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The Pandata Scalable Open-Source Analysis Stack
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Abstract—As the scale of scientific data analysis continues to grow, traditional
domain-specific tools often struggle with data of increasing size and complexity.
These tools also face sustainability challenges due to a relatively narrow user
base, a limited pool of contributors, and constrained funding sources. We in-
troduce the Pandata open-source software stack as a solution, emphasizing
the use of domain-independent tools at critical stages of the data life cycle,
without compromising the depth of domain-specific analyses. This set of interop-
erable and compositional tools, including Dask, Xarray, Numba, hvPlot, Panel,
and Jupyter, provides a versatile and sustainable model for data analysis and
scientific computation. Collectively, the Pandata stack covers the landscape of
data access, distributed computation, and interactive visualization across any
domain or scale. See github.com/panstacks/pandata to get started using this
stack or to help contribute to it.

Index Terms—distributed computing, data visualization, workflows

Introduction

Modern science, engineering, and analysis workflows rely on
computational tools for data processing, such as the foundational
NumPy [1], Pandas [2], Matplotlib [3], and Jupyter [4] libraries
for Python. Over the past few decades, different research areas
and communities have built their own “stacks”, i.e. layered sets of
software tools that are combined to solve problems in a particular
research area (see [5] for examples for big data, and [6] for
the idea of a layered stack). For instance, a Python geoscience
stack might combine GDAL and Fiona for geoscience file-format
access, Xarray [7] (itself built on NumPy) for multidimensional
array processing, cartopy (built on PROJ and NumPy) for handling
earth coordinates, Matplotlib for plotting, and Jupyter for user
interaction and code execution. A Python financial analysis stack
might combine Pandas for file reading and columnar data manip-
ulation, Matplotlib for plotting, TA-Lib for financial mathematics
functions, and Jupyter for user interaction and code execution.

Many of these stacks’ components date back decades before
Python became popular, capturing important functionality but
inheriting technical complexity and limitations that may no longer
apply. For instance, domain-specific visualization and user inter-
face (UI) tools are often tied to a local desktop operating system
and graphical user interface (GUI), limiting the stack to working
with data and compute resources available locally, and making
it difficult to share work with colleagues at other sites or using
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other operating systems. Older tools are often either inherently
single threaded, with no support for distributed computation, or
specifically focused on supercomputing systems rather than flexi-
bly supporting the current diversity of computing platforms (such
as GPUs and cloud computing). Software is of course infinitely
malleable, and so any such limitations could be addressed in
principle, but in practice each domain-specific tool has a relatively
narrow collection of users, contributors, and funding sources for
that domain, limiting the scope of such development.

Could there be a better way? Yes! Today’s Python ecosystem
includes general data-processing tools that address tasks across
all research areas, domains, and industries, with flexible tools
for storing, reading, processing, plotting, analyzing, modeling,
and exploring data of any kind. This paper introduces a specific
collection of such tools called the Pandata stack. Like the “modern
data stack” [8], [9], Pandata consists of tools that are engineered
and tested to work well with each other to process very large
datasets using distributed computation, with independently main-
tained components adding up to complete, end-to-end solutions
for important workflows. Unlike the “modern data stack”, the
Pandata stack consists only of open-source tools and is also
equally usable for small problems that fit onto a single laptop
or local workstation, making it a solid basis for addressing data-
centric problems of any size for any domain.

The Pandata stack’s Python libraries are:

• Domain independent: Maintained, used, and tested by
people from many different backgrounds

• Efficient: Run at machine-code speeds using vectorized
data and compiled code

• Scalable: Run on anything from a single-core laptop to a
thousand-node cluster

• Cloud friendly: Fully usable for local or remote compute
using data on any file storage system

• Multi-architecture: Run on Mac/Windows/Linux sys-
tems, using CPUs or GPUs

• Scriptable: Fully support batch mode for parameter
searches and unattended operation

• Compositional: Select which tools you need and put them
together to solve your problem

• Visualizable: Support rendering even the largest datasets
without conversion or approximation

• Interactive: Support fully interactive exploration, not just
rendering static images or text files

• Shareable: Deployable as web apps for use by anyone
anywhere

• OSS: Free, open, and ready for research or commercial
use, without restrictive licensing
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Fig. 1: Pandata: the scalable open-source analysis stack.

