PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

91

Bringing Parallel Performance to Python with
Domain-Specific Selective Embedded Just-in-Time
Specialization

Shoaib Kamil**, Derrick Coetzee*, Armando Fox*

Abstract—Today’s productivity programmers, such as scientists who need to
write code to do science, are typically forced to choose between productive
and maintainable code with modest performance (e.g. Python plus native li-
braries such as SciPy [SciPy]) or complex, brittle, hardware-specific code that
entangles application logic with performance concerns but runs two to three
orders of magnitude faster (e.g. C++ with OpenMP, CUDA, etc.). The dynamic
features of modern productivity languages like Python enable an alternative
approach that bridges the gap between productivity and performance. SEJITS
(Selective, Embedded, Just-in-Time Specialization) embeds domain-specific
languages (DSLs) in high-level languages like Python for popular computational
kernels such as stencils, matrix algebra, and others. At runtime, the DSLs
are "compiled” by combining expert-provided source code templates specific
to each problem type, plus a strategy for optimizing an abstract syntax tree
representing a domain-specific but language-independent representation of the
problem instance. The result is efficiency-level (e.g. C, C++) code callable
from Python whose performance equals or exceeds that of handcrafted code,
plus performance portability by allowing multiple code generation strategies
within the same specializer to target different hardware present at runtime, e.g.
multicore CPUs vs. GPUs. Application writers never leave the Python world, and
we do not assume any modification or support for parallelism in Python itself.

We present Asp ("Asp is SEJITS for Python") and initial results from sev-
eral domains. We demonstrate that domain-specific specializers allow highly-
productive Python code to obtain performance meeting or exceeding expert-
crafted low-level code on parallel hardware, without sacrificing maintainability or
portability.

Index Terms—parallel programming, specialization

Introduction

It has always been a challenge for productivity programmers,
such as scientists who write code to support doing science, to
get both good performance and ease of programming. This is
attested by the proliferation of high-performance libraries such
as BLAS, OSKI [OSKI] and FFTW [FEFTW], by domain-specific
languages like SPIRAL [SPIRAL], and by the popularity of the
natively-compiled SciPy [SciPy] libraries among others. To make
things worse, processor clock scaling has run into physical limits,
so future performance increases will be the result of increasing

x Corresponding author: skamil@cs.berkeley.edu
£ University of California, Berkeley

Copyright © 2011 Shoaib Kamil et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

hardware parallelism rather than single-core speedup, making
programming even more complex. As a result, programmers must
choose between productive and maintainable but slow-running
code on the one hand, and performant but complex and hardware-
specific code on the other hand.

The usual solution to bridging this gap is to provide com-
piled native libraries for certain functions, as the SciPy package
does. However, in some cases libraries may be inadequate or
insufficient. Various families of computational patterns share the
property that while the strategy for mapping the computation onto
a particular hardware family is common to all problem instances,
the specifics of the problem are not. For example, consider a
stencil computation, in which each point in an n-dimensional grid
is updated with a new value that is some function of its neighbors’
values. The general strategy for optimizing sequential or parallel
code given a particular target platform (multicore, GPU, etc.) is
independent of the specific function, but because that function
is unique to each application, capturing the stencil abstraction
in a traditional compiled library is awkward, especially in the
efficiency level languages typically used for performant code (C,
C++, etc.) that don’t support higher-order functions gracefully.

Even if the function doesn’t change much across applications,
work on auto-tuning [ATLAS] has shown that for algorithms with
tunable implementation parameters, the performance gain from
fine-tuning these parameters compared to setting them naively can
be up to 5x. [SCO8] Indeed, the complex internal structure of auto-
tuning libraries such as the Optimized Sparse Kernel Interface
[OSKI] is driven by the fact that often runtime information is nec-
essary to choose the best execution strategy or tuning-parameter
values.

We therefore propose a new methodology to address this
performance-productivity gap, called SEJITS (Selective Em-
bedded Just-in-Time Specialization) [Cat09]. This methodology
embeds domain-specific languages within high-level languages,
and the embedded DSLs are specialized at runtime into high-
performance, low-level code by leveraging metaprogramming
and introspection features of the host languages, all invisibly to
the application programmer. The result is performance-portable,
highly-productive code whose performance rivals or exceeds that
of implementations hand-written by experts.

