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Abstract

The peracarid taxon Cumacea is an essential indicator of benthic quality in marine ecosys-
tems. This study investigated the influence of environmental (i.e., biological or ecosystemic),
climatic (i.e., meteorological or atmospheric), and spatial (i.e., geographic or regional) vari-
ables on their genetic variability and adaptability in the Northern North Atlantic, focusing on
Icelandic waters. We analyzed partial sequences of the 16S rRNA mitochondrial gene from
62 Cumacea specimens. Using the aPhyloGeo software, we compared these sequences with
relevant variables such as latitude (decimal degree) at the end of sampling, wind speed (m/
s) at the start of sampling, O₂ concentration (mg/L), and depth (m) at the start of sampling.

Our analyses revealed variability in spatial and biological variables, reflecting the diversity of
ecological requirements and benthic habitats. The most common Cumacea families, Diastyl-
idae and Leuconidae, suggest adaptations to various marine environments. Phylogeographic
analysis showed a divergence between specific genetic sequences and two habitat variables:
wind speed (m/s) at the start of sampling and O₂ concentration (mg/L). This observation
may indicate the possibility of varying local adaptations in response to these fluctuating
conditions.

These results reinforce the importance of further research into the relationship between
Cumacea genetics and global environmental variables to interpret the evolutionary dynamics
and adaptation of these deep-sea organisms. This study sheds much-needed light on the
acclimatization of invertebrates to climate change, anthropogenic pressures, and marine
habitat management, potentially contributing to the evolution of more effective conservation
strategies and policies to protect these vulnerable ecosystems.

The aPhyloGeo Python package is freely and publicly available on GitHub and PyPi, providing
an invaluable tool for future research.

Keywords Adaptation, Atlantic, Bioinformatics, Biology, Cumacea, Iceland,
Phylogeography

1. Introduction
The North Atlantic and Subarctic regions, particularly the Icelandic waters, are of ecological
interest due to their diverse water masses and unique oceanographic features [1], [2], [3].
These areas form vital benthic habitats¹ [4] and enhance our understanding of deep-sea
ecosystems and biodiversity patterns [3], [5], [6]. The IceAGE project and its predecessors,

¹Areas at the bottom of oceans, lakes, or rivers, including sediments and organisms that live in them.
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BIOFAR and BIOICE, provide invaluable data for studying the impacts of climate change
and seabed mining, especially in the Greenland, Iceland, and Norwegian (GIN) seas [7].

Cumacea, a crustacean taxon within Peracarida, are major indicators of marine ecosystem
health due to their sensitivity to environmental fluctuations [8] and their contribution to
benthic food webs [9]. Despite their ecological importance, the evolutionary history of deep-
sea benthic invertebrates remains uncharted, notably in the North Atlantic [10]. Analyzing
the genetic and distribution patterns of these deep-sea organisms is crucial for predicting
their responses to climate change [10] and anthropogenic pressures [7], while also advanc-
ing our understanding of their adaptive mechanisms within deep-sea ecosystems.

Given the urgency of the aforementioned factors, this study aims to analyze the effects of
ecological (climatic and environmental) and spatial variables on the genetic variation and
adaptation of Cumacea in the Northern North Atlantic. More specifically, we will examine
whether there is a genetic adaptation between the genetic structure of a region represented
by a partial sequence of the 16S rRNA mitochondrial gene of the Cumacea species included
in our analyses and their habitat variables. If so, we will identify which variables show the
greatest divergence from a specific segment (i.e., window) of this partial sequence and fur-
ther investigate the potential associated protein using bioinformatics tools to interpret its
biological relevance. Our approach includes confirming various phylogeographic models²
and updating a Python package (currently in beta), aPhyloGeo, to facilitate these analyses.

This paper is organized as follows: Section 2 reviews pertinent studies on the biodiversity
and biogeography of deep-sea benthic invertebrates; Section 3 summarizes the aims and
contributions of this study, highlighting aspects relating to the conservation and adaptation
of marine invertebrates to climate change; Section  4 describes data collection, prepro-
cessing and phylogeographic analyses of partial genetic sequence and habitat variables;
Section 4.7 describes the metrics used to evaluate the phylogeographic models; Section 5
presents the results; finally, Section 6 discusses their implications for future research and
conservation efforts.

2. Related Works
Assessing and quantifying the biodiversity of deep-sea benthic invertebrates has become
increasingly important since it was discovered that their species richness may be under-
estimated [11]. Subsequent research has highlighted the need for large-scale distribution
models to interpret the diversity of these organisms across their ecological and evolution-
ary contexts [12]. Consequently, recent efforts have focused on mapping, managing, and
studying the seabed [13]. Advanced technologies, such as acoustic detection are improving
our knowledge of benthic ecosystem complexity [13]. Integrating genetic and habitat vari-
ables provides a better insight into how ecosystemic, meteorological, and spatial variables
influence the genetic variation, distribution, biodiversity, and resilience of deep-sea benthic
organisms [14].

However, the relationship between genetics and the environment is complex, involving
gene-environment interactions and factors related to natural selection, which makes it
difficult to identify clear causal relationships [15]. Additionally, the distinction between the
direct and indirect effects of the environment on genetics presents further challenges [16],
[17]. The limitations of current methods for measuring genetic and ecological variables,
combined with logistical constraints, often limit the scope of such studies [16], [18]. This
complexity may explain why the relationship between the environment and genetics of

²Phylogeographic models are computational tools that analyze relationships between the genetic
structures of populations and their geographic distributions. In our case, by incorporating regional,
biological, and atmospheric variables, we can analyze and interpret their impact on the genetic
adaptation and spatial patterns of Cumacea species.
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Cumacea has been less studied, despite their importance for understanding how deep-sea
invertebrates adapt to fluctuating environmental conditions.