Figure 1 illustrates the Pandata stack, which includes the
Parquet and Zarr file formats along with the fsspec, Kerchunk,
Pandas, Xarray, RAPIDS, Dask, Numba, hvPlot, Panel, and
Jupyter libraries. The tools are grouped into categories that will
be described fully in later sections. Tools shown with a gray
background are not part of Pandata itself but are illustrative of
domain-specific code that builds on the Pandata stack to complete
a solution for problems in a particular domain. We argue that
Pandata libraries taken together as a group are a meaningful and
well-tested base for general-purpose scientific computation across
nearly all research areas and scientific domains. We will first
look at the features that governed the selection of these particular
libraries and that in many cases drive development priorities in the
library itself. We will then describe the specific libraries involved
and how they can be put together by users to solve computing
tasks and how tool authors can build on them to support scientific
computing in their own discipline.

Design considerations

Library authors have to choose between different designs and
alternative technologies when deciding which features are imple-
mented and how they are built. Here we will unpack each of the
above considerations driving the Pandata collection of libraries
and examine how these libraries implement those principles.

Domain independent

Pandata tools are all built to be used in any scientific domain,
without making design choices that constrain them to a narrow
subfield or topic. At first it may seem that having all your tools
be written specifically for your particular research area would be
ideal, but we argue that it is neither desirable nor feasible to
draw strict boundaries between active scientific research areas.
Should you have to switch to an entirely different stack whenever

you do collaborative work? Or if you want to do something
novel, differing slightly from assumptions previously made in your
research area? A deep, difficult-to-change stack that encodes a
fixed and unnecessarily brittle model of your domain will make
scientific progress difficult to achieve. Of course, not every aspect
of research crosses multiple domains or challenges core assump-
tions, but using Pandata tools ensures that doing so will come at
relatively little cost, because the same tools are valid across a very
wide range of fields. Pandata tools can also draw from expertise,
effort, and funding across all of science and analysis, rather than
from a single narrow area.

Efficient

Because Python itself is a relatively slow, interpreted language,
native Python code is often suitable only for smaller problems,
limiting the audience for any tool that is built purely in Python
with Python dependencies. To make efficient use of the compu-
tational resources available, libraries in the Pandata stack either
wrap fast code written in compiled languages like Fortran and
C, or they use a Python compiler like Numba [10] or Cython
[11] to compile Python syntax into machine code that runs as fast
as compiled C or Rust or Fortran. Custom domain-specific code
building on Pandata can easily use a compiler like Numba as well,
so that the overall workflows and pipelines are not limited by the
speed of Python.

Scalable

Even compiled code is not sufficient to address the largest prob-
lems, which require more memory than is available on a single
machine, or require long computation that is feasible only when
split across many processors working simultaneously. To cover
all these cases, Pandata tools support optional distributed compu-
tation using Dask [12] on hundreds or thousands of processors,



THE PANDATA SCALABLE OPEN-SOURCE ANALYSIS STACK 87

while also fully supporting a single laptop or workstation. That
way there is no need to switch to a different stack when you hit a
problem larger than your machine, or conversely when you want to
work on small problems that do not need extensive infrastructure.
Supporting distributed computation efficiently requires tooling
support at every level, starting with chunked binary file formats
like Parquet and Zarr that let each processor access data indepen-
dently, and culminating in visualization tools like Datashader that
can render plots in separate chunks on each processor and combine
them for the final display. Note that Pandata includes libraries like
Pandas and Matplotlib that are not necessarily scalable on their
own, but become scalable when combined with other Pandata
tools (with e.g. Dask providing scalable DataFrames built on
Pandas DataFrames, and Matplotlib being scalable when used with
Datashader).

