PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

PyStream: Compiling Python onto the GPU

Nick Bray**

Abstract—PyStream is a static compiler that can radically transform Python
code and run it on a Graphics Processing Unit (GPU). Python compiled to
run on the GPU is ~100,000x faster than when interpreted on the CPU. The
PyStream compiler is specially designed to simplify the development of real-
time rendering systems by allowing the entire rendering system to be written
in a single, highly productive language. Without PyStream, GPU-accelerated
real-time rendering systems must contain two separate code bases written in
two separate languages: one for the CPU and one for the GPU. Functions
and data structures are not shared between the code bases, and any common
functionality must be redundantly written in both languages. PyStream unifies
a rendering system into a single, Python code base, allowing functions and
data structures to be transparently shared between the CPU and the GPU. A
single, unified code base makes it easy to create, maintain, and evolve a high-
performance GPU-accelerated application.

Index Terms—pystream, compiling python, gpu

Introduction

High-performance computer hardware can be difficult to program
because ease of programming is often traded for raw performance.
For example, graphics processing units (GPUs) are traditionally
programmed in languages that either restrict memory use or
explicitly expose the memory hierarchy to the programmer. The
OpenGL Shading Language (GLSL) is an example of the first, and
OpenCL is an example of the second. Neither type of language
is particularly easy to use, rather they are designed to address a
potential bottleneck for GPU architectures: memory bandwidth.
GPUs pack enough functional units into a single chip that overall
performance can easily be limited by the memory subsystem’s
ability to feed data to the functional units.

Ease of programming is not the only issue when using
GPU-specific languages. These languages are specialized for
performance-critical numeric computations and are not suitable
for writing a complete application. For instance, these languages
cannot load data from disk or provide a graphical user interface.
Instead, GPU languages typically provide APIs to interoperate
with a different, general-purpose language. Using these APIs
results in an application with two code bases, each with distinct
semantics. Additional glue code is also required overcome the
impedance mismatch between the code bases. Glue code is used to
remap and transfer data structures from one code base to another.
Glue code is also used to invoke functions across the language
boundary.

Corresponding author: ncbray@ google.com
1 Google

Copyright © 2011 Nick Bray. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: Naive background color.

Fig. 2: Background color calculation using shared code.

Constructing a GPU-accelerated application with two code
bases and glue code has a number of software engineering costs.
For instance, any data transferred between the CPU and the GPU
must have its structure defined in both languages and have glue
code to remap and transfer the data. Any modification to such a
data structure will require modifying all its definitions. Certain
functions may also need to be duplicated so they can be used
in each code base. For example, Figure 1 shows a rendering

mailto:ncbray@google.com

88

system where the background color - calculated on the CPU -
does not take into account the color processing performed on the
GPU. Figure 2 shows the same rendering system, but with the
color-processing code duplicated on the CPU and applied to the
background color. Ultimately, applications that incorporate GPU-
specific languages tend to resist change because data structures
and functions in two code bases must be kept in sync. This
complicates the process of maintaining and evolving such an
application.

PyStream

PyStream [Bral0] is a static source-to-source compiler that trans-
lates Python code into GLSL for use in real-time graphical render-
ing. PyStream also generates the glue code necessary to seamlessly
invoke the generated GLSL code from a Python application.
PyStream allows applications incorporating GPU-accelerated real-
time rendering to be written as a single, unified Python code base.
This allows the high productivity of the Python language to be
used while also gaining the performance of GPU acceleration.
PyStream sidesteps the problems that arise from having two code
bases, which would otherwise diminish the productivity gains of
using Python.

Programming a GPU with Python allows the use of object-
oriented programming, polymorphic functions, and other pro-
gramming language features that are often not available in GPU-
specific languages. Python also has the advantage of being more
concise. In practice, Python code is roughly five to seven times
more terse than the corresponding GLSL code.

Language Restrictions

PyStream can compile a restricted subset of Python onto the
GPU. Restrictions are necessary to make the compilation process
tractable. Restrictions are also necessary because of the fundamen-
tal limitations of modern GPU hardware. PyStream’s restricted
subset of Python provides, at minimum, the functionality of GLSL
but with the syntax, semantics, and abstraction mechanisms of
Python, as well as complete integration with Python applications.
PyStream requires the following to translate code onto a GPU:

e A closed world.