3. Our Contribution
Our study focuses on the genetic fluctuation of a partial sequence of the 16S rRNA mitochon-
drial gene in Cumacea communities in response to variations in their habitat, a topic that
has been little explored in previous studies [11], [19]. We aim to refine the natural selection
hypothesis by identifying specific divergent genetic regions and the potentially associated
proteins using bioinformatics tools, such as protein structure modeling and functional
annotation databases, to reveal the potential functions that these proteins may have in the
adaptation of Cumacea to habitat fluctuations. By linking this partial sequence to habitat
variables using robust analytical methods, such as dissimilarity calculations and phyloge-
netic reconstructions, we can better interpret the selection effects at the molecular level of
this Cumacea sequence, which could confer survival advantages in the harsh environments
of the Northern North Atlantic. This represents a major advance over previous research,
which has often struggled to integrate genetic and biological data in the context of deep-
sea invertebrates [14], [20] or has faced difficulties in linking genetics and environment
[21], [22].

Furthermore, our genetic and environmental data highlight habitats of high conservation
interest that can be considered for establishing marine protected areas [4]. These results
are essential for developing informed conservation strategies in the context of climate
change. Finally, our study paves the way for further research on other invertebrate species
across different geographic regions. By extending this research to diverse environments
and taxonomic groups, scientists will be better able to assess the adaptation and resilience
of marine invertebrates to changing conditions.

4. Materials and Methods
This section describes our data and introduces the main data preprocessing steps, the aPhy	
loGeo software, the distance metrics used, and how the figures were created. A flow chart,
constructed with the diagram software draw.io, summarizes this section (see Figure 1).

Figure 1.  Flow chart summarizing the Materials and Methods section workflow. Six different colors
highlight the blocks. The first block (blue) represents our database. The second block (in red) is data
preprocessing, which consists of deleting certain variables. The third and fourth blocks (orange) imple	
ment the aPhyloGeo software and its parameters for our phylogeographic analyses. The fifth block (gray)
applies distance metrics to the genetic and habitat variable trees produced. The sixth block (yellow)
calculates and compares distance metrics between genetic and habitat variable trees. The seventh block
(purple) identifies the most divergent habitat variables of a specific region of the partial sequence of the
16S rRNA mitochondrial gene based on the results of tree comparisons. *See YAML files on GitHub for
more details on these parameters.
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Figure 2.  Distribution map of Cumacea specimens included in our analyses according to the oceanic
sector where they were sampled. The grey area represents Iceland, and the number next to the point is
the number of specimens found at that sampling point.

4.1. Description of the data

The study area is located in the Northern part of the North Atlantic, including the Denmark
Strait, the Iceland Basin, the Irminger Basin, and the Norwegian Basin and Sea (see
Figure 2). The specimens analyzed were collected as part of the IceAGE project (Icelandic
marine Animals: Genetic and Ecology; Cruise ship M85/3 in 2011), which focused on the
deep continental slopes and abyssal waters around Iceland [7]. The sampling period for the
included specimens was from August 30 to September 22, 2011, and they were collected at
depths ranging from 315.9 m to 2567.7 m. Detailed protocols concerning the sampling plan,
sample processing, DNA extraction steps, PCR amplification, sequencing, and aligned DNA
sequences are available in [3].

4.2. Data preprocessing

We used data from the article [3], the IceAGE project, and related data from the BOLDSystem
database, as described in [3]. Given these databases’ enormous variety of variables, we ap-
plied a selective reduction procedure. Variables with no variability (categorical data) were
excluded from our study, for which all data were missing and were not linked to genetic
sequences or spatial, environmental, and climatic variables. Out of the 495 available in the
IceAGE dataset, we considered 62 specimens for which partial 16S rRNA mitochondrial gene
sequences were available.

Next, we calculated the variance (𝑆2) using the 𝑣𝑎𝑟() function in RStudio Desktop 4.3.2 for
each of the selected variables (numerical and categorical). This step aimed to eliminate
variables with low variation, as they are unlikely to provide essential data for analysis.
We set a variance threshold of ≤ 0.1 to exclude uninformative variables. The latter retains
variables whose variability is reasonably sufficient for our analyses while rejecting those
with little variation. Only water salinity was eliminated based on this criterion (𝑆2

Salinity =
0.02146629). The formula (see Equation Equation 1) and code (Program 1) used to calculate
the variance of our final variables, available in the data file on GitHub, are provided below:

𝑆2 =
∑𝑛

𝑖=1 (𝑥𝑖 − | 𝑥)2

𝑛 − 1
(1)

where 𝑆2 is the variance of the variable, 𝑥𝑖 represents each value of the variable, | 𝑥 is the
average of the values for this variable, and 𝑛 is the number of values for this variable in
the dataset.
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# Import data from the CSV file
Data <- read.csv(file="Final_Data_Article.csv", header=TRUE, sep=";")

# Define a function to calculate entropy for categorical variables
calculate_entropy <- function(x) {
  # Calculate the frequency of each category
  freq_table <- table(x)

  # Calculate probabilities
  probabilities <- freq_table / sum(freq_table)

  # Calculate entropy using the probabilities
  entropy_value <- -sum(probabilities*log(probabilities), na.rm=TRUE)

  return(entropy_value)
}

# Calculate variance
variances <- sapply(Data, function(x) {
  # Check if the column is numeric
  if (is.numeric(x)) {
    # Compute variance, excluding NA values
    var(x, na.rm=TRUE)
  } else if (is.factor(x) || is.character(x)) {
    # If the column is categorical, compute entropy
    calculate_entropy(x)
  } else {
    NA  # Return NA for other types of columns
  }
})

# Display variances/entropies
print(variances)

Program 1.  RStudio script to calculate the variance of each numerical and categorical variables in our
final dataset.