Cloud friendly

The enormous datasets now available in many research areas are
typically hosted in a remote data center and can be prohibitively
expensive (in time and money) to download locally. If you only
need a small part of the data, Pandata tools like Pandas support
efficient remote access to the relevant chunks of each file without
having to download it all locally first, using fsspec to provide
uniform filesystem-like access for data on local disk, cloud stor-
age, web servers, and many other locations. If the total size of
the chunks that you need to access is still too high to download
locally, Pandata tools also support remote computation, with the
processing done on a remote cloud-computing server with a high-
bandwidth connection to the data server and a user interface using
a web browser whether compute is local or remote. A typical
scalable cloud-computing configuration for Pandata would be to
have a remote JupyterHub system with Dask installed running on
the cloud server close to the data. Users then contact the remote
system from their local browser, initiating a remote session for
computation and data access but with interactivity on the local
machine using web-based controls and visuals. Using Datashader
on the remote system provides server-side rendering so that only
a rendered image of the data ever need be transferred across low-
bandwidth connections, providing interactive local visualization
without having to transfer large datasets. Pandata tools thus sup-
port either efficient access to remote datasets for local computa-
tion, or efficient fully remote computing with a local user interface,
to make good use of cloud storage or compute resources. Note
that “cloud friendly” is not the same as the term “cloud native”
as used in the Modern Data Stack; Pandata tools fully support
cloud usage but are equally at home on a local machine, and have
no requirement for cloud resources, containers, microservices, or
other architectures typical of cloud-native approaches.

Multi-architecture

Because researchers typically use Windows or Mac systems lo-
cally, while cloud servers typically run Linux, research code needs
to be independent of the operating system for it to be equally
well supported on local and remote systems. A software stack tied
to a particular OS not only shuts out users who are not on that
OS, it often implicitly favors either cloud or local usage for that
stack, further reducing the community size and range of problems
that can be addressed by a particular stack. Pandata tools are all
either fully OS independent or support Linux (Intel or ARM),
Mac (Intel or M1/M2), and Windows. Similarly, some problems
can be addressed orders of magnitude faster on a general-purpose

graphics processing unit (GPU) than on a conventional CPU, yet
many researchers do not have access to GPUs or are working on
problems unsuited for them, making it essential that a general-
purpose software stack support both GPU and CPU usage as
appropriate. The Pandata stack includes GPU-based equivalents
for much of the functionality available on CPUs.

Scriptable

Many of the scientific tools that are common in particular domains
(especially commercial tools provided alongside hardware used
in that domain) require a GUI. GUI tools can be convenient for
exploration, but without an accompanying non-GUI interface it
is difficult to capture a reproducible set of steps for publication
and dissemination. Additionally, GUIs often funnel users into
a few well-supported operations without providing the level of
configurability and customization needed to execute less common
workflows, long-running jobs, or large parameter searches. Pan-
data tools that offer a GUI interface never require a local desktop,
graphical display, or live interaction, making them fully suitable
as a basis for reproducible, large-scale, and long-running research.

Compositional

When approaching a particular task, a researcher can either choose
a monolithic tool that addresses all aspects of the task, or they
can combine lower-level tools that together accomplish the task.
Monolithic tools are attractive when they fully cover a specific use
case, but given the dynamic nature of research, it is unreasonable
to expect a monolithic tool to cover all the requirements of a
particular research area, let alone across different areas of research.
Accordingly, Pandata tools are all compositional, intended for
independent use or in combination to solve specific problems.
Where appropriate, each library has been adapted to work well
with components from the other Pandata libraries, allowing a
researcher to mix and match and combine projects in novel
ways to reach their goals. Pandata projects also take part in
larger efforts to improve compositionality and interoperability like
numpy.org/neps and scientific-python.org/specs
and by implementing existing APIs that allow a Dask dataframe
to be a drop-in replacement for a Pandas dataframe, let hvPlot be
a drop-in replacement for Pandas plotting, or allow a Panel app
to display ipywidgets (or vice versa). Of course, compositional
approaches can take more initial user effort and expertise than an
out-of-the box monolithic approach. To address well-established
complex tasks, a domain-specific monolithic tool can be built out
of Pandata tools, while other tasks that need to remain flexible can
be built compositionally as needed for that task.