« No global side effects.

o No recursive function calls.
« Bounded memory usage.

To statically compile a Python program, a closed world must
be created. If a program can call a function that the compiler
knows nothing about, then the compiler must assume that the
function can have arbitrary side effects: rewriting globals, classes,
and other data structures. In such a situation, a static compiler
cannot prove anything about the program and therefore cannot
transform it in any meaningful way. To prevent this situation,
PyStream disallows the execution of unknown code. Dynamic
code compilation and execution, such as through the use of exec
and eval, is forbidden. In addition, modules are imported at
compile time and assumed to never change thereafter.

GLSL has several restrictions, when compared to Python, and
they are adopted by PyStream so that it can generate GLSL
code. For instance, GLSL programs are constrained to have no
global side effects. Code compiled by PyStream must behave the
same. GLSL does not allow recursive function calls because it is
designed to run on hardware without a call stack. This restriction

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Fig. 3: An image produced by the example rendering system.

is adopted by PyStream. Similarly, GLSL is designed to run in
an environment where memory is statically allocated for each
processor. PyStream in turn requires that the code it compiles
have bounded memory usage, allowing the compiler to statically
allocate memory.

In practice, the most significant of these restrictions appears to
be the need for bounded memory usage. This restriction prevents
the use of recursive data structures and most mutable 1ist,
dict, and set objects. For example, if a program appends to
a list inside of a loop, the compiler will be unable to determine
the maximum size of the list. Future improvements to the compiler
may allow it to bound the number of loop iterations in some cases,
this problem is equivalent to the halting problem in the general
case.

Most of these restrictions are applied after the compiler opti-
mizes a program. For example, a highly polymorphic function may
initially appear to be recursive, but this recursion can disappear
once the function has been duplicated and specialized for the
different situations in which it is called. As will be discussed
later, PyStream uses a novel approach for representing Python
programs. This approach treats the Python interpreter as part
of the program being compiled. There are often recursive calls
through the interpreter, such as when the addition of a vector type
is implemented in terms of the addition of its scalar elements.
This pattern is so pervasive that disallowing recursive calls before
optimizations are applied would disallow most Python programs.
Problematically, disallowing recursive calls after compilation re-
quires that a programmer must understand how the compiler
behaves. Although this conceit is undesirable, it is necessary.

PyStream currently does not support a number of Python
features, including exceptions and closures. These features will
be supported in the future.

PyStream in Practice

A real-time rendering system was developed with the PyStream
compiler to validate the design of the compiler. The example ren-

PYSTREAM: COMPILING PYTHON ONTO THE GPU

dering system implements the core algorithms used by the game
Starcraft 2 [FilO8]. Rendering systems typically use many different
algorithms to produce a final image. These algorithms are divided
into shader programs that that are executed on batches of data sent
to the GPU. The example rendering system contains 8 different
shader programs. A shader programs is further subdivided into
several individual shaders that process different kinds of data,
such as vertices in a 3D model or pixels being written into an
image. The code for one of the shader programs in the example
rendering system is included below.

class AmbientPass (ShaderProgram) :
def shadeVertex(self,

context.position =
return texCoord,

context,
pos

pos, texCoord):

def shadeFragment (self,

Sample the
= self.gbuffer.sample (texCoord)
Sample the
ao self.ao.texture (texCoord) .xyz
Calculate th ng

self.env.ambientColor (g.normal) xao

out

context, texCoord):

underlying geometry

HQ %

ambient occlusion

e light

ambientLight
Modulate the

color=vec4 (g.diffusexambientLight, 1.0)
context.colors = (color,)

ut

This shader program performs a specific kind of lighting cal-
culation for the example rendering system. PyStream’s shader
programs are a Pythonic version of GLSL'’s shader programs. The
previous shader program is implemented as a class that contains
two shader methods: a vertex shader and a fragment shader. The
first two arguments for each shader are special. The self argu-
ment holds data that is constant during the execution of the shader.
The context argument holds an object with shader-specific
fields. For example, colors written to the context.colors
field inside of a fragment shader will be written into the image(s)
being rendered after the shader has been executed. All subsequent
arguments correspond to streams of data being fed into the shader.
Return values correspond to streams of data produced by the
shader.

