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N-th-order Accurate, Distributed Interpolation Library

Stephen M. McQuay**, Steven E. Gorrell*

Abstract—The research contained herein yielded an open source interpolation
library implemented in and designed for use with the Python programming
language. This library, named smbinterp, yields an interpolation to an arbitrary
degree of accuracy. The smbinterp module was designed to be mesh agnostic. A
plugin system was implemented that allows end users to conveniently and con-
sistently present their numerical results to the library for rapid prototyping and in-
tegration. The library includes modules that allow for its use in high-performance
parallel computing environments. These modules were implemented using built-
in Python modules to simplify deployment. This implementation was found to
scale linearly to approximately 180 participating compute processes.

Index Terms—n-th-order accurate general interpolation, distributed calculation
schemes, multiphysics simulation

Introduction and Background

As engineers attempt to find numeric solutions to large physical
problems, simulations involving multiple physical models or phe-
nomena, known as multiphysics simulations, must be employed.
This type of simulation often involves the coupling of disparate
computer codes. When modeling physically different phenomena
the numeric models used to find solutions to these problems
employ meshes of varying topology and density in their implemen-
tation. For example, the unstructured/structured mesh interfaces
seen in the combustor/turbo machinery interface [Sha0Ol], or the
coupling of Reynolds-Averaged Navier-Stokes and Large Eddy
Simulation (RANS/LES) codes in Computational Fluid Dynamics
(CFD) [Med06]. A similar situation with disparate meshes arises
in the analysis of helicopter blade wake and vortex interactions,
as for example when using the compressible flow code SUmb and
the incompressible flow code CDP [Hah06]. When this is the case,
and the mesh elements do not align, the engineer must perform
interpolation from the upstream code to the downstream code.
Frameworks exist that perform interpolation for multiphysics
simulations. In general, frameworks of this variety try to solve
two problems. First, the framework should rapidly calculate the
interpolation. Secondly, the interpolation should be accurate.
CHIMPS (Coupler for High-performance Integrated Multi-
Physics Simulations) is a Fortran API (with Python bindings)
that implements an efficient Distributed Alternating Digital Tree
for rapid distributed data lookup [Alo06], [Hah09]. By default,
CHIMPS can only provide the user with linear (second-order
accurate) interpolations. While CHIMPS can provide third-order
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and higher accurate interpolations, it is not automatic; higher-
order interpolations are only performed if the engineer supplies
the CHIMPS API with higher-order terms. If this information is
unavailable, then CHIMPS can only yield linear interpolations.

Another interpolation framework exists that can perform au-
tomatic higher-order interpolation. AVUSINTERP [Gal06] (Air
Vehicles Unstructured/Structured Interpolation Tool) is a tool that
provides linear and quadratic interpolations requiring only the
physical values at points in a donor mesh, i.e. no a priori knowl-
edge of higher-order terms. While this framework implements a
superior interpolation scheme to the tri-linear interpolation found
in CHIMPS, AVUSINTERP was not implemented in a parallel
fashion, nor does it allow for the engineer to arbitrarily choose the
order of the interpolation past third-order accuracy.

The research presented herein describes the development of
a library that is a union of the best parts of the aforementioned
tools. Namely, this research provides a library, named smbinterp,
that implements the interpolation of a physical value from a
collection of donor points to a destination point and performs
this interpolation to an arbitrary degree of accuracy. The library
can perform this interpolation in both two- and three-dimensional
space. Also, the library was designed and implemented to be
used in a high-performance parallel computing environment. The
smbinterp library is implemented as a python module that builds
upon the numpy and scipy libraries and presents an API for use in
multiphysics simulation integration. The library is released under
the GPL, and project is available on github [smbinterp].

Method

The numerical method implemented in smbinterp was first pro-
posed by Baker [Bak03]. This interpolation method comprises the
adjustment of a linear interpolation by a least squares estimate of
higher-order terms. The Baker interpolation of the physical value
of interest (denoted ¢) to the point E is defined by:

q(E) = QIinear(E) +f(3)7 (D

where gineqr is the linear interpolation, and f(Z) is an estimation
of the higher-order error terms. The following explanation is
specific to two-dimensional space; three-dimensional space is
treated in [McQ11].