The insight of our approach is that because each embedded
DSL is specific to just one type of computational pattern (stencil,
matrix multiplication, etc.), we can select an implementation

mailto:skamil@cs.berkeley.edu

92

strategy and apply optimizatic
knowledge in generating the ¢
returning to the domain of ste
skewing [Wonn00] involves bl
repeatedly to the same grid. Th
unless we know the computatic
stencil’s "footprint," so a gen¢
unable to identify the opportur

We therefore leverage the
guages like Python to defer

(PLL)
Application

App author Specializer author

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

SEJITS
team

Asp core

Python

(ELL)
Specializer

Kernel

must do at compile time, and
knowledge than can be inferre:

Asp: Approach and Mechanic

High-level productivity or sci
include sophisticated introspec
terface) capabilities. We lever:
build domain- and machine-s
user-written code in a high-l
expose parallelism, and then ge
in a low-level language. Then,
executed. This entire process
the user, it appears that an inte

Asp (a recursive acronym
is a collection of libraries tha
Python, using Python both as
programmers write their code

Kernel
call &

AST

Domain-Specific
Transforms

<> Ultilities

guage in which transformatio1
out (the transformation langu
and transformation languages

Input data

happily serves both purposes v

Specifically, Asp provides
classes (specializers), each of
putational pattern. Applicatior)
specific problem instances. The specializer class’s methods use
a combination of pre-supplied low-level source code snippets
(templates) and manipulation of the Python abstract syntax tree
(AST, also known as a parse tree) to generate low-level source
code in an efficiency-level language (ELL) such as C, C++ or
CUDA.

For problems that call for passing in a function, such as the
stencil example above, the application writer codes the function
in Python (subject to some restrictions) and the specializer class
iterates over the function’s AST to lower it to the target ELL and
inline it into the generated source code. Finally, the source code
is compiled by an appropriate conventional compiler, the resulting
object file is dynamically linked to the Python interpreter, and the
method is called like a native library.

Python code in the application for which no specializer ex-
ists is executed by Python as usual. As we describe below, a
recommended best practice for creating new specializers is that
they include an API-compatible, pure-Python implementation of
the kernel(s) they specialize in addition to providing a code-
generation-based implementation, so that every valid program
using Asp will also run in pure Python without Asp (modulo
removing the import directives that refer to Asp). This allows the
kernel to be executed and debugged using standard Python tools,
and provides a reference implementation for isolating bugs in the
specializer.

One of Asp’s primary purposes is separating application and
algorithmic logic from code required to make the application run

Results €

Fig. 1: Separation of concerns in Asp. App authors write code that is
transformed by specializers, using Asp infrastructure and third-party
libraries.

fast. Application writers need only program with high-level class-
based constructs provided by specializer writers. It is the task of
these specializer writers to ensure the constructs can be specialized
into fast versions using infrastructure provided by the Asp team
as well as third-party libraries. An overview of this separation is
shown in Figure 1.

An overview of the specialization process is as follows. We
intercept the first call to a specializable method, grab the AST of
the Python code of the specializable method, and immediately
transform it to a domain-specific AST, or DAST. That is, we
immediately move the computation into a domain where problem-
specific optimizations and knowledge can be applied, by applying
transformations to the DAST. Returning once again to the stencil,
the DAST might have nodes such as "iterate over neighbors" or
"iterate over all stencil points." These abstract node types, which
differ from one specializer to another, will eventually be used
to generate ELL code according to the code generation strategy
chosen; but at this level of representation, one can talk about
optimizations that make sense for stencils specifically as opposed
to those that make sense for iteration generally.

After any desired optimizations are applied to the domain-
specific (but language- and platform-independent) representation

BRINGING PARALLEL PERFORMANCE TO PYTHON WITH DOMAIN-SPECIFIC SELECTIVE EMBEDDED JUST-IN-TIME SPECIALIZATION 93

from stencil_kernel import *

class ExampleKernel(StencilKernel):
def kernel(self, in_grid, out_grid): 1 1
for x in out_grid.interior_points():
for y in in_grid.neighbors(x, 1):
out_grid[x] = out_grid[x] + in_grid[y]

in_grid = StencilGrid([5,5]) 4
in_grid.data = numpy.ones([5,5])

out_grid = StencilGrid([5,5])
ExampleKernel().kernel(in_grid, out_grid)

Fig. 2: Example stencil application. Colored source lines match up to
nodes of same color in Figure 4.

of the problem, conversion of the DAST into ELL code is handled
largely by CodePy [CodePy]. Finally, the generated source code
is compiled by an appropriate downstream compiler into an object
file that can be called from Python. Code caching strategies avoid
the cost of code generation and compilation on subsequent calls.