We calculated the Pearson correlation (𝑟) between variables using the 𝑐𝑜𝑟() function
in RStudio Desktop 4.3.2. Variables (numerical) exhibiting strong correlations with each
other (threshold > 0.90) were removed to avoid repetition and guarantee variable indepen-
dence. We considered the threshold of > 0.90 to be an adequate compromise between
preserving properties for our analyses and eliminating the repetition of information
in our data. Since we have three missing data for O₂ concentration (mg/L), we have
used the “pairwise.complete.obs method”. This method calculates the Pearson correlation
matrix using all accessible pairs of observations, even if some data are missing. Using
the above threshold, four variables were discarded: latitude (DD) at the start of sampling
(Lat_start_end: 𝑟 = 0.9996658), longitude (DD) at the end of sampling (Long_start_end: 𝑟 =
0.9999979), depth (m) at the end of sampling (Depth_start_end: 𝑟 = 0.9998579) and wind direc-
tion at the start of sampling (WindD_start_end: 𝑟 = 0.9752331). The decision to remove these
variables was based on their variance (𝑆2) value: 𝑆2

Lat_start = 10.03077 and 𝑆2
Lat_end = 10.71335;

𝑆2
Long_start = 30.47940 and 𝑆2

Long_end = 30.47574; 𝑆2
Depth_start = 776437.1 and 𝑆2

Depth_end = 775394.7;
𝑆2

WindD_start = 2.405077 and 𝑆2
WindD_end = 4.482285. The formula (see Equation Equation 2) and

code (Program 2) used to calculate the Pearson correlation coefficient between our final
numerical variables are shown below:

𝑟 =
∑𝑛

𝑖=1(𝑥𝑖 − | 𝑥)(𝑦𝑖 − | 𝑦)

√∑𝑛
𝑖=1 (𝑥𝑖 − | 𝑥)2 ∑𝑛

𝑖=1 (𝑦𝑖 − | 𝑦)2
(2)

where 𝑟 is the Pearson correlation coefficient between two variables, 𝑥𝑖 are the values of
the variable 𝑥, 𝑦𝑖 are the values of the variable 𝑦, | 𝑥 and | 𝑦 are respectively the averages of
the two variables, and 𝑛 is the number of values of the two variables in the dataset.

This selection of variables and data resulted in a table containing 62 rows (𝑛 = 62) and 16
columns (number of variables).

July 10, 2024 200



Ecological & Spatial Influences on the Genetics of Cumacea in N. Atlantic  | Gagnon & Tahiri, 2024

# Import data
Data <- read.csv(file="Final_Data_Article.csv", header=TRUE, sep=";")

# Select numeric columns only from the dataset
numeric_Data <- Data[sapply(Data, is.numeric)]

# Calculate Pearson correlation matrix
correlation_matrix <- cor(numeric_Data, use="pairwise.complete.obs")

# Display correlation matrix
print(correlation_matrix)

Program 2.  RStudio script to calculate the Pearson correlation coefficient between all the numerical
variables in our final dataset.

4.3. Selected variables in the IceAGE database

4.3.1. Spatial data:

• The latitude at the end of sampling (see Figure 3a) and longitude at the start of sam-
pling (see Figure 3b), both in decimal degrees (DD), as they are intimately linked to the
environmental gradients and historical mechanisms modeling genetic heterogeneity
[23].

• The five oceanic sectors across the seas around Iceland (see Figure 2): the Denmark
Strait (𝑛 = 28), the Iceland Basin (𝑛 = 15), the Irminger Basin (𝑛 = 12), the Norwegian
Sea (𝑛 = 4), and the Norwegian Basin (𝑛 = 3).

4.3.2. Environmental data:

• Depth (m) at the start of sampling (see Figure 3c), as well as water temperature (°C)
(see Figure 3e), and O₂ concentration (mg/L) (see Figure 3f), as these are vital elements
of the marine ecosystem that have an impact on the distribution and evolutionary
acclimatization of marine species [24], [25].

• Since the sedimentary characteristics directly influence the distribution of Cumacea
[3], they were included in our data. They are divided into six ecological niche cate-
gories: mud (𝑛 = 30), sandy mud (𝑛 = 15), sand (𝑛 = 9), forams (𝑛 = 3), muddy sand (𝑛 =
3), and gravel (𝑛 = 2).

4.3.3. Climatic data:

Wind speed (m/s) at the start (see Figure 3d) and end of sampling and wind direction at the
end of sampling were also included, giving the contribution of wind to benthic ecosystem
dynamics and the restructuring of species distribution by wind currents and sediment
transport [26], [27], [28]. The wind direction at the end of sampling comprises eight orienta-
tions: south (S, 𝑛 = 15), southwest (SW, 𝑛 = 15), northeast (NE, 𝑛 = 9), west-southwest (WSW,
𝑛 = 7), southeast (SE, 𝑛 = 6), north-northwest (NNW, 𝑛 = 5), south-southeast (SSE, 𝑛 = 3), and
east (E, 𝑛 = 2).

4.4. Selected variables in the BOLDSystem database

4.4.1. Taxonomic data:

The family, genus, and scientific name of the Cumacea were integrated into our data
to study evolutionary relationships and genetic variation to habitat and acclimatization
variables among the specimens. These comprise seven families (see Figure 4): Diastylidae
(𝑛 = 21), Lampropidae (𝑛 = 13), Leuconidae (𝑛 = 12), Astacidae (𝑛 = 7), Bodotriidae (𝑛 = 4),
Ceratocumatidae (𝑛 = 3), and Pseudocumatidae (𝑛 = 2). A total of 20 Cumacea species were
included in our dataset (see Figure 4). We have also included the sample identity (Sampleid)
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so that each specimen remains unique. Some specimens were only identified to family (𝑛 =
1) or genus (𝑛 = 4).

4.5. Selected variables from article C. Uhlir et al. [3]

4.5.1. Other environmental data:

The habitat and water mass of the sampling points were the only environmental variables
taken directly from Table 1 of [3], as they can provide insight into how they may affect
Cumacea genetic diversity and the acclimatization of these species in the GIN seas around
Iceland. Thus, the water masses definitions, as described in [3], were used as a reference:
Arctic Polar Water (APW, 𝑛 = 15), Iceland Sea Overflow Water (ISOW, 𝑛 = 15), North Atlantic
Water (NAW, 𝑛 = 9), warm Norwegian Sea Deep Water (NSDWw, 𝑛 = 8), Arctic Polar Water/
Norwegian Sea Arctic Intermediate Water (APW/NSAIW, 𝑛 = 7), Labrador Sea Water (LSW,
𝑛 = 3), cold Norwegian Sea Deep Water (NSDWc, 𝑛 = 3), and Norwegian Sea Arctic Inter-
mediate Water (NSAIW, 𝑛 = 2) (see Figure 5). In terms of habitat, we considered the three
categories used in [3]: Deep Sea (𝑛 = 38), Shelf (𝑛 = 15), and Slope (𝑛 = 9) (see Figure 6).