Visualizable

For computing tasks that operate in the background without any
visual output, it is easy to ensure that they are scriptable and cloud
friendly. However, doing good science requires understanding
each of the processing steps in complete detail, and if there are
any unobservable black boxes in your workflows, that is surely
where bugs will hide. To make sure that the work is being done
correctly, it is crucial to be able to represent each of the computing
steps involved in a way that a human can easily grasp what
is happening, with a minimum of extra effort that discourages
exploration. Often, a remote computing job will export data that is
then subsampled and downloaded locally for analysis, but any step
that adds friction and covers up the raw data makes it more likely
that important issues and insights will be missed. Accordingly,
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the HoloViz tools included in the Pandata stack are designed to
make the full set of data available at any point in the computation,
by supporting efficient in-place interactive visualization of even
distributed or GPU-based data of any size using Datashader and
hvPlot, assembled from separately computed chunks for display
on any device.

Interactive

Supporting unattended batch-mode computation is important for
doing comprehensive parameter evaluation, but batch runs tend
to keep research focused on specific well-trodden paths, changing
only a few options at any one time and thus limiting the search
space that gets explored for a model or dataset. Using only a batch
approach makes it easy to miss important opportunities or to fail
to understand major limitations, by simply re-running the same
code paths “blind” every time. Pandata tools like hvPlot and Panel
running in Jupyter make it easy even for remote cloud workflows
to have interactive widgets and controls in a web browser, to more
easily explore parameter combinations with immediate feedback
to help understand how the system behaves.

Shareable

Creating easy interactive visualizations is great, but if they
are limited to your own desktop or installation, the impact
of your ideas and approaches will be limited. With enough
HTML/JavaScript/CSS web-technology experience, any compu-
tation can be wrapped up as an interactive website, but many
scientists lack front-end web-development skills. The Panel tool
in Pandata makes it simple to convert any Jupyter notebook into
a web app that can be shared with collaborators or the public to
disseminate the results of a project. Panel apps can be shared as
static JavaScript-based HTML files (for small datasets), WASM-
based HTML files (running Python in the browser), or via a live
Python server (for the largest computations and datasets). (Also
see “Environments and reproducibility” below for other aspects of
ensuring that your work is shareable.)

OSS

For software to be fully accessible across years, labs, collabora-
tors, and research problems it is crucial that there be no licensing
restrictions that prevent it from being used across the entire disci-
pline and on all relevant hardware and software platforms. Pandata
tools are all permissively licensed so that they are freely usable in
academia, industry, government, and by private individuals, easily
scaled up to the largest problems or in new contexts without having
to obtain permission or pay additional fees. Beyond the licensing,
it is also crucial that the underlying source code is accessible, so
that every processing step involved can be examined and justified.
That way, if the research hits any fundamental limitations, it is
always possible (though not always easy!) to extend or adapt the
software for the new requirements. The OSS developer community
is also typically accessible through issues and online forums, so
that even though the software is not officially “supported” in the
sense of commercial software, it is often easier to discuss details
of the software’s internal operations with the maintainers than with
commercial software where developers are inaccessible.

The Pandata stack

The above considerations determined which libraries are consid-
ered to be a part of the Pandata stack. As illustrated in Figure 1,

the stack consists of options for each of the major steps in a data-
processing task. A finance task might involve files from efficient
Parquet-format columnar data storage, accessed from Amazon S3
storage using fsspec file readers, into a Pandas data API, for
data processing using Pandas calls plus some custom Numba-
optimized analysis code, visualized using an interactive Bokeh
plot returned from hvPlot, using Jupyter as a UI (figure 2). When
moving to larger financial datasets or more complex analysis and
processing, a Dask dataframe can be substituted for the Pandas
dataframe, while keeping the rest of the tools the same, thus
supporting distributed computation without requiring it. Similarly,
a geoscience task typical for the Pangeo community might involve
files stored in cloud-friendly Zarr multidimensional array storage,
accessed using fsspec based on a specification in an Intake data
catalog, into a lazy Dask-based xarray multidimensional data
structure, with raster processing done by the Xarray-spatial library
(not part of Pandata since it is domain specific, but built on
the Pandata stack and using otherwise similar principles), with
visualization using xarray’s interface to Matplotlib for Dask data
structures, and with computation and a UI provided by JupyterHub
running in the cloud and providing access to Jupyter (figure 3).