In the rest of this section, we outline Asp from the point of
view of application writers and specializer writers, and outline the
mechanisms the Asp infrastructure provides.

Application Writers

From the point of view of application writers, using a specializer
means installing it and using the domain-specific classes defined
by the specializer, while following the conventions outlined in
the specializer documentation. Thus, application writers never
leave the Python world. As a concrete example of a non-trivial
specializer, our structured grid (stencil) specializer provides a
StencilKernel class and a StencilGrid class (the grid over which
a stencil operates; it uses NumPy internally). An application
writer subclasses the StencilKernel class and overrides the func-
tion kernel (), which operates on StencilGrid instances. If the
defined kernel function is restricted to the class of stencils outlined
in the documentation, it will be specialized; otherwise the program
will still run in pure Python.

An example using our stencil specializer’s constructs is shown
in Figure 2.

Specializer Writers

Specializer writers often start with an existing implementation of
a solution, written in an ELL, for a particular problem type on
particular hardware. Such solutions are devised by human experts
who may be different from the specializer writer, e.g. numerical-
analysis researchers or auto-tuning researchers. Some parts of
the solution which remain the same between problem instances,
or the same with very small changes, can be converted into
templates, which are simply ELL source code with a basic macro
substitution facility, supplied by [Mako], for inserting values into
fixed locations or "holes" at runtime.

Other parts of the ELL solution may vary widely or in a
complex manner based on the problem instance. For these cases,
a better approach is to provide a set of rules for transforming the
DAST of this type of problem in order to realize the optimizations
present in the original ELL code. Finally, the specializer writer
provides high-level transformation code to drive the entire process.

Specializer writers use Asp infrastructure to build their
domain-specific translators. In Asp, we provide two ways to

generate low-level code: templates and abstract syntax tree (AST)
transformation. For many kinds of computations, using templates
is sufficient to translate from Python to C++, but for others, phased
AST transformation allows application programmers to express
arbitrary computations to specialize.

In a specializer, the user-defined kernel is first translated into
a Python AST, and analyzed to see if the code supplied by the
application writer adheres to the restrictions of the specializer.
Only code adhering to a narrow subset of Python, characterizing
the embedded domain-specific language, will be accepted. Since
specializer writers frequently need to iterate over ASTs, the Asp
infrastructure provides classes that implement a visitor pattern on
these ASTs (similar to Python’s ast .NodeTransformer) to
implement their specialization phases. The final phase transforms
the DAST into a target-specific AST (e.g, C++ with OpenMP ex-
tensions). The Example Walkthrough section below demonstrates
these steps in the context of the stencil kernel specializer.

Specializer writers can then use the Asp infrastructure to
automatically compile, link, and execute the code in the final AST.
In many cases, the programmer will supply several code variants,
each represented by a different ASTs, to the Asp infrastructure.
Specializer-specific logic determines which variant to run; Asp
provides functions to query the hardware features available (num-
ber of cores, GPU, etc.). Asp provides for capturing and storing
performance data and caching compiled code across runs of the
application.

For specializer writers, therefore, the bulk of the work consists
of exposing an understandable abstraction for specializer users,
ensuring programs execute whether specialized or not, writing
test functions to determine specializability (and giving the user
meaningful feedback if not), and expressing their translations as
phased transforms.

Currently, specializers have several limitations. The most im-
portant current limitation is that specialized code cannot call back
into the Python interpreter, largely because the interpreter is not
thread safe. We are implementing functionality to allow serialized
calls back into the interpreter from specialized code.

In the next section, we show an end-to-end walkthrough of an
example using our stencil specializer.

Example Walkthrough

In this section we will walk through a complete example of a
SEJITS translation and execution on a simple stencil example. We
begin with the application source shown in Figure 2. This simple
two-dimensional stencil walks over the interior points of a grid and
for each point computes the sum of the four surrounding points.