Python’s abstraction mechanisms are used throughout the
example rendering system. For instance, algorithms for calculating
how light reflects off surfaces are encapsulated in polymorphic
Material objects. This allows the appearance of a surface to
be controlled by composing a shader object with different types
of material objects. Rendering systems often contain custom code
generators [Mit07] because the GPU-specific language they are
using does not natively support polymorphism.

Compiling Python

PyStream takes a novel approach to compiling Python that is
simpler and more flexible than previous approaches [Sal04],
[Pypl1]. The key to PyStream’s approach is that it keeps its
internal representation of the program it is compiling as simple
as possible. Compiling Python can be potentially complicated
because the language is filled with numerous special cases. For
example, adding two objects together can result in the __add___
method being called on the first object, the __radd__ method
being called on the second object, or an exception being thrown.
More precisely, the interpreter can do all of the above for a single
operation if both methods exist but return Not Implemented.
Calling either method can result in arbitrary code being executed
and can have arbitrary side effects, so the precise definition of the

89

addition operator is both complicated and ambiguous. Any rela-
tionship between Python’s addition operator and the mathematical
concept of addition is a convention and not an intrinsic part of the
language. Virtually every Python operation can execute arbitrary
code, even operations such as reading an attribute of an object.

Prior to PyStream, Python compilers attempted to embed ex-
tensive knowledge of Python’s semantics into their algorithms. For
example, every analysis algorithm and optimization would need
to implicitly understand how the interpreter dispatched addition
operations. Typically this knowledge was not precise, and did not
cover every corner case. PyStream takes a different approach.
Instead of trying to embed a complete knowledge of Python’s
semantics into its algorithms, it treats the interpreter as if it
were a library being called by the Python program. This allows
PyStream to easily and accurately analyze Python’s complex
semantics without complicating the compiler. The consequence
of this approach is that PyStream appears to process three times
as much code as other Python compilers. This extra code would
need to be evaluated one way or the other, PyStream evaluates it
explicitly as code rather than implicitly inside the compiler.

Because PyStream treats the interpreter as part of the program,
standard optimizations such as dead code elimination and function
inlining are extremely effective at eliminating Python’s run time
overhead. Interpreter functions are initially quite complicated, but
they are typically optimized down to a single operation and later
inlined. In addition to the standard optimizations, several Python-
specific transformations are also performed. For example, method
calls are optimized to eliminate the creation of bound method
objects wherever possible.

Mapping Python onto the GPU

After analyzing and optimizing a program, PyStream then maps
it onto the GPU. One of the biggest challenges in mapping a
Python shader program onto the GPU is the presence of memory
operations. GLSL does not support pointers in any form: the
address of an objects cannot be taken, and function arguments
are passed by value. Python, on the other hand, hold every object
by reference. PyStream bridges this semantic gap by eliminating
as many memory operations as possible and then emulating the
rest.

Before even trying to map a program onto the GPU, PyStream
aggressively eliminates as many memory operations as possible.
If PyStream can eliminate every memory operation, translating
the program into GLSL is trivial. The optimizations PyStream
performs are a mixture of load/store elimination and shader-
specific transformations such as flattening the input and output
data structures for each shader into a list of local variables.
In practice, these optimization eliminate almost all the memory
operations in the example rendering system.

It is not always possible to eliminate every memory operation,
however. PyStream uses two different strategies to emulate the
remaining memory operations. If an object is never modified or
is only held by a single reference at a time, PyStream copies
the object as needed rather than treating it as a distinct memory
location. If an object is held by multiple references and also
modified, PyStream places it in an array of objects and uses an
index into the array as a pointer to the object.