As you can see from these examples, any particular problem
solved using the Pandata stack can involve completely different
underlying libraries, and because each of the Pandata libraries are
designed to interoperate freely, users can select the appropriate
library or libraries for their needs at each stage. We’ll now
look into each of the stages in a bit more detail to explain the
options available to a researcher using Pandata tools to solve their
particular research problems.

Data storage

Pandata tools are designed for working with data, whether it
comes from a file on disk, a hardware device, remote cloud
storage, or a database query. Many existing scientific file
formats were designed before cloud computing and are terrible
choices for efficient distributed computation. The ubiquitous
comma-separated-value CSV columnar file format, for instance,
can be orders of magnitude larger and slower than Parquet
(github.com/holoviz/datashader/issues/129).
CSV and other legacy formats also often require serial access
to the whole file to reach any value in it, thereby preventing
parallel reads by processors working on different parts of the
task. Even relatively efficient older binary formats are typically
not “chunked” in a way that makes it simple to access the data
needed by any particular run or any particular processor in a large
compute job.

Pandata tools can provide very efficient, scalable, end-to-
end computations only if the data itself is stored in an effi-
cient, chunk-addressable way. Parquet is a suitable well-supported
chunked columnar format (for data arranged in rows consisting
of differently typed columns), while zarr is a suitable chunked
multidimensional array format (for n-dimensional arrays of typed
values indexed by row, column, and other dimensions). DuckDB
is a relatively new addition to Pandata that makes an underlying
file type like CSV or Parquet act like a queryable database, which
can be very efficient when accessing small parts or aggregations
of large datasets, so other Pandata tools are starting to add support
for working with DuckDB as well.

What if you need to access very large collections of data not
already stored in an efficient chunked format like Parquet or Zarr?
Thanks to kerchunk (see “Data access” below), it is possible to
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Fig. 2: Pandata stack applied to a finance problem

scan such files to record the locations of each chunk of data stored
in them, and from then on act as if the underlying file is in Zarr
(or potentially Parquet) format. In this way, the Pandata stack
can support access to a wide array of legacy binary file formats
such as HDF/NetCDF, GRIB, FITS, and GeoTIFF, which with the
appropriate Kerchunk driver can now support efficient scalable
computation without servers having to maintain multiple copies
of the underlying data.

Data access

Once you have data in a suitable supported file format, it needs
to be located somewhere that your Python code can access it. The
nearly invisible but powerful fsspec library provides flexible and
efficient access to files wherever they might be located, whether
that is on your local hard drive, on an FTP file server, on cloud
storage like S3, on a website, in a zip file, or in any number of
other possible locations. fsspec is now integrated into Pandas and
Xarray, transparently providing access from within those libraries
(below). As mentioned above, Kerchunk can optionally be used for
data access to make an older file format be efficiently addressable
for Pandata usage, once there are indexing plugins available for
that particular (usually domain-specific) format. Kerchunk and
fsspec are also supported by the Intake data-catalog system, which
allows a research group or community to capture metadata about
collections of datasets so that they can be accessed conveniently
without having research code tied to the location or file type of the
underlying data.

Data API

At a Python level, most users actually start here, by selecting
an appropriate data application programming interface (API) for
their work. Python libraries provide many possible APIs that are
suitable for different types of data. Pandas (for columnar data) and
Xarray (for multidimensional data) are both supported throughout
the Pandata stack, with or without Dask (see below) to handle
distributed and out-of-core computation. Pandata’s other options
provide access to other data structures (ragged arrays, for Awk-
ward, and graphs/networks, for GraphBLAS) and/or other com-
putational hardware (RAPIDS and CuPy for GPU architectures),
with extensive (but not yet fully complete) support throughout
the Pandata stack. Users or domain-specific library authors will
typically pick one or more of these data APIs to cover the types
of data being used in their domain or their specific problem, and
then provide a path to the data to access it using the underlying
data-access tools using the data formats and storage available.