This code is executable Python and can be run and debugged
using standard Python tools, but is slow. By merely modifying
ExampleKernel to inherit from the StencilKernel base class, we
activate the stencil specializer. Now, the first time the kernel ()
function is called, the call is redirected to the stencil specializer,
which will translate it to low-level C++ code, compile it, and then
dynamically bind the machine code to the Python environment and
invoke it.

The translation performed by any specializer consists of five
main phases, as shown in Figure 3:

1) Front end: Translate the application source into a domain-
specific AST (DAST)

2) Perform platform-independent optimizations
DAST using domain knowledge.

on the

94

Applicati?n source

V
Domain-specific AST
V

Domain optimizer

'
Optimized domain-specific AST
v
Platform selector

V
Platform-specific AST

v
Platform optimizer

¥
Optimized platform-specific AST
V

Backend compiler

Machinie code

Fig. 3: Pipeline architecture of a specializer.

3) Select a platform and translate the DAST into a platform-
specific AST (PAST).

4) Perform platform-specific optimizations using platform
knowledge.

5) Back end: Generate low-level source code, compile, and
dynamically bind to make available from the host lan-
guage.

As with any pipeline architecture, each phase’s component is
reusable and can be easily replaced with another component, and
each component can be tested independently. This supports port-
ing to other application languages and other hardware platforms,
and helps divide labor between domain experts and platform
performance experts. These phases are similar to the phases of
a typical optimizing compiler, but are dramatically less complex
due to the domain-specific focus and the Asp framework, which
provides utilities to support many common tasks, as discussed in
the previous section.

In the stencil example, we begin by invoking the Python
runtime to parse the kernel () function and produce the ab-
stract syntax tree shown in Figure 4. The front end walks
over this tree and matches certain patterns of nodes, replacing
them with other nodes. For example, a call to the function
interior_points () isreplaced by a domain-specific Stencil-
Interior node. If the walk encounters any pattern of Python nodes
that it doesn’t handle, for example a function call, the translation
fails and produces an error message, and the application falls back
on running the kernel () function as pure Python. In this case,
the walk succeeds, resulting in the DAST shown in Figure 4. Asp
provides utilities to facilitate visiting the nodes of a tree and tree
pattern matching.

The second phase uses our knowledge of the stencil domain
to perform platform-independent optimizations. For example, we
know that a point in a two-dimensional grid has four neighbors
with known relative locations, allowing us to unroll the innermost
loop, an optimization that makes sense on all platforms.

The third phase selects a platform and translates to a platform-
specific AST. In general, the platform selected will depend on
available hardware, performance characteristics of the machine,
and properties of the input (such as grid size). In this example
we will target a multicore platform using the OpenMP framework.
At this point the loop over the interior points is mapped down to
nested parallel for loops, as shown in Figure 5. The Asp framework

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

StencilNeighbor

in_grid, y, 1
Call . |:> _

neighbors(x,1)
< N
out_grid[x] + out_grid[x] +
out_grid[x] in_grid[y] out_grid[x] in_grid[y]

Fig. 4: Left: Initial Python abstract syntax tree. Right: Domain-
specific AST.

G

block scope {... }

Initialize
variables

Fig. 5: Platform-specific AST.

provides general utilities for transforming arithmetic expressions
and simple assignments from the high-level representation used
in DASTSs to the low-level platform-specific representation, which
handles the body of the loop.

Because the specializer was invoked from the first call of
the kernel () function, the arguments passed to that call are
available. In particular, we know the dimensions of the input grid.
By hardcoding these dimensions into the AST, we enable a wider
variety of optimizations during all phases, particularly phases 4
and 5. For example, on a small grid such as the 8x8 blocks
encountered in JPEG encoding, the loop over interior points may
be fully unrolled.

The fourth phase performs platform-specific optimizations.
For example, we may partially unroll the inner loop to reduce
branch penalties. This phase may produce several ASTs to support
run-time auto-tuning, which times several variants with different
optimization parameters and selects the best one.

Finally, the fifth phase, the backend, is performed entirely by
components in the Asp framework and the CodePy library. The
PAST is transformed into source code, compiled, and dynamically
bound to the Python environment, which then invokes it and
returns the result to the application. Interoperation between Python
and C++ uses the Boost.Python library, which handles marshalling
and conversion of types.