The participating geometry required to implement this method
in two spatial dimensions is shown in figure 1. The blue points
(R) and green points (S) represent points in a source mesh, and the
red point E is the point to which an interpolation is desired. AR
represents a simplex that surrounds the destination point X, and
S1..m 1s a collection of extra points surrounding the simplex R. The
triangles A; — A3 represent the areas formed by E and AR.
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Fig. 1: Planar Simplex used in Baker’s Interpolation Scheme

Barycentric coordinates , denoted ¢;(Z), are used to perform
the linear interpolation. In geometric terms, the barycentric coor-
dinates of a point in a simplex are the values of the normalized
areas A j/Asxq1 Opposite the vertex R; in the simplex AR.

The barycentric coordinates define the influence that each
point in the simplex AR contributes to the linear interpolation.
In other words, the ratio of A /A, represents the influence from
0 < ¢ <1 that g(R;) has over the linear interpolant. If = = R},
the value of giyeqr(E) should then be influenced entirely by the
known value of q( ;). If E is placed in such a way as to give
Aﬁ,:az = Aﬁja/ = At =, the value q(R;) at each point R; contributes
equally to the calculated value of gjineqr(E).

The linear interpolant, which requires the simplex AR and
as inputs, is defined as

N+1

Z q(R )

where N + 1 is the number of points in a simplex (3 in two-
dimensional space, and 4 in three-dimensional space). The values
of the basis functions ¢;(E) is the only unknown in equation 2.

To solve for ¢;(Z) a system of linear equatlons will be defined
involving the points in the simplex R;, E, and equation 2. If ¢(Z)
is a constant, ¢ = g2 = ¢3 = Qlinear = Yconstant» and equation 2 can
be modified by dividing by gconsrans, that is:

o1+ +o3=1. 3)

Furthermore, the basis functions must be calculated so that equa-
tion 2 also interpolates geometric location of the point Z, hence

R1x¢l( ) +R2x¢2(3) +R3:¢3 (‘E) = =x (€]
R1y01(Z) + Ray$2(Z) +R3,93(E) = E,. )
The values of the basis functions ¢;(Z) can be found by solv-

ing the following system of linear equations involving equations
3,4 and 5:

qlmear ARv H

11 1] [o® |
Rix Roy Rsy ¢2 (‘E) = | & ) (6)
Rly ng R3y (])3 (E) Ey

which yields the values for ¢;(Z), providing a solution for equa-
tion 2.
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At this point the first of two unknowns in equation 1 have
been solved, however the least squares approximation of error
terms f(E) remains unknown. If ¢(E) is evaluated at any of the
points R; in the simplex, then q(R j) is exact, and there is no need
for an error adjustment at R;, hence f(Z) = 0. Similarly, if ¢(E)
is being evaluated along any of the opposite edges to R, of the
simplex AR, the error term should have no influence from ¢, (Z),
as A; = 0. This condition is satisfied when expressing the error
terms using the linear basis functions as

f(E) = a1 (E)02(E) +b92(E)¢3(E) +c¢3(E)¢1 (E). ()

In equation 7 the three double products of basis functions are
the set of distinct products of basis functions that are quadratic
in the two spatial dimensions x and y, and zero when evaluated
at each of the verticies in AR. This term represents a third-
order accurate approximation for the error up to and including the
quadratic terms. This equation introduces three unknowns whose
values must be solved, namely a,b, and c.

Recall that Sy, k= 1,2,...,mis the set of m points surrounding
E that are not in the simplex R;. A least squares system of
equations is defined using the values of the basis functions at these
points, the values of a linear extrapolation for each of those points
using the simplex AR, and the values of a,b, and ¢ in equation 7.
Define A as (a,b,c)”. Applying least squares theory a, b, and ¢
are found by inverting the following 3 x 3 matrix:

BTA=B"w. 8

The matrix B is defined using the identical basis function pattern
as in equation 7. Denote ¢;(Sk) as the value of ¢; evaluated using
equation 2 and the data point S; (in lieu of ). The matrix B in
equation 8 is thus defined:

$1(S1)2(S1)  $2(S1)93(51)
$1(S2)92(S2)  92(52)93(52)

91 (Sm)2(Sm)  92(Sm)03(Sm) 91 (Sw)03(Sm)

The value of ¢(Sy) is known a priori (values of ¢ at each point Sy
in the donor mesh). The value of gjineqr(Sk) (the linear extrapolant)
can also be calculated using equation 2. Define w in equation 8 as

q(Sl) *qlinear(Angl)
Q(SZ) _qlinear(AR7S3)

w= . (10)
q(sm) _qlinear(AR7Sm)

Equation 8 is populated with the information from each of the
surrounding points in Sk, then the unknown A can be calculated.
Knowing A, equation 7 is evaluated for f(Z). Subsequently the
previously calculated value of gjineqr(E) and the recently calcu-
lated value of f(E) are used to solve equation 1 for g(Z).

There exist known limitations to this least squares-based in-
terpolation method. First a change in vertex stencil will generally
yield a discontinuity in interpolation results. While this property
makes this method insufficient for graphical applications, it has
been shown to yield sufficiently accurate results to be used in
engineering applications [Bak03], [Gal06].

Secondly, while solutions to the linear system in equation
2 are well-behaved, certain vertex configurations can lead to a
singular system of equations in equation 7. These pathological
vertex configurations occur when more than n — 1 of the extra
points lie on one extended edge of the simplex AR [Bak03]. If this
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occurs, the covariance matrix BT B will be singular, the solution
will not be unique, and the error approximation will not generally
aid in improving the interpolation.

Extension of this method into three dimensions is non-trivial,
and is explained in depth in [McQ11]. A pattern exists to define
any error approximation function f(ZE) and covariance matrix
BTB parametrized by order of approximation and dimension.
Define v as the desired order of accuracy less one (i.e. for cubic
interpolation v is 3). As defined above, N is the spatial degree.
The pattern for the combinations of basis functions that are used
to define f(Z) is collection of v-th ordered combinations of N + 1
basis functions ¢; that are unique and non-duplicate, triplicate, etc.
The following code implements this pattern:

from itertools import product

@memoize
def pattern(simplex_size,

1

2

3

4 nu) :
5 r =[]

6

7

8

9

for i in product (xrange (simplex_size),

repeat nu) :

if len(set (1)) !'=1:
r.append (tuple (sorted(i)))
10 unique_r = list (set(r))
11 return unique_r

The dynamic calculation of the basis function pattern in this
fashion is powerful, in that it can be calculated for any arbitrary
v, and for any spatial dimension (although only N of 2 and 3
are dealt with herein). However, for each point E the calculation
of the pattern must be performed once for the calculation of
f(E) and once per extra point S participating in the current
interpolation for each row in the B matrix. There is only one
valid pattern per set of inputs N and v, which must both remain
constant throughout a single interpolation. The calculation of
the pattern is a computationally intensive operation, and so a
caching mechanism has been implemented in smbinterp that only
calculates the pattern if it has not been previously calculated. This
concept is known as memoization, and is implemented using the
following function wrapper:

from functools import wraps

def memoize (f):

cache = {}

@wraps (f)

def memf (simplex_size,
(simplex_size,
if x not in cache:

cache[x] = f(simplex_size,
10 return cache[x]
11 return memf

nu) :

X = nu)

R - MRV R SERUC R SR

nu)

Baker’s method gives a reasonable interpolation solution for a
general cloud of points. However, the method suggested by Baker
for the vertex selection algorithm for the terms AR and S, consists
of simply selecting the points nearest =. While this is the most
general point selection algorithm, it can lead to the aforementioned
pathological vertex configurations. This configuration is prevalent
when the source mesh is composed of a regular grid of vertices,
and must be addressed if the method is to yield a good interpola-
tion.

