36

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Vision Spreadsheet: An Environment for Computer
Vision

Scott Determan®*

Abstract—Vision Spreadsheet is an environment for computer vision. It com-
bines a spreadsheet with computer vision and scientific python. The cells in the
spreadsheet are images, computations on images, measurements, and plots.
There are many built in image processing and machine learning algorithms and
it extensible by writing python functions and importing them into the spread-
sheet.

Index Terms—computer vision, spreadsheet, OpenCV

Introduction

Vision Spreadsheet is an application designed to explore and
solve computer vision problems. It provides a visual environment
and a familiar computational tool set to enable creative proto-
typing of computer vision algorithms. A novel interface using
a spreadsheet of images encourages interactive and exploratory
algorithm design. Computational scientists can leverage their
existing knowledge of python, NumPy, SciPy, OpenCV, VIGRA,
and other familiar technologies. Vision Spreadsheet aims to make
the techniques of computer vision accessible to a wider audience.

Vision Spreadsheet is modeled after familiar numerical spread-
sheets, such as MS Excel and Apple Numbers. In a numerical
spreadsheet, each cell contains a number, with cells relating
to each other by numerical expressions. In Vision Spreadsheet,
each cell contains an image, with cells relating to each other
by computer vision operations. As in a traditional spreadsheet,
changes propagate automatically through the cells. Complex vi-
sion algorithms can be built-up cell-by-cell, interactively, with
continuous visual feedback into the intermediate steps.

The cells within Vision Spreadsheet relate to each other
through expressions that operate on images. For example, if the
image in cell a2 is the dilation of the image in cell al, this is
expressed as "dilate(al)". The power of these expressions comes
from the large library of functions available, including all of the
image processing and machine learning algorithms from OpenCV.
Furthermore, users can easily add their own functions using
python, NumPy, and SciPy.

Vision Spreadsheet provides many tools to make it easier to
explore the solution space of a vision problem.

« source images can be loaded, reload or looped through

% Corresponding author: scott.determan@ gmail.com
1 Vision Spreadsheet

Copyright © 2011 Scott Determan. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

« all cell expression can be edited interactively

« all changes to cells are automatically propagated through
the spreadsheet

o function parameters can be bound to GUI controls for
interactive exploration

o cells can contain graphs and tables containing measure-
ments and statistics from images

Vision Spreadsheet is the product of years of development and
many more years of experience working in the field of computer
vision. I feel it provides an excellent environment for exploring
solutions to computer vision problems. It is difficult to get a feel
for an interactive environment by reading a paper. Visit http:/
visionspreadsheet.com to download the application for free or to
watch videos of Vision Spreadsheet in action.

Overview of Vision Spreadsheet

Figure 1 shows a screen shot of Vision Spreadsheet. There are
four main areas to the GUI: the grid of cells, the current cell’s
statement, the shell, and the current cell’s GUI controls.

Fig. 1: Vision Spreadsheet cells contain images, measurements, and
plots.

Numerical spreadsheets contain a grid of numbers and labels.
Vision Spreadsheet’s grid of cells contains images, computations
on images, measurements, and plots. In a numerical spreadsheet,
if a cell contains the sum of a column of numbers and a number
in the column changes then the total automatically updates itself.
Similarly, in Vision Spreadsheet if a cell changes (for instance by
loading a new image or changing an algorithm parameter) then all
of the cells that depend on the changed cell will update themselves.


mailto:scott.determan@gmail.com
http://visionspreadsheet.com
http://visionspreadsheet.com

VISION SPREADSHEET: AN ENVIRONMENT FOR COMPUTER VISION

The current cell’s statement is a single-line control used to
show what statement was used to create the current cell. This
statement may be edited and updated in this control.

The shell is a modified IPython shell used to specify what
a cells contains. The shell is also used to write new spreadsheet
functions in python.

The GUI controls area contains display parameters, overlays,
and controls bound to algorithm parameters for the current cell.

Specifying a Cell’s Content

Just like in a numerical spreadsheet, the content of each cell in
the spreadsheet grid is defined by an expression. Expressions are
entered by typing them into the shell or current cell’s statement
control. The syntax of Vision Spreadsheet’s cell expressions
should feel familiar to any spreadsheet user. But unlike a nu-
merical spreadsheet, Vision Spreadsheet’s expressions operates on
images. A typical statement looks like this:

some_cell = some_function (parameterl, parameter2)

For example, to define cell bl as the erosion of the image in cell
al you would enter the following expression into the shell:

bl = erode(al)

After entering this expression, cell bl will display the image which
is an erosion of the image in cell al. If you manually load a new
image into cell al, then the image in cell bl will automatically
update as the erosion of the new image.

The power in the expression language comes from the large
library of available computer vision functions. In fact, all of the
image processing and machine learning functions from OpenCV
are available. This allows professionals to leverage their existing
knowledge of this powerful library.