The compiled kernel () function is cached so that if the
function is called again later, it can be re-invoked directly without
the overhead of specialization and compilation. If the input grid
dimensions were used during optimization, the input dimensions
must match on subsequent calls to reuse the cached version.

BRINGING PARALLEL PERFORMANCE TO PYTHON WITH DOMAIN-SPECIFIC SELECTIVE EMBEDDED JUST-IN-TIME SPECIALIZATION 95

Results

SEJITS claims three benefits for productivity programmers. The
first is performance portability. A single specializer can include
code generation strategies for radically different platforms, and
even multiple code variants using different strategies on the
same platform depending on the problem parameters. The GMM
specializer described below illustrates this advantage: a single
specializer can produce code either for NVIDIA GPUs (in CUDA)
or x86 multicore processors (targeting the Cilk Plus compiler), and
the same Python application can run on either platform.

The second benefit is the ability to let application writers
work with patterns requiring higher-order functions, something
that is cumbersome to do in low-level languages. We can inline
these functions into the emitted source code and let the low-level
compiler optimize the solution using the maximum available infor-
mation. Our stencil specializer, as described below, demonstrates
this benefit; the performance of the generated code reaches 87%
of the achievable memory bandwidth of the multicore machine on
which it runs.

The third benefit is the ability to take advantage of auto-
tuning or other runtime performance optimizations even for
simple problems. Our matrix-powers specializer, which com-
putes {x,Ax,Azx,...,Akx} for a sparse matrix A and vector x
(an important computation in Krylov-subspace solvers), demon-
strates this benefit. Its implementation uses a recently-developed
communication-avoiding algorithm for matrix powers that runs
about an order of magnitude faster than Python+SciPy (see
performance details below) while remaining essentially API-
compatible with SciPy. Beyond the inherent performance gains
from communication-avoidance, a number of parameters in the
implementation can be tuned based on the matrix structure in each
individual problem instance; this is an example of an optimization
that cannot easily be done in a library.

Stencil
To demonstrate the performance and productivity effectiveness
of our stencil specializer, we implemented two different com-
putational stencil kernels using our abstractions: a 3D laplacian
operator, and a 3D divergence kernel. For both kernels, we run
a simple benchmark that iteratively calls our specializer and
measures the time for applying the operator (we ensure the cache
is cleared in between calls). Both calculations are memory-bound;
that is, they are limited by the available bandwidth from memory.
Therefore, in accordance to the roofline model [SaWi09], we
measure performance compared to measured memory bandwidth
performance using the parallel STREAM [STREAM] benchmark.

Figure 6 shows the results of running our kernels for a 2563
grid on a single-socket quad-core Intel Core i7-840 machine
running at 2.93 GHz, using both the OpenMP and Cilk Plus
backends. First-run time is not shown; the code generation and
compilation takes tens of seconds (mostly due to the speed of the
Intel compiler). In terms of performance, for the 3D laplacian,
we obtain 87% of peak memory bandwidth, and 64% of peak
bandwidth for the more cache-unfriendly divergence kernel, even
though we have only implemented limited optimizations. From
previous work [Kam10], we believe that, by adding only a few
more tuning parameters, we can obtain over 95% of peak per-
formance for these kernels. In contrast, pure Python execution is
nearly three orders of magnitude slower.

In terms of productivity, it is interesting to note the difference
in LoC between the stencils written in Python and the produced

Fraction of Peak BW for Specialized Stencil Kernels
1 \ \

M cilk

¥ openmp
divergence

laplacian

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6: Performance as fraction of memory bandwidth peak for two
specialized stencil kernels. All tests compiled using the Intel C++
compiler 12.0 on a Core i7-840.

GTX 480: M =5, N = 90000 GTX 480: M = 100, N = 90000

0.5

04

N 03}
0.03 >

g
B L]
02} a & 1
00z} s

) a d
001} s 1 .

y 8 o

(R " B
0 15 0

20 25 30 35 40 5 10 15 20 25 30 35 40
D D

B ®
0.00 38—

Fig. 7: Runtimes of GMM variants as the D parameter is varied on
an Nvidia Fermi GPU (lower is better). The specializer picks the best-
performing variant to run.

low-level code. Comparing the divergence kernel with its best-
performing produced variant, we see an increase from five lines
to over 700 lines--- an enormous difference. The Python version
expresses the computation succinctly; using machine character-
istics to express fast code requires expressing the stencil more
verbosely in a low-level language. With our specialization infras-
tructure, programmers can continue to write succinct code and
have platform-specific fast code generated for them.