Furthermore a mesh may have been designed to capture the
gradient information, and therefore the mesh topology should be
respected. Simply selecting the closest points to E would yield
inferior results. By selecting the more topologically (according to
the mesh) adjacent points the information intended to be captured
in the mesh’s design will be preserved.
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Fig. 2: Flowchart of the Parallelization Architecture

A plugin architecture was implemented in smbinterp which
yields the requisite flexibility needed to avoid the pathological
grid configurations and gives the engineers complete control over
the point selection algorithms. The base class for all grid objects
that desire to use the interpolation methods is defined as follows:

class grid(object):

1
2 def _ _init__ (self, verts, q):

3 self.verts = np.array(verts)

4 self.tree = KDTree(self.verts)

5

6 self.g = np.array(q)

5

8 self.cells = {}

9 self.cells_for_vert = defaultdict (list)

10

1 def get_containing_simplex(self, Xi):

12 #o...

13 return simplex

14

15 def get_simplex_and_nearest_points(self,

16 Xi, extra_points = 3):
17 Fo...

18 return simplex, extra_points

The cells and cells_for_verts data structures are used when search-
ing for a containing simplex. The structures are populated with
connectivity information before a round of interpolations. The
method employed in the default implementation for the location
of the containing simplex in an upstream mesh is straight forward:
first the spatial tree structure is used to find the location of the
nearest vertex to the point of interest, then the cells are recursively
visited in topologically adjacent order and tested for inclusion of
the point &

The selection of the extra points Sy is also implemented in the
base grid class. The default algorithm simply queries the kdtree
structure for (N + 1) +m points and discards the points that are
already in the simplex AR.

Plugins are defined as classes that inherit from the base grid
object, and that implement the requisite functionality to populate
the cells and cells_for_vert data structures. If either of the default
simplex and vertex selection methods do not provide the desired
functionality they could be overridden in the derived class to
provide a more tuned AR and S selection algorithms. This gives
engineers complete control over point selection and makes the
interpolation library mesh agnostic.

A parallel mechanism for calculating ¢(E) was implemented
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in smbinterp. As is illustrated in figure 2, a stream of requested
interpolations are presented to a queuing mechanism that then
distributes the task of calculating the interpolations to a set of
minions.

The server.py application implements the four queues required
to implement this method: a queue for tasks to be performed, a
queue for results, and two queues for orchestrating the control of
a round of interpolations between a master and a set of minions.
Masters and minions authenticate and connect to these four queues
to accomplish the tasks shown in the flowchart in figure 2. The
master.py script is responsible for orchestrating the submission of
interpolations and events associated with starting and stopping a
set of interpolations. Each of the minions has access to the entire
domain and are responsible for performing the interpolations
requested by the end user.

The crux of the solution lies in providing the minions with
a steady stream of work, and a pipeline into which the resultant
interpolations can be returned. The mechanism developed in sm-
binterp uses built-in Python modules to minimize the deployment
expense. The multiprocessing module provides a manager class
which facilitates the access of general objects to authenticated
participants over a network. The built-in Queue objects, which im-
plement a multi-producer, multi-consumer first-in-first-out queue,
are presented to the minions and masters using the functionality
in the manager class.

Results and Discussion of Results

The root mean square (RMS) of the errors was used to determine
the accuracy of the smbinterp module. A continuous function
whose values varied smoothly in the test domain was required
to calculate the error; the following equation was used:

an

A plot of this function is found in figure 3. Each error & was cal-
culated as the difference between the actual value (from equation
11) and calculated interpolations (at each point in the destination
domain using smbinterp), or & (&) = Gexacr (E) — Geatcutared (E)-

q(x,y) = (sin (x) cos (ym))*.
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Fig. 3: Plot of Equation 11

A mesh resolution study was performed to determine how the
RMS of error varied with mesh density. The source mesh was
generated using gmsh, and the lowest-resolution mesh is shown
in figure 4. The results of this study are show in figure 5. A
collection of 1000 random points were used as the destination
for interpolation.
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Fig. 4: Lowest-resolution test mesh

Figure 5 plots the relationship between mesh spacing and RMS
of error of all interpolations in the collection of destination ver-
texes. The x-axis represents the spacing between the regular mesh
elements. The y-axis was calculated by performing interpolation
from each resolution of mesh to a static collection of random
points. The lines in each plot are representative of the slope that
each collection of data should follow if the underlying numerical
method is truly accurate to the requested degree of accuracy. As an
example, the collection of points for v of 2 should be third-order
accurate, and should follow a line with slope of 3; this is closely
demonstrated in the plots.
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Fig. 5: RMS of Error vs. Mesh Spacing

Figure 5 shows the results of the resolution study for the two-
dimensional test case meshes. The three dimensional test case
meshes yielded similar results and are presented in [McQI11].
As the meshes were refined the RMS of error decreased. The
fourth- and sixth-order results (v of 3 and 5) matched the slope
lines almost exactly, whereas the third- and fifth-order results were
slightly lower than expected for that level of accuracy.