Data processing

Once the data is accessible in Python using a data API, the
actual computation can begin. Data processing covers many pos-
sible computations, but we will consider three main categories:

(1) domain-general operations provided by the data API library
directly, (2) small custom-compiled loops for arbitrary domain-
specific computations at scale, and (3) separate domain-specific
or other custom libraries. (1) First, each data API provides a
wide variety of inbuilt data-processing routines for selecting,
aggregating, and summarizing the data being accessed. For many
data-processing workflows, such transformations are sufficient to
complete the task, when combined with the rest of the Pandata
stack, and using them preserves all the Pangeo qualities like
scalability and easy visualization. (2) Second, sometimes the
domain-specific code can be isolated to a few small loops with
explicit numeric or string computations, now that Pandata covers
so many of the other tasks. In such cases, these loops can easily
be implemented in a notebook or script using the general-purpose
Numba library along with Dask for optional scalability, again
providing all of the benefits of Pandata without significant effort.

(3) The third category of computations typically requires
leaving the Pandata stack, bringing in domain-specific libraries
from the Python ecosystem that focus on the particular models
and computations needed in a given domain. In some cases, you
can find domain-specific libraries already designed to work well
with the Pandata tools like Dask and Xarray, e.g. xarray-spatial
(geoscience), dask-image (image processing), dask-ml (machine
learning), icepyx (satellite data), panel-chemistry (chemistry),
xdart (x-ray analysis), asari (metabolomics), and megspikes (brain
imaging). Using a Pandata-compatible domain-specific tool helps
ensure that all of the above properties like being scalable, visual-
izable, and cloud-friendly are maintained. However, in other cases
there will be libraries available, but using them will introduce
a bottleneck: not being scalable with Dask, not being compiled
for efficient operation, not being vectorized to work with large
datasets, being tied to a local GUI or local filesystem access, etc.
In those cases, you can either try to ensure that the bottleneck only
applies to infrequent usage patterns, or you can invest what may
require substantial effort to rewrite the domain-specific libraries
to work well with a Pandata approach. Rebuilding a particular
domain’s tools to be fully integrated with the Pandata stack takes
time, requiring ambitious projects like building your simulator or
analysis tool on top of Dask and Xarray or Pandas and ensuring
that fully visualizable distributed objects are available for all
stages of a workflow. Still, the focus of such efforts can be solely
on the aspects specific to a particular research domain, and they
can simply inherit all the capabilities of the Pandata stack (now
and into the future) for what the Pandata stack covers.

Visualization

Each step in the complete data-processing pipeline pipeline from
raw data to results requires human understanding and validation,
often most effectively achieved using visualization tools. Most
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Fig. 3: Pandata stack applied to a geoscience problem

Python visualization tools (see pyviz.org for a complete list)
have limitations that prevent them from being suitable for the Pan-
data stack. Many of them are limited to relatively small amounts of
data, lack support for the various Pandata data APIs, lack support
for multidimensional arrays or unstructured grids for the fields that
need those, or are tied to a desktop OS or GUI. All Pandata tools
support basic static-image visualization using Matplotlib, and
most also support fully interactive Bokeh- or Plotly-based plotting
via hvPlot [13]. hvPlot supports the native .plot visualization
calls provided by the data APIs, while adding support for efficient
server-side distributed rendering using Datashader so that even the
largest datasets can be visualized without subsampling or copying
the data. Datashader can also be used by itself as a general-purpose
scalable server-side rasterizer, turning data of any supported type
(point, line, region, polygon, raster, etc.) into a regular grid of
values suitable for further processing and combination with other
data.

User Interface (UI)

The Jupyter Notebook is a now-ubiquitous domain-independent
user interface for working with Python code, and all Pandata tools
are fully usable from within Jupyter. Beyond just executing cells
full of code, the Panel library in Pandata makes it simple to add
interactivity to each Jupyter cell, using a widget to provide control
over workflow parameters, and allowing tabular or graphical
outputs to be arranged into dashboards or small applications that
fit into a cell. Panel also lets users designate certain cells as
being “servable” if the notebook code is deployed as a separate,
standalone application with a UI independent of Jupyter. Panel
thus supports the “interactive” and “shareable” qualities of the
Pandata stack, ensuring that your work can have impact on others.