Gaussian Mixture Modeling

Gaussian Mixture Models (GMMs) are a class of statistical
models used in a wide variety of applications, including image
segmentation, speech recognition, document classification, and
many other areas. Training such models is done using the Ex-
pectation Maximization (EM) algorithm, which is iterative and
highly data parallel, making it amenable to execution on GPUs
as well as modern multicore processors. However, writing high
performance GMM training algorithms are difficult due to the
fact that different code variants will perform better for different
problem characteristics. This makes the problem of producing
a library for high performance GMM training amenable to the
SEJITS approach.

A specializer using the Asp infrastructure has been built by
Cook and Gonina [Col0] that targets both CUDA-capable GPUs
and Intel multicore processors (with Cilk Plus). The special-
izer implements four different parallelization strategies for the
algorithm; depending on the sizes of the data structures used
in GMM training, different strategies perform better. Figure 7
shows performance for different strategies for GMM training on
an NVIDIA Fermi GPU as one of the GMM parameters are varied.

96

Runtime (seconds)
6 8 10 12 14

=]
[
=1

+/CUDA V1

{uncached)

/1 (cached)

32 (cached)

B CUDA Python BENVCC

Fig. 8: Overall performance of specialized GMM training versus
original optimized CUDA algorithm. Even including specializer over-
head, the specialized EM training outperforms the original CUDA

implementation.
Thread 1 Thread 2 Thread 3 Thread 1 Thread 2 Thread 3
A . - AX
Ax \’) Ax
> >
Ax -9 _ Ax | | |
x | g I N I

HUT1) . T
N <
VI

Fig. 9: Left: Naive A*x computation. Communication required at
each level. Right: Algorithm PAI for communication-avoiding matrix
powers. Communication occurs only after k levels of computation, at
the cost of redundant computation.

The specializer uses the best-performing variant (by using the
different variants to do one iteration each, and selecting the best-
performing one) for the majority of iterations. As a result, even
if specialization overhead (code generation, compilation/linking,
etc.) is included, the specialized GMM training algorithm outper-
forms the original, hand-tuned CUDA implementation on some
classes of problems, as shown in Figure 8.

Matrix Powers

Recent developments in communication-avoiding algorithms
[Bal09] (AF: need canonical citation here, as well as specific
cite for Erin and Nick’s CA-matrix powers presentation at Euro-
SomethingOrOther) have shown that the performance of parallel
implementations of several algorithms can be substantially im-
proved by partitioning the problem so as to do redundant work in
order to minimize inter-core communication. One example of an
algorithm that admits a communication-avoiding implementation
is matrix powers [Hoel0]: the computation {x,Ax,A%x,...,A*x}
for a sparse matrix A and vector x, an important building block
for communication-avoiding sparse Krylov solvers. A specializer
currently under development enables efficient parallel computation
of this set of vectors on multicore processors.

The specializer generates parallel communication avoiding
code using the pthreads library that implements the PA1 [Hoe10]

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

kernel to compute the vectors more efficiently than just repeatedly
doing the multiplication A X x. The naive algorithm, shown in
Fig 9, retilgires C?ﬂmunication at each level. However, for
many matrices, we can restructure the computation such that
communication only occurs every k steps, and before every
superstep of k steps, all communication required is completed.
At the cost of redundant computation, this reduces the number
of communications required. Figure 9 shows the restructured

|!e spema|1zer implementation further optimizes the PAl

algorithm using traditional matrix optimization techniques such
as cache and register blocking. Further optimization using vector-
ization is in progress.

512by512 (262K rows, 5 nnz/row)

scipy.linalg.cg O Combined

unspecialized H Vector-vector operations

specialized, k=1 @ Matrix powers kernel

k=2

k=3 All times are in ms/iteration
0 5 10 15

cfd2 (123K rows, 25 nnz/row) cant (62K rows, 64 nnz/row)
T T T T

T T T T T
scipy.linalg.cg |]

scipy.linalg.cg

specialized, k=1

k=1
k=2 k=2
k=3 k=3

0 2 4 6 8 10 0 2 4 6 8 10

Fig. 10: Results comparing communication-avoiding CG with our
matrix powers specializer and SciPy’s default solver, run on an Intel
Nehalem machine.