4.5.2. Genetic data:

The aligned partial DNA sequence of the 16S rRNA mitochondrial gene was included, as this
region is standard in phylogeny and phylogeography studies [29] and sufficiently conserved
over time to guarantee exact alignments between different species [30]. We examined 61
of the 306 aligned DNA sequences used for phylogeographic analyses by [3]. As some speci-
mens have their DNA sequence duplicated, or even quadruplicated with a difference of one
or two nucleotides, the longest-aligned DNA sequence of each specimen was retained. The
“ICE1-Dia004” specimen is the only one whose sequence (not aligned) was taken from the
BoldSystem database, as it was absent from the [3] aligned DNA database.

4.6. aPhyloGeo software

We used the cross-platform Python software aPhyloGeo, developed by the Tahiri Lab team,
for our phylogeographic analyses. This software is designed to analyze phylogenetic trees
using ecological and spatial variables (Program 3) to interpret the evolution of species under
different environmental conditions [31], [32], [33].

This software was selected for our analysis as it is the first phylogeographic tool capable of
establishing similarity or dissimilarity between the genetics of species and environmental,
climatic, and spatial variables [31], [32], [33], which is precisely the objective of our study.
The aPhyloGeo software offers several key functionalities:

1. Phylogenetic tree evaluation: The software identifies the evolutionary relationships
among species based on their genetic sequences [31], [32], [33], which is essential for
interpreting phylogeographic models that connect species evolution to their spatial
distribution and biological and meteorological contexts.

2. Ecological and regional dissimilarity analysis: The software highlights divergence
and convergence between genetic sequences and habitat variables [31], [32], [33],
enabling the assessment of the influence of these variables on genetic fluctuations
and the evolutionary history of Cumacea species.

3. Evaluation of genetic diversity: The software quantifies genetic heterogeneity,
facilitating the identification of potential evolutionary processes (e.g., mutation, spe-
ciation, and genetic drift) and local adaptations.

The aPhyloGeo Python package is freely and publicly available on GitHub, and is also
available on PyPi, to facilitate complex phylogeographic analyses. The software process has
three main stages:
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if __name__ == "__main__":

    # Load parameters
    Params.load_from_file(Params.reference_yaml_filepath)

    # Load the sequence file
    sequence_file = utils.loadSequenceFile(
                    Params.reference_gene_filepath)

    # Create an AlignSequences object
    align_sequence = AlignSequences(sequence_file)

    # Load variable data
    variable_data = pd.read_csv(Params.file_name)

    # Perform the alignment of sequences
    alignments = align_sequence.align()

    # Generate genetic trees based on aligned sequences
    geneticTrees = utils.geneticPipeline(alignments.msa)

    # Create a GeneticTrees object
    trees = GeneticTrees(trees_dict=geneticTrees,
                        format="newick")

    # Generate variable trees
    variableTrees = utils.climaticPipeline(variable_data)

    # Filter the results based on the generated trees
    utils.filterResults(variableTrees,
                       geneticTrees,
                       variable_data)

Program 3.  Main script for tutorial using the aPhyloGeo package.

1. The first step was to collect DNA sequences from Cumacea of sufficient quality for
the needs of our results [31], [32], [33]. In this study, 62 Cumacea specimens were
selected to represent 62 partial sequences of the 16S rRNA mitochondrial gene. We
then included, from our database, two climatic variables, namely wind speed (m/s)
at the start and end of the sampling; three environmental variables, such as depth
(m) at the start of sampling, water temperature (°C), and O₂ concentration (mg/L); and
two geographic variables, latitude (DD) at the end of sampling and longitude (DD) at
the start of sampling.

2. The second step was to generate trees from genetic, biological, spatial, and meteoro-
logical data. For spatial variables, the Neighbor-Joining method³ was applied between
each pair of Cumacea from distinct spatial conditions to produce a symmetrical
square matrix and build the spatial tree from this matrix [33]. Each geographic
variable generates a distinct phylogenetic tree. If there are 𝑚 windows from the
genetic sequences, there will be 𝑚 geographic trees. The same approach was applied
to biological, meteorological, and genetic data.

For the genetic data, phylogenetic reconstruction was repeated to build genetic trees based
on 62 partial sequences of the 16S rRNA mitochondrial gene, considering only data within a
window that progresses along the alignment [31], [32], [33]. Each window in the alignment
will give a genetic tree. If there are 𝑛 windows from the sequences, there will be 𝑛 phyloge-
netic trees. This displacement can vary according to the steps and the size of the window
defined by the user (their length is determined by the number of base pairs (bp)) [31], [32],
[33].

In our case, we set up the aPhyloGeo software as follows: 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝐴𝑙𝑖𝑔𝑛𝑒𝑟 for se-
quence alignment; Hamming distance to measure simple dissimilarities between sequences;
Wider Fit by elongating with Gap(starAlignment) algorithm takes alignment gaps into ac-

³It is a method used to construct phylogenetic trees using distance matrices.
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count, which is often mandatory in the case of major deletions or insertions in the
sequences; windows_size: 10 nucleotide (nt); and finally, step_size: 1 nt. The last two configu-
rations imply that for each 10 nt window, a phylogenetic tree is produced using the 10 nt
sequence of each Cumacea. Next, the window is moved by 1 nt, creating a new tree with the
next 10 nt, and so on until the end of the alignment. Genetic trees will be stored in an object
called 𝑇1, while spatial and ecological trees will be stored in another object called 𝑇2.