The arithmetic operators are available and follow the usual
syntax and precedence rules. A typical call with an operator looks
like (where someop is +, -, <, etc.):

some_cell = parameterl someop parameter?2

Functions may be nested, so one way to run a morphological open
would be:

bl = dilate(erode(al))

Morphological open is already a built in functions; the above was
only an example.
There are also a few special functions, like if and select.
Vision Spreadsheet supports multiple tabs per sheet. Cells in
another tab are in another namespace, and can be referenced using
the namespace syntax:
namespace_name: :variable_name
::variable_name # global namespace
Sheets start with g and are sequentially numbered, so the following
code is used to refer to sheet gl cell al:

gl::al

Literal data sets are specified with the following syntax:
[1,2,3,4]

(11,2,31,14,5,61,17,8,911

Literal dictionaries are specified with the following syntax:

{'name':'Scott', 'weight':150, 'location':[512,700]}

Keys must be a string. Values can be any supported data type
(dictionaries, data sets, data frames, etc.).

37

Expressions can be an arbitrarily complex combination of
functions and arithmetic operators. But just like in a numerical
spreadsheet, cell expressions work best as simple one-line ex-
pressions. For more complex programs, use python mode within
Vision Spreadsheet.

Binding Parameters to GUI Controls

A primary goal of Vision Spreadsheet is to allow interactive
exploration of vision problems. One of the most powerful tools to
do this is to bind GUI controls to parameters in a cell expression.
This allows users to have a value in a cell expression that comes
from a GUI control, such as a slider control. The user can
manipulate the GUI control to affect the value in the expression.
Because Vision Spreadsheet automatically propagates this change
through the spreadsheet, users can very quickly see the effect that
a particular parameter has on the result of an algorithm.

The best way to explain this feature is to look at an example.
Consider thresholding an image. There are a couple of threshold
operators, but the simplest is the *>.” operator. Load an image in
cell al. Next, threshold it by typing:
bl = al >. 128

This creates an image where values greater than 128 are set to 255
and values less than or equal to 128 are set to zero. One way to
decide on a threshold value would be to keep typing in numbers
until the threshold image looked good. A better way is to bind the
parameter to a GUI control, like a slider. The following command
does this:

bl = al >. slider(128,0,255)

This creates a slider with a default value of 128, a min value of 0,
and a max value of 255. If the threshold image is the current cell,
then the cell controls pane on the left of the GUI will contain a
slider (see figure 2). This slider is used to interactively change the
parameter to the threshold function.

Fie Plots Grid View Help

DEEm?

Fig. 2: GUI controls may be bound to algorithm parameters. Here a
slider is bound to a threshold.

There are many other types of GUI controls that may be bound
to parameters, such as: radio buttons, sliders, spin controls, combo
boxes and movie controls (radio button are particularly useful to
bind to file names so different images may be easily loaded into a
cell).

Multiple GUI controls may be used to control a single function
parameter. If the function calls to create the GUI controls are
nested, then they will control the same parameter. For example, to
have a spin control and a slider control the threshold:

bl = al >. spin(slider(128,0,255)



38

Python Mode

Python is a fantastic language for exploratory computer vision.
Vision Spreadsheet is tightly integrated with python and gives
users full access to an IPython shell within Vision Spreadsheet.
This integration gives users all of the power and familiarity
of python combined with the visual feedback and interactivity
of Vision Spreadsheet. Users can extend Vision Spreadsheet by
adding new functions they implement in python. Users also have
full access to the Vision Spreadsheet environment from within
python, allowing them to access and update cells interactively
from within the IPython shell.

To toggle the shell to/from IPython mode, type "##" in the
shell. Inside the IPython shell, you will have access to the
vis_sheet module. The vis_sheet module provides full access to the
Vision Spreadsheet environment from within python. The IPython
shell at the bottom of the GUI supports two modes, cells mode
and python mode. To toggle between the two modes, type "##
and hit return. Cells mode is the default mode. Python mode is
just a regular IPython shell with two differences: typing "## will
toggle to cells mode and there is a module called ’vis_sheet’ that
can be used to interact with the spreadsheet.

There are at least two interesting activities to do in python
mode:

1)  Extend the spreadsheet with new functions.

2)  Get values from the spreadsheet, muck around with them
interactively in python, and set the values back into the
spreadsheet.

Here is how to add a new function to the spreadsheet. Change
to python mode by typing "##. The shell should now have a black
background. Define a subtraction function as follows:

def my_subtract (a,b): return a-b

import vis_sheet

vis_sheet.add_python_op (my_subtract)

Change back to cells mode by typing "## (the shell should now
have a white background). Load an image in cell al, erode it an
put it in b1, and subtract bl from al using the new function:

cl = my_subtract(al,bl)

Cell cl1 will contain the edges from the image in cell al. Note
that the images in the spreadsheet are automatically converted to
NumPy arrays before they are passed to user defined functions.
The parameters a and b will be NumPy arrays. If the result is a
NumPy array, it will automatically be converted to an image.