Jupyter focuses on a single researcher or user, but many
Pandata-based projects involve collaborations among multiple
team members and multiple institutions. Such projects typically
use JupyterHub to provide a shared computing environment with
the Pandata tools already installed and ready to run. Pandata-
based projects often use Nebari (a declarative specification for
infrastructure) to simplify configuring JupyterHub, Dask, and
associated authentication on cloud servers.

Environments and reproducibility

A final category of tools underlying all the rest shown in figure
1 centers on how these libraries are packaged and put together
into Python environments for solving any particular problem.
Many different options are available for Python package and
environment management, but Pandata tools are typically used
with the conda package and environment manager, because it
tracks binary dependencies between libraries, including the under-
lying C and Fortran code that is involved in the domain-specific

libraries needed for any particular Pandata workflow. For a specific
workflow, once the list of packages needed in the environment has
been finalized, the anaconda-project tool (now being developed in
a more general form as conda-project) allows the precise versions
involved to be locked on every supported platform, achieving
cross-platform reproducibility for a Pandata-based project (see
[14] for details).

Examples

To help users understand how these tools fit together, a variety of
example workflows based on Pandata tools can be found online.
The website examples.holoviz.org includes research top-
ics in different domains, with Pandata tools featured prominently
in most of them and particularly in the Attractors, Census, Ship
Traffic, and Landsat examples. The holoviz.org site has a
tutorial that brings in many of the Pandata packages to solve
an example research problem. The Pangeo Project Gallery at
pangeo.io and Project Pythia at projectpythia.org both
include detailed examples in the specific area of climate science.
Each Pandata package also has its own documentation and website
illustrating what it can do, often in combination with other Pandata
tools, such as the Dask examples at stories.dask.org.

History and background

The Pandata libraries individually address important domain-
independent problems for scientific research, engineering, and data
analysis. As argued above, together they form a coherent and pow-
erful basis for scientific computing in any discipline. Given that
each tool has its own developers, separate management structures,
and separate communities, how did it happen that together the
tools add up to such a coherent approach? To understand this
process, it is necessary to dive into the history of some of these
projects and the connections between them.

First, many of the Pandata projects were either originally
launched at Anaconda, Inc., or they were adapted by people who
were at Anaconda at the time to work well with the other projects.
Anaconda’s consulting division (led by the author Bednar) and
open-source tooling division (with most projects led by the author
Durant) have worked with a wide variety of government agencies,
private foundations, universities, and companies doing numerical
computation and research. Each project is designed to address pain
points being experienced by those collaborators, and the Anaconda
staff involved help the projects work together to add up to
complete solutions. Each new consulting project also extensively
tests and validates each library both alone and in combination
with the others, ensuring that these particular packages add up to
complete solutions for each domain in which they are applied.

Specifically, the fastparquet, fsspec, kerchunk, intake, numba,
dask, datashader, bokeh, hvplot, panel, and conda projects were
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all created by developers working at Anaconda at the time, with
funding from a very wide range of external grants and contracts
but with Anaconda playing a central role in developing them and
ensuring interoperability between them. These Anaconda-based
developers have also contributed extensively to the other projects
listed, such as xarray, pandas, awkward-array, graphblas, zarr, and
jupyter. Anaconda as a company does not (and cannot!) control
the overall set of projects involved, because each has their own
contributors, governance structure, and stakeholders. But having
a large collection of scientific software developers working at
Anaconda on this wide range of projects exercising the code in
many different research fields and domains has led naturally to the
emergence of Pandata, to which this paper is only now assigning a
name and describing the underlying principles guiding this work.

Out of the many external projects that Anaconda developers
have been involved in, there is one that deserves a special mention
because of how it catalyzed the collection of Pandata tools: Pangeo
[15]. The pangeo.io project is a climate-science initiative based
on bringing modern distributed cloud computing approaches to
bear on large-scale modeling and analysis of the Earth’s climate.
Many of the Pandata tools are also Pangeo tools, and in fact
the main distinction between Pandata and Pangeo is simply that
Pangeo is domain specific, while Pandata is largely the same stack
of tools as Pangeo but explicitly not being tied to any specific
research domain (hence the name “Pandata”, with Pangeo-style
tooling but for any field using data, not just geoscience). Across
numerous grants, contracts, and projects, Pangeo’s researchers
have improved each of the various tools in the Pandata stack and
demonstrated how they can be put together to solve very challeng-
ing research problems, cost-effectively processing petabytes of
climate and remote sensing data in a way enabled by Pandata tools
like Dask and JupyterHub. This paper is an effort to publicize that
the underlying tools are in fact fully domain general and applicable
to all of science, with different data API and file format choices
but largely the same tools used to cover general data-processing
needs that span all research areas. Why start from scratch, when
you can build on this battle-hardened, extensively validated set of
general-purpose tools addressing much of what you need in any
project?