1. The third step is to compare the genetic trees constructed in each sliding
window with the ecosystemic, atmospheric, and regional trees using the Robinson-
Foulds distance [34], normalized Robinson-Foulds distance and Euclidean distance.
These contribute to understanding the correspondence between Cumacea genetic
sequences and their habitat variables. The approach also takes bootstrapping
into account [31], [32], [33]. The results of these metrics were obtained using
the functions 𝑟𝑜𝑏𝑖𝑛𝑠𝑜𝑛𝑓𝑜𝑢𝑙𝑑𝑠(𝑡𝑟𝑒𝑒1, 𝑡𝑟𝑒𝑒2) and 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝑑𝑖𝑠𝑡(𝑡𝑟𝑒𝑒1, 𝑡𝑟𝑒𝑒2) from the aPhy	
loGeo software and were organized by the main function (Program  3). Those
for the normalized Robinson-Foulds distance were obtained with the function
𝑟𝑜𝑏𝑖𝑛𝑠𝑜𝑛𝑓𝑜𝑢𝑙𝑑𝑠(𝑡𝑟𝑒𝑒1, 𝑡𝑟𝑒𝑒2) (see the last line of code in Program 4). The result of the
metrics indicates which variables show the greatest genetic divergence according to
the magnitude of the metric distances (see figures Figure 7 and Figure 8).

A sliding-window approach enables the precise location of subtle sequences with high rates
of genetic divergence [31], [32], [33]. This method involves moving a fixed-size window over
the alignment of genetic sequences. This allows genetic trees to be built for each part of the
aligned sequences, depending on the size of the window and the step size. It therefore makes
it possible to recognize changes in evolutionary relationships along the partial sequence
region of the 16S rRNA mitochondrial gene of Cumacea species. This method is essential to
determine whether this region of the Cumacea genome can be affected by certain ecological
or spatial variables in their habitat (see Figure 7 and Figure 8).

4.7. Metrics

In our phylogeographic analysis, we employed three distance metrics to quantify differ-
ences between phylogenetic trees and habitat trees, as well as to evaluate dissimilarities
between genetic sequences and the associated environmental variables. This approach
allowed for a detailed examination of the evolutionary patterns of Cumacea communities
across varying ecological conditions.

The following section provides a detailed description of the three distance functions refer-
enced in the second and third steps of Section 4.6, offering a more rigorous examination of
their role in the analysis.

4.7.1. Robinson	Foulds distance:

The Robinson-Foulds (RF) distance [34] calculates the distance between genetic trees built
in each sliding window (𝑇1) and the variable trees (𝑇2) (see the list in the first step of the
Section 4.6) [35], [36]. This metric is used to evaluate the topological differences between the
two sets of trees by measuring the minimum number of elementary operations (merging
and splitting nodes) required to transform one tree (genetic) into another (variable habitat)
(see Equation Equation  3 and Program  4). A high distance of a specific window in RF
distance analysis may imply that the habitat variable has little to no impact on the evolution
of this particular DNA sequence and that the fluctuation of this variable might not explain
the genetic divergence observed.

RF(𝑇1, 𝑇2) = | Σ(𝑇1)ΔΣ(𝑇2) | (3)

where RF(𝑇1, 𝑇2) is the Robinson-Foulds distance between the two sets of trees, Σ(𝑇1) and
Σ(𝑇2) are the sets of divisions in trees 𝑇1 and 𝑇2 and Δ, the difference between these two sets.
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def robinson_foulds(tree1, tree2):

    # Initialize the Robinson-Foulds distance
    rf = 0

    # Convert trees from Newick format to ete3.Tree objects
    tree1_newick = ete3.Tree(tree1.format("newick"), format=1)
    tree2_newick = ete3.Tree(tree2.format("newick"), format=1)

    # Calculate the Robinson-Foulds distance
    rf, rf_max, common_leaves = tree1_newick.robinson_foulds(
                                tree2_newick,
                                unrooted_trees=True)

    # If there are no common leaves, set the RF distance to 0
    if len(common_leaves) == 0:
        rf = 0

    # Return the RF distance and its normalized value
    return rf, rf / rf_max

Program 4.  Python script for calculating the Robinson	Foulds Distance using the ete3 package in the
aPhyloGeo package. The Newick format represents the phylogenetic and variable trees in text form.

4.7.2. Normalized Robinson	Foulds distance:

The normalized Robinson-Foulds (nRF) distance scales the RF distance to account for the
size variations in the trees (number of clades; i.e., a group of species with a common origin),
allowing a more equitable comparison. It scales the distance to a range between 0 and 1. In
our context, the distance has been normalized by 2𝑛 − 6, where 𝑛 represents the number of
taxa (see Equation Equation 4 and the last line of code in Program 4).

Since the size of environmental trees constructed with O₂ concentration data (mg/L) differs
from that of other variables due to missing data, this nRF distance allows its dissimilarity
with genetic trees to be compared more fairly [33], [36]. It reveals the relative influence of
O₂ concentration (mg/L) on Cumacea phylogenetic relationships, independent of tree size
[33], [36]. A high distance of a specific window in the nRF distance analysis suggests that we
cannot conclude that there is a correlation between this DNA sequence and the variable. It
may indicate a topological dissimilarity between the habitat variable trees and the genetic
trees at that position in the DNA sequence alignments.

RFnorm(𝑇1, 𝑇2) = | Σ(𝑇1)ΔΣ(𝑇2) |
| Σ(𝑇1) | + | Σ(𝑇2) |

(4)

where RFnorm(𝑇1, 𝑇2) is the normalized Robinson-Foulds distance between the two sets of
trees, Σ(𝑇1) and Σ(𝑇2) are the sets of divisions in trees 𝑇1 and 𝑇2 and Δ, the difference
between these two sets.

4.7.3. Euclidean distance:

The Euclidean distance calculates the straight-line distance between two sets of points in a
multidimensional space, which designates the length divisions of the two sets of trees (𝑇1
and 𝑇2). It is used to evaluate the degree of divergence or similarity of topologies between
two respective sets of trees (see Equation Equation 5 and Program 5). A high distance of
a specific window in the Euclidean distance analysis suggests evolutionary divergences
between members of the Cumacea communities at the level of this DNA sequence and the
variation of the habitat variable (see Figure 7d and Figure 8d). In other words, the habitat
variable may not have a dominant contribution to the evolution of this specific sequence of
Cumacea communities.
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def euclidean_dist(tree1, tree2):

    # Initialize the Euclidean distance
    ed = 0

    # Create a TaxonNamespace object to handle taxon information
    tns = dendropy.TaxonNamespace()

    # Load the first tree into a dendropy Tree object
    tree1_tc = dendropy.Tree.get(data=tree1.format("newick"),
                                 schema="newick",
                                 taxon_namespace=tns)

    # Load the second tree into a dendropy Tree object
    tree2_tc = dendropy.Tree.get(data=tree2.format("newick"),
                                 schema="newick",
                                 taxon_namespace=tns)

    # Encode the bipartitions of both trees
    tree1_tc.encode_bipartitions()
    tree2_tc.encode_bipartitions()

    # Calculate the Euclidean distance
    ed = dendropy.calculate.treecompare.euclidean_distance(
                                                 tree1_tc,
                                                 tree2_tc)

    return ed

Program 5.  Python script for calculating the Euclidean distance using the ete3 and the dendropy
packages in the aPhyloGeo package. The Newick format represents the phylogenetic and variable trees in
text form.