To get or set values in the spreadsheet from python mode, use
the following functions:
import vis_sheet

vis_sheet.get_var_data('al')
vis_sheet.set_var_data('bl', some_python_var)

Data Structures

There are three main data structures in vision spreadsheet: images,
data frames, and statistical models.

Images are the most important data structure. An image is a
two dimensional array of vectors. All the elements of an image
are of the same numeric type. Images with element types of uchar
through double are supported. Many image types are supported,
for example: grayscale, color (rgb, brg, hsi, cie lab, etc.), and depth
images (from the Kinect camera, for example). When an image
is passed to a user defined python function it is automatically
converted into a NumPy array.

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Data frames are modeled after R’s data frame structure. Data
frames are used to store measurements on images and to overlay
images with shapes and regions of interest. It is a table where each
column in the table may have a different type. So a single data
frame may have a column of numbers and a column of strings.
Supported column types are: numeric (uchar through double),
boolean, string, and region of interest. Like R’s data frames, rows
may contain missing data. Data frames also support R’s notion
of factor columns. Factor columns are usually used to specify
responses when training classifiers. Unlike R, vision spreadsheet
supports grouping columns into a hierarchy. This is useful for
storing higher-level objects in a data frame. For example, rectan-
gles are stored in a data frame by grouping together four numeric
columns. These rectangles may then be overlaid and edited on an
image.

The last major data structure is a statistical model. Statistical
models are used to classify objects in images. There are two
main functions to a statistical model: train and predict. The train
function takes a statistical model, a data frame of features, and
a data frame of responses. It returns the newly trained model.
The predict function takes a model and data frame. It returns a
prediction for each row in the data frame.

There are other data types in vision spreadsheet, but many
problems in computer vision can be solved using only these three
data types.

Conclusion

I described a new environment for interactively working with
computer vision. I am optimistic that this will be a useful and
productive environment for many types of users. However, at this
point no one except myself has used Vision Spreadsheet. The key
to making the environment useful is to have real users try to solve
real problems with it. My goal in presenting this paper is to get
people using the spreadsheet so they can provide the feedback I
need to make Vision Spreadsheet as useful as I know it can be.
Please try it out.

I had planned on releasing Vision Spreadsheet shortly before
the conference. I did not make this deadline, but I am very close.
When it is released, you can go to http://visionspreadsheet.com to
download it for free.

Thank You

I owe thanks to many great open source projects. I espe-
cially want to thank the following projects (alphabetical or-
der): ANTLR', boost?, CMake?, IPython* [IPy], OpenKinect?,
NumPy®, OpenCV’, python®, SciPy’, SWIG'?, VIGRA!'!,


http://visionspreadsheet.com

VISION SPREADSHEET: AN ENVIRONMENT FOR COMPUTER VISION

wxPython'?, and wxWidgets'>.

REFERENCES

[IPy] Fernando Perez, Brian E. Granger, "IPython: A System for Interactive
Scientific Computing,” Computing in Science and Engineering, vol. 9,
no. 3, pp. 21-29, May/June 2007, doi:10.1109/MCSE.2007.53.

1. http://www.antlr.org ANTLR is used to build the parser for the cells
language.

2. http://www.boost.org. Boost is used for many utility routines in the c++
code.

3. http://www.cmake.org. CMake is the build/test/package system.
4. http://ipython.org IPython is the shell.
5. http://openkinect.org OpenKinect is the interface to the Kinect camera.

6. http://numpy.scipy.org NumPy arrays are used to interface between the
internal data structures in vision spreadsheet and python.

7. http://opencv.willowgarage.com OpenCV provides many of the image
processing and machine learning algorithms.

8. http://python.org. The spreadsheet is extended through python.

9. http://www.scipy.org SciPy makes it easy and efficient for the user to
extend the spreadsheet and manipulate images and data frames.

10. http://www.swig.org SWIG is used to wrap OpenCV functions into
Vision Spreadsheet.

11. http://hci.iwr.uni-heidelberg.de/vigra VIGRA provides many image pro-
cessing algorithms.

12. http://www.wxpython.org. wxPython is the python interface to the
wxwidgets library.

13. http://wxwidgets.org. wxWidgets is the GUI library.

39


http://www.antlr.org
http://www.boost.org
http://www.cmake.org
http://ipython.org
http://openkinect.org
http://numpy.scipy.org
http://opencv.willowgarage.com
http://python.org
http://www.scipy.org
http://www.swig.org
http://hci.iwr.uni-heidelberg.de/vigra
http://www.wxpython.org
http://wxwidgets.org

	Introduction
	Overview of Vision Spreadsheet
	Specifying a Cell's Content
	Binding Parameters to GUI Controls
	Python Mode
	Data Structures
	Conclusion
	Thank You
	References

