapReduce as explained in the previous section.

Our project is hosted at Github repository and it is open for
machine learning community to use, test and help this project to
grow up. Future releases are planned which will include more
projects building on it and a evaluation tool with several plots and
graphs to help the machine learning developer better understand
the behavior of his recommender algorithm. It is an alternative for
Python developers to the Mahout machine learning project written
in Java. The source code is freely available under the BSD license
at http://github.com/muricoca/crab.

REFERENCES

[Adoma2005] Adomavicius, G.; Tuzhilin, A. Toward the Next Gener-
ation of Recommender Systems: A Survey of the State-
of-the-Art and Possible Extensions, IEEE Transactions
on Knowledge and Data Engineering; 17(6):734–749,
June 2005.

[Linden2003] Greg Linden, Brent Smith, and Jeremy York. Ama-
zon.com Recommendations: Item-to-Item Collabora-
tive Filtering., IEEE Internet Computing 7, 1, 76-80,
January 2003.

[Abhinandan2007] Abhinandan S. Das, Mayur Datar, Ashutosh Garg,
and Shyam Rajaram, Google news personalization:
scalable online collaborative filtering., In Proceedings
of the 16th international conference on World Wide
Web (WWW ’07). ACM, New York, NY, USA, 271-
280, 2007.

[Taste] Taste - Collaborative Filtering For Java , accessible at:
http://taste.sourceforge.net/.

[Mahout] Mahout - Apache Machine Learning Toolkit ,accessible
at: http://mahout.apache.org/

[EasyRec] EasyRec ,accessible at: http://www.easyrec.org/
[MyMediaLite] MyMediaLite Recommender System Library,

accessible at: http://www.ismll.uni-hildesheim.de/
mymedialite/

[PySuggest] PySuggest, accessible at: http://code.google.com/p/
pysuggest/

[djangorecommender] Django-recommender accessible at: http://code.google.
com/p/django-recommender/

[Breese1998] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative fil-
tering., UAI, Madison, WI, USA, pp. 43-52, 1998.

[MrJob] mrjob, accessible at: https://github.com/Yelp/mrjob
[Scikitlearn] Scikit-learn, accessible at: http://scikit-

learn.sourceforge.net/
[MongoDB] MongoDB, accessible at: https://www.mongodb.org/
[Django] Django, accessible at: https://www.djangoproject.com/
[MongoEngine] MongoEngine, accessible at: https://www.

mongoengine.org/
[DjangoPiston] Django-Piston, accessible at: https://bitbucket.org/

jespern/django-piston/wiki/Home
[AtePassar] AtéPassar, accessible at: http://atepassar.com
[Hadoop] Hadoop, accessible at: http://hadoop.apache.org/
[NumpyFollowUp] Numpy Follow up, accessible at: http://morepypy.

blogspot.com/2011/05/numpy-follow-up.html

http://github.com/muricoca/crab
http://taste.sourceforge.net/
http://mahout.apache.org/
http://www.easyrec.org/
http://www.ismll.uni-hildesheim.de/mymedialite/
http://www.ismll.uni-hildesheim.de/mymedialite/
http://code.google.com/p/pysuggest/
http://code.google.com/p/pysuggest/
http://code.google.com/p/django-recommender/
http://code.google.com/p/django-recommender/
https://github.com/Yelp/mrjob
http://scikit-learn.sourceforge.net/
http://scikit-learn.sourceforge.net/
https://www.mongodb.org/
https://www.djangoproject.com/
https://www.mongoengine.org/
https://www.mongoengine.org/
https://bitbucket.org/jespern/django-piston/wiki/Home
https://bitbucket.org/jespern/django-piston/wiki/Home
http://atepassar.com
http://hadoop.apache.org/
http://morepypy.blogspot.com/2011/05/numpy-follow-up.html
http://morepypy.blogspot.com/2011/05/numpy-follow-up.html

	Introduction
	Recommender Engines
	Representing Data
	Making Recommendations
	Taking Recommenders to Production
	Distributing Recommendation Computations
	Conclusion and Future Works
	References