𝑑Euclidean(𝑇1, 𝑇2) = √∑
𝑛

𝑖=1
(𝑇 1𝑖 − 𝑇2𝑖)

2 (5)

where 𝑑Euclidean(𝑇1, 𝑇2) is the Euclidean distance between the two sets of trees, and 𝑇1𝑖 and
𝑇2𝑖 represent the respective divisions of trees 𝑇1 and 𝑇2 for each 𝑖-th division.

Interestingly, Euclidean distance is more sensitive to the subtle tree topology, making it suit-
able for identifying detailed correlations between genetic fluctuations and those of habitat
variables [37]. It can therefore be used to study fine divergences between trees, enabling
nuanced identification of the effects of habitat variables on the genetic structure of species
[37]. As for the Robinson-Foulds distance (normalized or not), although widely applied in
evolutionary biology, it is less sensitive to slight topological dissimilarities, making it less
accurate for identifying fine correlations between genetics and habitat variables due to its
structural nature [38], [39].

4.8. Creating Figures

Figure  3, Figure  4, Figure  7 and Figure  8 were made with Python 3.11, while Figure  2,
Figure 5 and Figure 6 were made with RStudio Desktop 4.3.2.

5. Results
The violin diagrams shown in Figure 3 are used to display summary statistics similar to box
plots, showing medians (white lines), interquartile ranges (thickened black bars), and the
rest of the distributions (thin black lines), except the “extreme” points. Wider areas indicate
a greater probability of the variables taking a given value. They summarize the distribution
of spatial (latitude at the end of sampling and longitude at the start of sampling, both in
DD), atmospheric (wind speed (m/s) at the start of sampling), and ecosystemic (depth (m)
at the start of sampling, water temperature (°C), and O₂ concentration (mg/L)) data. These
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Table 1.  Table summarizing key statistics such as mean, median, standard deviation (Std Dev), 1st
quartile (Q1) and 3rd quartile (Q3) of biological (depth (m) at the start of sampling, water temperature
(°C), and O₂ concentration (mg/L)), spatial (latitude (DD) at the end of sampling and longitude (DD) at
the start of sampling) and atmospheric (wind speed (m/s) at the start of sampling) variables for our
phylogeographic analyses.

Attributes Statistics Mean Std Dev Q1 Me�
dian

Q3 Min Max

Lat end (DD) 64.75 3.27 61.65 67.15 67.63 60.05 67.86

Long start (DD) −23.12 5.52 −26.77 −26.21 −18.14 −31.35 −12.16

Depth start (m) 1412.57 881.16 579.10 1574.70 2504.70 315.90 2567.70

Watertemp
ground (°C)

1.45 1.73 0.07 0.71 2.65 0.85 4.28

O2 saturation
ground (mg/L)

271.88 18.11 258.39 278.77 290.90 245.53 292.97

Windspeed
start (m/s)

6.26 2.16 5.25 6.00 7.00 2.00 11.00

diagrams are essential for understanding habitat conditions and highlighting the variables
that can potentially influence genetic fluctuation and adaptability in Cumacea. In Table 1
and Figure 3, the variables are designated by their names from the IceAGE database, except
for latitude (DD) at the end of sampling and longitude (DD) at the start of sampling, for
which the term “dec” has been removed at the end to avoid confusion.

Figure 3.  Violin diagrams of two regional, one atmospheric, and three ecosystemic variables that provide
essential information about the ecological and meteorological conditions of Cumacea habitats. a) Latitude
(DD) at the end of sampling (red) suggest that the specimens come from two dominant latitudinal (DD)
regions (around 61.65 DD and 67.63 DD); b) Longitude (DD) at the start of sampling (yellow) implies that
the specimens come from two dominant longitudinal (DD) regions (around −26.77 DD and −18.14 DD); c)
Depth (m) at the start of sampling (green) suggest that the specimens were mainly collected and concen	
trated at three different depths (m) (around 500 m, 1500 m and 2500 m); d) Wind speed (m/s) at start of
sampling (light blue) indicate stable the wind conditions (m/s) at the start of sampling (around 6.00 m/s);
e) Water temperature (°C) (dark blue) suggest that the specimens were mostly collected and concentrated
at two different water temperatures (°C) (around 0.07 °C and 2.66 °C); f) O₂ concentration (mg/L) (pink)
implies that the specimens were primarily collected and concentrated at two different O₂ concentrations
(mg/L) (around 258.39 mg/L and 290.90 mg/L).
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Our results revealed variability in most habitat variables, as shown in Figure 3. For instance,
the median of the latitude at the end of sampling (67.15 DD; Table 1) is higher than the mean
(64.75 DD; Table 1), showing an asymmetric distribution skewed towards lower values. This
trend is also observed for depth (m) at the start of sampling (Median: 1574.70 m; Mean:
1412.57 m; see Figure 3c and Table 1) and O₂ concentration (mg/L) (Median: 278.77 mg/L;
Mean: 271.88 mg/L; see Figure 3f and Table 1). The bimodal shape of the latitude distribution
curve suggests that the specimens came from two dominant latitudinal regions at the end
of sampling (around 61.65 DD and 67.63 DD; see Figure 3a and Table 1). This bimodality is
also observed in longitude (DD) at the start of sampling (around −26.77 DD and −18.14 DD;
see Figure 3b and Table 1), as well as for water temperature (°C) (around 0.07 °C and 2.66
°C; see Figure 3e and Table 1), and O₂ concentration (mg/L) (around 258.39 mg/L and 290.90
mg/L; see Figure 3f and Table 1).