As mesh element size decreased, the RMS of error decreased
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as well. The RMS of error for the highest v decreased more than
that of the lowest v. The RMS of error of the most coarse mesh
(far right) ranges within a single order of magnitude, whereas the
RMS of errors at the most fine spacing (far left) span four orders
of magnitude. The results exhibit a slight banding, or unevenness
between each order. Also, the data very closely matches the plotted
lines of slope, indicating that the order of accuracy is indeed
provided using this numerical method.

The rate at which error decreases as the average mesh element
size decreases in figure 5 is indicative of the order of accuracy of
the numerical method implemented in smbinterp. There is slight
banding for the two-dimensional meshes between quadratic and
cubic interpolation, and again for quartic an quintic interpolation.
While this indicates that the method does not perfectly interpolate
to those orders of accuracy, in general increasing the v parameter
of the smbinterp library provides a more accurate interpolation.
Furthermore, the cases where the points diverge from the slope of
appropriate order, the divergence occurs in a favorable direction
(i.e. less error). Also, the fine meshes experience a more significant
decrease in RMS of error than the coarse meshes while increasing
the order of approximation, v. While this is an intuitive result, it
emphasizes the notion that mesh density should be chosen to best
match the underlying physical systems and to provide optimally
accurate results.

The parallel algorithm employed by smbinterp was found to
scale quasi-linearly to approximately 180 participating minion.py
processes. Speedup is defined as the ratio of time to execute
an algorithm sequentially (77) divided by the time to execute
the algorithm with p processors [WSU], or S, = % A parallel
algorithm is considered to have ideal speedup if S, = p.

A more meaningful parameter for instrumenting the perfor-
mance of a parallel algorithm is known as the efficiency of the
algorithm, denoted E,,. Efficiency of a parallel algorithm is defined
as the speedup divided by the number of participating processors,
orE, = % The efficiency of an algorithm ranges from O to 1, and
is shown for smbinterp in figure 6.
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Fig. 6: Efficiency (E,) of the Parallel Algorithm

The parallelization algorithm employed by the smbinterp li-
brary has near-linear speedup up to approximately 128 partici-
pating minions. It has an efficiency above 90 percent up to 181
participating nodes, but the efficiency drops substantially when
using more minions. If an algorithm does not have an efficiency

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

of 1, it is usually indicative of communication overhead or bot-
tlenecks of some form. It was observed that the cpu utilization
of the server.py script increased linearly up to 181 minions (CPU
utilization of 200%), but then did not increase past that point. The
implementation of the server.py script represents the bottleneck of
this implementation.

Conclusions

The smbinterp module was developed to provide a high-
performance interpolation library for use in multiphysics simula-
tions. The smbinterp module provides an interpolation for a cloud
of points to an arbitrary order of accuracy. It was shown, via a
mesh resolution study, that the algorithm (and implementation
thereof) provides the the end user with the expected level of
accuracy, i.e. when performing cubic interpolation, the results are
fourth-order accurate, quartic interpolation is fifth-order accurate,
etc.

The smbinterp module was designed to be mesh agnostic.
A plugin system was implemented that allows end users to
conveniently and consistently present their numerical results to
the library for rapid prototyping and integration.

The smbinterp module was designed with parallel computing
environments in mind. The library includes modules that allow
for its use in high-performance computing environments. These
modules were implemented using built-in Python modules to
simplify deployment. This implementation was found to scale
linearly approximately 180 participating compute processes. It is
suggested to replace the queuing mechanism with a more high-
performance queuing library (e.g. @MQ) and a more advanced
participant partitioning scheme to allow the library to scale past
this point.
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