Alternatives to Pandata

The libraries in Pandata are of course not the only alternatives
available in Python; each library individually has alternatives
that have their own strengths and advantages. However, the al-
ternative libraries have not (yet?) been integrated with Pandata
tools, making it much more difficult to apply them to a Pandata-
based project. For instance, Ray [16] is an alternative approach
to distributed computation that is not supported by these tools,
and so if a project uses Ray to manage distributed computation,
then they cannot (currently) easily select hvPlot for visualization
without first converting the data structures into something hvPlot
understands. Similarly, Vaex [17] and Polars [18] offer alternatives
to the Pandas/Dask columnar dataframes supported in Pandata,
and projects based on those data APIs will not (yet!) easily be
able to use Pandata tools for visualization and user interfaces.
There are also now alternative tools for server-side rendering of
large datasets that in Pandata are handled by Datashader, such as
VegaFusion for Vega and Altair, but those are not fully integrated
with the other Pandata libraries like Dask and Numba.

There are also full alternative stacks to consider, such as tools
like Hadoop [19] and Spark [20] from the Apache Foundation.

Most Apache tools rely on the Java Virtual Machine (JVM) that
provides OS-independent computation but requires a heavyweight
runtime compared to the Pandata tools, making it awkward to
combine most Apache tools with Pandata tools. Pandata already
offers flexible support for distributed computation without the
JVM overhead, making “big data” tools like Hadoop and Spark
unnecessary for Pandata applications. Pandata does rely on the
low-level Apache Parquet and Arrow projects, which have non-
JVM implementations that fit well into the Pandata stack.

Future work

This paper is the first to describe Pandata as an entity or collection
of tools. The specific tools we selected are those that in the
opinion of the authors are well integrated with the other tools
and provide a “mix and match” approach to putting together
libraries to implement a particular analysis workflow. There is
not currently any entity besides these authors and this paper that
defines what Pandata is, which libraries are included, and what
process to follow for a library to be included or excluded from
Pandata. As Pandata evolves, it will be important to formalize
some of these processes, similar to how the Pangeo organization
and the HoloViz organization (of which hvPlot and Panel are a
part) have been constituted with a independent steering committee
and governance policies. Future Pandata directions and develop-
ment can be tracked at github.com/panstacks/pandata,
where people interested in Pandata can raise issues and discuss
options and alternatives. In the meantime, Pandata is just a concept
and an explanation for the work of hundreds of people working
mostly independently but with key connections that make these
independent projects come together into a coherent stack for
performing scientific research.

Other relevant areas that need work include the develop-
ment of domain-general reusable tools for capturing the meta-
data, conventions, consistent units, etc. needed in each do-
main, such as the cfconventions.org conventions for cli-
mate science. Furthermore, improved tools for collaboration
are needed, such as implementing parts of the JupyterHub
roadmap (jupyterhub.readthedocs.io/en/stable/
contributing/roadmap.html). Lastly, better documenta-
tion and workflow demonstrations of the Pandata stack are re-
quired to facilitate easier onboarding, provide comprehensive
usage guidelines, and showcase the full potential of Pandata in
solving diverse scientific problems.

Conclusion

The Pandata stack is ready to use today, as an extensive basis
for scientific computing in any research area and across many
different communities. There are alternatives for each of the
components of the Pandata stack, but the advantage of having
this very wide array of functionality that works well together is
that researchers in any particular domain can just get on with their
actual work in that domain, freed from having to reimplement
basic data handling in all its forms and freed from the limitations
of legacy domain-specific stacks. Everything involved is open
source, so feel free to use any of these tools in any combination to
solve any problems that you have!
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