To see what kinds of performance improvements are possi-
ble using the specialized communication-avoiding matrix powers
kernel, Morlan implemented a conjugate gradient (CG) solver
in Python that uses the specializer. Figure 10 shows the re-
sults for three test matrices and compares performance against
scipy.linalg.solve which calls the LAPACK dgesv rou-
tine. Even with just the matrix powers kernel specialized, the CA
CG already outperforms the native solver routine used by SciPy.

Related Work

Allowing domain scientists to program in higher-level languages
is the goal of a number of projects in Python, including SciPy
[SciPy] which brings Matlab-like functionality for numeric com-
putations into Python. In addition, domain-specific projects such
as Biopython [Biopy] and the Python Imaging Library (PIL) [PIL]
also attempt to hide complex operations and data structures behind
Python infrastructure, making programming simpler for users.

Another approach, used by the Weave subpackage of SciPy,
allows users to express C++ code that uses the Python C API as
strings, inline with other Python code, that is then compiled and
run. Cython [Cython] is an effort to write a compiler for a subset
of Python, while also allowing users to write extension code in C.
Another instance of the SEJITS approach is Copperhead [Cat09],
which implements SEJITS targeting CUDA GPUs for data parallel
operations.

The idea of using multiple code variants, with different op-
timizations applied to each variant, is a cornerstone of auto-
tuning. Auto-tuning was first applied to dense matrix computations
in the PHiPAC (Portable High Performance ANSI C) library
[PHiPAC]. Using parametrized code generation scripts written in

BRINGING PARALLEL PERFORMANCE TO PYTHON WITH DOMAIN-SPECIFIC SELECTIVE EMBEDDED JUST-IN-TIME SPECIALIZATION 97

Perl, PHiPAC generated variants of generalized matrix multiply
(GEMM) with loop unrolling, cache blocking, and a number
of other optimizations, plus a search engine, to, at install time,
determine the best GEMM routine for the particular machine.
After PHiPAC, auto-tuning has been applied to a number of
domains including sparse matrix-vector multiplication (SpMV)
[OSKI], Fast Fourier Transforms (FFTs) [SPIRAL], and multicore
versions of stencils [KaDa09], [Kam10], [Tang11], showing large
improvements in performance over simple implementations of
these kernels.

Conclusion

We have presented a new approach to bridging the "productiv-
ity/efficiency gap": rather than relying solely on libraries to allow
productivity programmers to remain in high-level languages, we
package the expertise of human experts as a collection of code
templates in a low-level language (C++/OpenMP, etc.) and a set
of transformation rules to generate and optimize problem-specific
ASTs at runtime. The resulting low-level code runs as fast or faster
than the original hand-produced version.

Unlike many prior approaches, we neither propose a stan-
dalone DSL nor try to imbue a full compiler with the intelligence
to "auto-magically" recognize and optimize compute-intensive
problems. Rather, the main contribution of SEJITS is separation
of concerns: expert programmers can express implementation
optimizations that make sense only for a particular problem (and
perhaps only on specific hardware), and package this expertise in
a way that makes it widely reusable by Python programmers. Ap-
plication writers remain oblivious to the details of specialization,
making their code simpler and shorter as well as performance-
portable.

We hope that our promising initial results will encourage oth-
ers to contribute to building up the ecosystem of Asp specializers.

Acknowledgments

Henry Cook and Ekaterina Gonina implemented the GMM spe-
cializer. Jeffrey Morlan is implementing the matrix-powers spe-
cializer based on algorithmic work by Mark Hoemmen, Erin
Carson and Nick Knight. Research supported by DARPA (con-
tract #FA8750-10-1-0191), Microsoft Corp. (Award #024263),
and Intel Corp. (Award #024894), with matching funding from
the UC Discovery Grant (Award #DIG07-10227) and additional
support from Par Lab affiliates National Instruments, NEC, Nokia,
NVIDIA, Oracle, and Samsung.