The median of the longitude (DD) at the start of sampling (-26.21 DD; Table 1) is lower than
the mean (-23.12 DD; Table 1), indicating asymmetry on the higher sides (see Figure 3b), as
does the water temperature (°C) (Mean: 1.45 °C; Median: 0.71 °C; see Figure 3e and Table 1).
Unlike all the other diagrams in Figure 3, the curve of the depth (m) at the start of sampling
(see Figure 3c) has a multimodal shape with three prominent peaks, suggesting that the
specimens were mainly collected and concentrated at three different depths (around 500
m, 1500 m and 2500 m; see Figure 3c).

The mean (6.26 m/s; Table 1) and median of wind speed (m/s) at the start of sampling are
fairly similar, with a high density of data around the median (6.00 m/s; see Figure 3d and
Table 1). This suggests stable wind conditions (m/s) at the start of sampling. The key statistics
and the figure for the wind speed (m/s) at the end of sampling are available in the 𝑖𝑚𝑔 file on
GitHub. The standard deviation of water temperature (°C) is relatively high (1.73 °C; Table 1)
compared to the mean (1.45 °C; Table 1), suggesting acclimatization of Cumacea to a variety
of habitat temperatures (-0.85 °C – 4.28 °C; see Figure 3e and Table 1). The range of data for
O₂ concentration (mg/L) shows some variability (245.53 mg/L – 292.97 mg/L; see Figure 3f
and Table 1) in the environmental conditions. This reflects a diversity of requirements in
terms of O₂ concentration (mg/L), with Cumacea potentially affected by the heterogeneity
of biogeochemical cycles, such as photosynthesis, respiration, and organic decomposition,
which affect depth-dependent dissolved O₂ concentration (mg/L).

The distribution and diversity of the various Cumacea species and family found are
shown in Figure 4. It shows that the most represented species are Leptostylis ampullacea
(14.1%) and Leucon pallidus (12.5%). In contrast, species like Bathycuma brevirostre and
Styloptocuma gracillimum are less represented (1.6%), implying that some species may
have restricted ecological niches or face ecological forces that limit their distribution. The
dominance of certain species (such as Leptostylis ampullacea and Leucon pallidus) suggests
that they may have adaptive traits that enable them to make the most of the accessible
resources, resist interspecific competition, or survive in fluctuating ecosystemic conditions,
aligns with our study’s aim of relating genetic adaptation to habitat characteristics.

The figure above supports the objective of our study by showing the distribution of the
different Cumacea families in the various water masses (see Figure  5). The Diastylidae
family, for example, is the most common in all water masses (turquoise color in Figure 5),
testifying to its resilience and ecological adaptability to a wide variety of habitat conditions,
reminiscent of the dominance of Leptostylis ampullacea which belongs to the Diastylidae
family (see Figure 4, 14.1%).

The distribution of the different Cumacea families according to the type of habitat where
they were collected during sampling is shown in Figure 6. The deep-sea habitats show the
greatest diversity of families, mainly Diastylidae and Lampropidae, suggesting they are
well acclimatized to deep-sea conditions. In contrast, the slope has the lowest diversity,

July 10, 2024 208

https://github.com/tahiri-lab/Cumacea\_aPhyloGeo


Ecological & Spatial Influences on the Genetics of Cumacea in N. Atlantic  | Gagnon & Tahiri, 2024

Figure 4.  Cumacea frequency distribution by species and family. The percentages (%) displayed above the
bars indicate the relative abundance of each species in our dataset. Unlike less common species, those that
are abundant (such as Leptostylis ampullacea and Leucon pallidus) may have adaptive characteristics
that enable them to exploit resources more easily, resist interspecific competition or withstand changing
biological conditions.

with Diastylidae again the most dominant, implying that some Cumacea species have fewer
ecological niches or are less adapted to this habitat. Although less diverse than the deep sea,
the shelf is dominated by Leuconidae, indicating that this family may be specifically well-
acclimated to this habitat. These patterns imply that certain Cumacea families, such as the
Diastylidae, Lampropidae, Leuconidae, Pseudocumatidae, and Astacidae, have developed
distinct adaptations (physiological, behavioral, or morphological) to remain in particular
ecological niches, reflecting the impact of habitat conditions on the genetic distribution of
Cumacea.

Figure 5.  Distribution of Cumacea families by water mass. This histogram represents the frequency of
occurrence of the different Cumacea families, classified according to the water mass in which they were
collected. Eight water mass categories are represented: Arctic Polar Water (APW), Arctic Polar Water/
North Sub	Arctic Intermediate Water (APW/NSAIW), Iceland Scotland Overflow Water (ISOW), Labrador
Sea Water (LSW), North Atlantic Water (NAW), North Sub	Arctic Intermediate Water (NSAIW), cold North
Sub	Atlantic Deep Water (NSDWc), and warm North Sub	Atlantic Deep Water (NSDWw). The presence
of the Diastylidae (turquoise) family in the majority of water bodies (APW, APW/NSAIW, ISOW, NSAIW,
NSDWc, and NSDWw) accentuates the resilience and ecological acclimatization of this family to various
ecological niches and conditions.

July 10, 2024 209



Ecological & Spatial Influences on the Genetics of Cumacea in N. Atlantic  | Gagnon & Tahiri, 2024

Figure 6.  Distribution of Cumacea families by habitat. This histogram represents the frequency of occur	
rence of the different Cumacea families, classified according to the habitat in which they were collected.
Three habitat categories are represented: Deep Sea, Shelf, and Slope. The presence of Cumacea families
in more than one habitat, such as Diastylidae (turquoise), Lampropidae (blue), Leuconidae (purple),
Pseudocumatidae (pink), and Astacidae (red), may indicate the development of adaptations, whether
morphological, physiological or behavioral, that could favor their persistence in these habitats.