Performance

The example rendering system demonstrates that PyStream is
quite effective at compiling Python shaders. A manual inspection

90

70

o T -
50 \\\
\
re—_|
® 10 i —
T —|
o
o V—_\v
30
20
10
0
0 10 20 30 40 50 60 70 80 90 100
4 OpenGL3 ¥ OpenGL2 Objects

Fig. 4: Performance of the example rendering system as the number
of objects drawn is increased.

of the generated GLSL code reveals that it is close to what would
be written by hand. Quantitatively, PyStream provides a massive
speedup for the compiled shaders. The following table shows
the time taken to draw one million pixels with a Python shader
program when it is interpreted on the CPU versus when it is
compiled onto the GPU. Measurements were taken on a AMD
Athlon 64 X2 3800+ CPU with a NVidia 9800 GT GPU running
Windows XP and Python 2.6.4.

Shader CPU GPU Speedup
material | 220.5s | 5.62ms | 39,211x
skybox 355s | 0.81 ms | 43,568x
$sao 4449 s | 1.44 ms | 308,958x
bilateral | 429.1s | 1.49 ms | 288,956x
ambient | 64.1s | 0.84 ms | 76,310x
light 127.1s | 0.95 ms | 133,789x
blur 742s | 0.54 ms | 138,692x
post 4426s | 957 ms | 46,272x
average | 180.8 s | 1.23 ms | 146,712x

On average, the shaders in the example rendering system
run 146,712x faster when compiled onto the GPU than when
interpreted on the CPU. The CPU timings are synthetic and only
measure the execution time of the shader code and neglect the
time required to sample textures and other functionality in the
rendering system. The GPU timings take all costs into account,
so the speedup is understated. Five orders of magnitude speedup
is reasonable, however. Compiling an optimized Python program
into C can provide two orders of magnitude speedup [SalO4]. For
unoptimized programs taking full advantage of Python’s abstrac-
tion mechanisms, an additional order of magnitude of speedup
can be achieved because a static compiler can inline functions and
globally optimize the program whereas an interpreter always pays
the abstraction overhead. Switching from a CPU to a GPU can
easily provide another two orders of magnitude speedup for real-
time rendering, a task the GPU was designed for. Taken together,
this easily explains the net speedup.

Figure 4 shows the performance of the example rendering
system, in frames per second (FPS), as the number of objects
drawn increases. Drawing more objects requires more compu-
tation, and will naturally reduce the rate at which images are
produced. Rendering systems may be bottlenecked by factors other
than computation; they can also be limited by the rate that glue
code can transfer data to the GPU. PyStream can generate glue
code for both OpenGL 2 and OpenGL 3. OpenGL 3 has features

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

that let it transfer data more efficiently to the GPU. As seen in
the figure, these features can offer a ~20% speed improvement
when the rendering system is bottlenecked by its glue code. This
demonstrates an interesting benefit of PyStream: future proofing.
PyStream can take advantage of new features offered by GPUs
and GPU APIs without requiring modifications to the rendering
system.

Conclusion

PyStream takes a unique approach to high-performance high-level
programming. The compiler can map a significant portion of a
general-purpose language onto a GPU, and allow a complete
GPU-accelerated application to be written with a single code
base. This demonstrates that productive high-level languages and
high performance are not mutually exclusive, even for critical
computational kernels.

REFERENCES

[BralO] N. C. Bray. PyStream: Python Shaders Running on the GPU, PhD
thesis, Department of Electrical and Computer Engineering, Univer-
sity of Illinois at Urbana-Champaign.

[Fil08] D. Filion and R. McNaughton, Effects & techniques, SIG-
GRAPH ’08: ACM SIGGRAPH 2008 Classes, pp. 133-164.
[Mit07] M. Mittring, Finding next gen: CryEngine 2, SIGGRAPH *07:

ACM SIGGRAPH 2007 Courses, 2007, pp. 97-121.

[Pypl1] Online: http://codespeak.net/pypy/dist/pypy/doc/

[Sal04] M. Salib, Starkiller: A static type inferencer and compiler for
Python, M.S. thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technol-
ogy.

http://codespeak.net/pypy/dist/pypy/doc/

	Introduction
	PyStream
	Language Restrictions
	PyStream in Practice
	Compiling Python
	Mapping Python onto the GPU
	Performance
	Conclusion
	References