REFERENCES

[ATLAS] R. C. Whaley, A. Petitet, and J. Dongarra. Automated Empirical
Optimization of Software and the ATLAS project. Parallel Comput-
ing, vol. 27(1-2), pp. 3-35, 2001.

[Bal09] G. Ballard, J. Demmel, O. Holtz, O. Schwartz. Minimizing
Communication in Numerical Linear Algebra. UCB Tech Report
(UCB/EECS-2009-62), 2009.

[Biopy] Biopython. http://biopython.org.

[Cat09] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K.

Keutzer, J. Shalf, K. Yelick, A. Fox. SEJITS: Getting Productivity
and Performance with Selective Embedded Just-in-Time Special-
ization. Workshop on Programming Models for Emerging Archi-
tectures (PMEA), 2009

[CodePy] CodePy Homepage. http://mathema.tician.de/software/codepy

[Col0] H. Cook, E. Gonina, S. Kamil, G. Friedland}, D. Patterson, A.
Fox. CUDA-level Performance with Python-level Productivity for
Gaussian Mixture Model Applications. 3rd USENIX Workshop on
Hot Topics in Parallelism (HotPar) 2011.

[Cython] R. Bradshaw, S. Behnel, D. S. Seljebotn, G. Ewing, et al., The
Cython compiler, http://cython.org.
[FFTW] M. Frigo and S. Johnson. The Design and Implementation of

FFTW3. Proceedings of the IEEE 93 (2), 216-231 (2005). Invited
paper, Special Issue on Program Generation, Optimization, and
Platform Adaptation.

M. Hoemmen. Communication-Avoiding Krylov Subspace Meth-

ods. PhD thesis, EECS Department, University of California, Berke-

ley, May 2010.

[KaDa09] K. Datta. Auto-tuning Stencil Codes for Cache-Based Multicore

Platforms. PhD thesis, EECS Department, University of California,

Berkeley, Dec 2009.

S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An Auto-

Tuning Framework for Parallel Multicore Stencil Computations.

International Parallel and Distributed Processing Symposium, 2010.

Mako Templates for Python. http://www.makotemplates.org

OSKI: Optimized Sparse Kernel Interface. http://bebop.cs.berkeley.

edu/oski.

[PHiPAC] J. Bilmes, K. Asanovic, J. Demmel, D. Lam, and C.W. Chin.
PHiPAC: A Portable, High-Performance, ANSI C Coding Method-
ology and its Application to Matrix Multiply. LAPACK Working
Note 111.

[PIL] Python Imaging Library. http://pythonware.com/products/pil.

[SaWi09] S. Williams, A. Waterman, D. Patterson. Roofline: An Insightful

Visual Performance Model for Floating-Point Programs and Mul-

ticore Architectures. Communications of the ACM (CACM), April

20009.

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D.

Patterson, J. Shalf, and K. Yelick. Stencil computation optimization

and auto-tuning on state-of-the-art multicore architectures. SC2008:

High performance computing, networking, and storage conference,

2008.

[SciPy] Scientific Tools for Python. http://www.scipy.org.

[SPIRAL] M. Piischel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B.
Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,
R. W. Johnson, N. Rizzolo. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE special issue on "Program
Generation, Optimization, and Adaptation".

[STREAM] The STREAM Benchmark. http://www.cs.virginia.edu/stream

[Tang11] Y.Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson. The Pochoir Stencil Compiler. 23rd ACM Symposium
on Parallelism in Algorithms and Architectures, 2011.

[Wonn00] D. Wonnacott. Using Time Skewing to Eliminate Idle Time due to
Memory Bandwidth and Network Limitations. International Parallel
and Distributed Processing Symposium, 2000.

[Hoel0]

[Kam10]

[Mako]
[OSKI]

[SCO08]

http://biopython.org
http://mathema.tician.de/software/codepy
http://cython.org
http://www.makotemplates.org
http://bebop.cs.berkeley.edu/oski
http://bebop.cs.berkeley.edu/oski
http://pythonware.com/products/pil
http://www.scipy.org
http://www.cs.virginia.edu/stream

	Introduction
	Asp: Approach and Mechanics
	Application Writers
	Specializer Writers

	Example Walkthrough
	Results
	Stencil
	Gaussian Mixture Modeling
	Matrix Powers

	Related Work
	Conclusion
	Acknowledgments
	References