The divergence between specific genetic sequences and two variables, one climatic (wind
speed (m/s) at the start of sampling) and the other environmental (O₂ concentration (mg/L))
is presented in Figure 7 and Figure 8. All the variables given in the first step of the Section 4.6
were analyzed and the configuration parameters are available in the 𝑠𝑐𝑟𝑖𝑝𝑡𝑠 Python file on
GitHub. However, only these two show the most interesting rate of divergence. Using the
three metrics mentioned in the Section 4.7, we noticed that the Euclidean distance is partic-
ularly sensitive to our data, manifesting considerable sequence variation at the position in
MSA 560-569 amino acids (aa) (Euclidean distance: 0.85; see Figure 7d) and 1210-1219 aa
(Euclidean distance: 1.23; see Figure 8d). The fluctuations in wind speed (m/s) at the start of
sampling and in O₂ concentration (mg/L) do not appear to explain the variations in these two
specific windows. This could indicate the absence of directional selection in these sequences
due to these habitat variables, local selective pressures not considered in our analysis, or
other evolutionary factors (e.g., genetic drift or biotic interactions) predominate over these
two variables concerning these two sequences. On the other hand, this may suggest that
these two variables could potentially influence the divergent (i.e., genetic diversification)
rather than a convergent adaptation of these Cumacea, reflecting unique evolutionary
responses to these specific ecological pressures. These results are consistent with the aim of
our study, which is to identify the Cumacea genetic region that diverges most as a function
of habitat variables, to determine whether this is due to divergent local adaptation or other
evolutionary processes.

These results provide important insight into the genetic adaptation of Cumacea to their
environment. These results need to be analyzed in greater depth to certify their involve-
ment, especially in contrast with [3], which investigated similar topics of environmental
and climatic effects on Cumacea distribution and genetics. The aPhyloGeo package is still in
the process of being updated.

6. Conclusion
This study examines the effects of meteorological, regional, and ecosystemic variables on
the genetics of Cumacea in the waters surrounding Iceland. Our main objective is to deter-
mine whether there is a discrepancy between the genetic informations of the partial 16S
rRNA mitochondrial gene sequence (i.e. a window) of Cumacea species and their habitat
variables. In addition to data distribution representations (see Figure 3, Figure 4, Figure 5
and Figure  6), DNA sequence analyses, using the aPhyloGeo software, have identified
specific genetic windows that diverge from atmospheric and biological variables such as
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Figure 7.  Analysis of fluctuations in three distance metrics using multiple sequence alignment (MSA): a)
Robinson	Foulds distance, b) normalized Robinson	Foulds distance, and c) Euclidean distance. Distance
variations are studied to establish the potential dissimilarity between the partial sequence of the 16S
rRNA mitochondrial gene of 62 Cumacea specimens and the variability of wind speed (m/s) at the start of
sampling.

wind speed (m/s) at the start of sampling (Position in MSA: 560-569 aa; Euclidean distance:
0.85; see Figure 7d) and O₂ concentration (mg/L) (Position in MSA: 1210-1219 aa; Euclidean
distance: 1.23; see Figure 8d). These results could mean that these specimens have been
shaped by these unique local environments, resulting in genetic sequences adapted to their
particular conditions.
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Figure 8.  Analysis of fluctuations in three distance metrics using multiple sequence alignment (MSA):
a) Robinson	Foulds distance, b) normalized Robinson	Foulds distance, and c) Euclidean distance. These
distances aim to determine the degree of dissimilarity between the partial sequence of the 16S rRNA
mitochondrial gene of 62 Cumacea specimens and the variation in O₂ concentration (mg/L) at the sampling
sites.

The novelty in our research lies in the exhaustive divergence between habitat variables
and genetic divegence in Cumacea, particularly in identifying genetic windows that diverge
from habitat fluctuations, which has not been widely investigated in previous studies [14],
[21]. Our integrated method identifies specific genetic regions sensitive to ecosystemic and
atmospheric variations. Thus, the eventual identification of proteins linked to one of these
variable DNA sequences will make it possible to represent its functional effects in responses
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to habitat changes. Our future research will focus on verifying the prediction of this protein
and assessing its role in the physiological adaptation of Cumacea to fluctuating conditions,
adding a link between genetic data and ecological function.

Interpreting how marine invertebrates genetically adapt to variations in their habitat can
help predict their response to climate change and advance conservation plans to protect
them. Identifying the variables that influence genetic variability in Cumacea can contribute
to the designation and supervision of marine protected areas, assuring they include habitats
crucial to the survival and acclimatization of these species. Thus, our results can inform the
management of fishing and seabed mining companies by revealing ecologically vulnerable
areas where these disturbances can seriously affect benthic biodiversity.

Furthermore, our results provide essential knowledge to guide future studies on the genetic
adaptation of Cumacea and other invertebrates to ecological and regional variability. Based
on these findings, future research should focus on additional ecosystemic and meteorolog-
ical variables, such as nutrient accessibility, water pH, ocean currents, and the degree
of human disturbance, to further improve the interpretation of the complex interactions
between genetics and the environment. Extending the scope of application to other marine
species, not just marine invertebrates, and various spatial regions would provide a better
means of generalizing the results. With this in mind, longitudinal study models on these
different species could reflect long-term climatic and biological fluctuations, and improve
knowledge of the dynamics of genetic acclimatization.

However, it is important to recognize the limitations of our study. In particular, the three
missing data points on O₂ concentration (mg/L) and the relatively small sample size (𝑛 = 62)
may have induced a bias, which could impact the validity of our interpretations and restrict
the generalizability of our results. Moreover, these missing data could provide partial
insight into the relationship between O₂ concentration (mg/L) and genetic fluctuation in
Cumacea, and our sample size may reduce the statistical power of our results. Future studies
should address these gaps by incorporating larger sample sizes and more complete datasets
to confirm and expand our conclusions. Additionally, as our research focuses solely on the
partial sequence of the mitochondrial 16S rRNA gene, utilizing more elaborate genomic
methods, such as whole-gene or even whole-genome sequencing, could help better under-
stand marine species’ genetic variety and global acclimatization mechanisms. This would
provide more comprehensive genetic databases to improve accuracy and knowledge in
identifying existing (and new) marine invertebrate species using DNA barcoding (e.g., mi-
tochondrial DNA cytochrome c oxidase I (COX1)). Finally, multidisciplinary collaborations
between ecology, genetics, and oceanography would be essential to enhance knowledge
sharing and its application in future research.
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