
40 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

MPI-parallel Molecular Dynamics Trajectory Analysis
with the H5MD Format in the MDAnalysis Python

Package

Edis Jakupovic‡, Oliver Beckstein‡∗

F

Abstract—Molecular dynamics (MD) computer simulations help elucidate de-
tails of the molecular processes in complex biological systems, from protein
dynamics to drug discovery. One major issue is that these MD simulation files
are now commonly terabytes in size, which means analyzing the data from
these files becomes a painstakingly expensive task. In the age of national
supercomputers, methods of parallel analysis are becoming a necessity for the
efficient use of time and high performance computing (HPC) resources but for
any approach to parallel analysis, simply reading the file from disk becomes
the performance bottleneck that limits overall analysis speed. One promising
way around this file I/O hurdle is to use a parallel message passing interface
(MPI) implementation with the HDF5 (Hierarchical Data Format 5) file format to
access a single file simultaneously with numerous processes on a parallel file
system. Our previous feasibility study suggested that this combination can lead
to favorable parallel scaling with hundreds of CPU cores, so we implemented a
fast and user-friendly HDF5 reader (the H5MDReader class) that adheres to
H5MD (HDF5 for Molecular Dynamics) specifications. We made H5MDReader
(together with a H5MD output class H5MDWriter) available in the MDAnalysis
library, a Python package that simplifies the process of reading and writing vari-
ous popular MD file formats by providing a streamlined user-interface that is in-
dependent of any specific file format. We benchmarked H5MDReader’s parallel
file reading capabilities on three HPC clusters: ASU Agave, SDSC Comet, and
PSC Bridges. The benchmark consisted of a simple split-apply-combine scheme
of an I/O bound task that split a 90k frame (113 GiB) coordinate trajectory
into N chunks for N processes, where each process performed the commonly
used RMSD (root mean square distance after optimal structural superposition)
calculation on their chunk of data, and then gathered the results back to the
root process. For baseline performance, we found maximum I/O speedups at 2
full nodes, with Agave showing 20x, and a maximum computation speedup on
Comet of 373x on 384 cores (all three HPCs scaled well in their computation
task). We went on to test a series of optimizations attempting to speed up
I/O performance, including adjusting file system stripe count, implementing a
masked array feature that only loads relevant data for the computation task,
front loading all I/O by loading the entire trajectory into memory, and manually
adjusting the HDF5 dataset chunk shapes. We found the largest improvement in
I/O performance by optimizing the chunk shape of the HDF5 datasets to match
the iterative access pattern of our analysis benchmark. With respect to baseline
serial performance, our best result was a 98x speedup at 112 cores on ASU
Agave. In terms of absolute time saved, the analysis went from 4623 seconds
in the baseline serial run to 47 seconds in the parallel, properly chunked run.
Our results emphasize the fact that file I/O is not just dependent on the access

‡ Arizona State University
* Corresponding author: obeckste@asu.edu

Copyright © 2021 Edis Jakupovic et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

pattern of the file, but more so the synergy between access pattern and the
layout of the file on disk.

Index Terms—Molecular Dynamics Simulations, High Performance Computing,
Python, MDAnalysis, HDF5, H5MD, MPI I/O

Introduction

The molecular dynamics (MD) simulation approach [HBD+19]
is widely used across the biomolecular and materials sciences,
accounting for more than one quarter of the total computing time
[FQC+19] in the Extreme Science and Engineering Discovery
Environment (XSEDE) network of national supercomputers in
the US [TCD+14]. MD simulations, especially in the realm of
studying protein dynamics, serve an important purpose in charac-
terizing the dynamics, and ultimately the function of a protein
[Oro14]. For example, recent award-winning work [CDG+21]
involving the SARS-CoV-2 spike protein was able to use all-
atom MD simulations to elucidate the dynamics of the virus-to-
human cell interaction that was inaccessible to experiment. While
the parameters involved in fine tuning the physics driving these
simulations continue to improve, the computational demand of
longer, more accurate simulations increases [DDG+12]. As high
performance computing (HPC) resources continue to improve in
performance, the size of MD simulation files are now commonly
terabytes in size, making serial analysis of these trajectory files
impractical [CR15]. Parallel analysis is a necessity for the effi-
cient use of both HPC resources and a scientist’s time [BFJ18],
[FQC+19]. MD trajectory analysis can be parallelized using task-
based or MPI-based (message passing interface) approaches, each
with their own advantages and disadvantages [PLK+18]. Here
we investigate parallel trajectory analysis with the MDAnalysis
Python library [MADWB11], [GLB+16]. MDAnalysis is a widely
used package in the molecular simulation community that can
read and write over 25 popular MD trajectory file formats while
providing a common object-oriented interface that makes data
available as numpy arrays [HMvdW+20]. MDAnalysis aims to
bridge the entrenched user communities of different MD packages,
allowing scientists to more easily (and productively) move be-
tween these entrenched communities. Previous work that focused
on developing a task-based approach to parallel analysis found
that an I/O bound task only scaled to 12 cores due to a file I/O
bottleneck [SFMLIP+19]. Our recent feasibility study suggested
that parallel reading via MPI-IO and the HDF5 file format could

http://nongnu.org/h5md/
mailto:obeckste@asu.edu
https://www.mdanalysis.org
https://numpy.org/
https://www.hdfgroup.org/solutions/hdf5


MPI-PARALLEL MOLECULAR DYNAMICS TRAJECTORY ANALYSIS WITH THE H5MD FORMAT IN THE MDANALYSIS PYTHON PACKAGE 41

lead to good scaling although only a reduced size custom HDF5
trajectory was investigated and no usable implementation of a true
MD trajectory reader was provided [KPF+20].

H5MD, or "HDF5 for molecular data", is an HDF5-based file
format that is used to store MD simulation data, such as particle
coordinates, box dimensions, and thermodynamic observables
[dBCH14]. A Python reference implementation for H5MD exists
(pyh5md [dBCH14]) but the library is not maintained anymore,
and with advice from the original author of pyh5md, we imple-
mented native support for H5MD I/O in the MDAnalysis package.
HDF5 is a structured, binary file format that organizes data into
two objects: groups and datasets. It implements a hierarchical,
tree-like structure, where groups represent nodes of the tree, and
datasets represent the leaves [Col14]. An HDF5 file’s datasets
can be stored either contiguously on disk, or scattered across
the disk in different locations in chunks. These chunks must be
defined on initialization of the dataset, and for any element to be
read from a chunk, the entire chunk must be read. The HDF5
library can be built on top of a message passing interface (MPI)
implementation so that a file can be accessed in parallel on a
parallel file system such as Lustre or BeeGFS. We implemented a
parallel MPI-IO capable HDF5-based file format trajectory reader
into MDAnalysis, H5MDReader, that adheres to the H5MD spec-
ifications. H5MDReader interfaces with h5py, a high level Python
package that provides a Pythonic interface to the HDF5 format
[Col14]. In h5py, accessing a file in parallel is accomplished
by passing a keyword argument into h5py.File, which then
manages parallel disk access.

The BeeGFS and Lustre parallel file systems are well suited
for multi-node MPI parallelization. One key feature of a Lustre
parallel file systems is file striping, which is the ability to store
data from a file across multiple physical locations, known as object
storage targets (OSTs), where "stripe count" refers to the number
of OSTs to which a single file is striped across. Thinking carefully
about the synchronization of chunk shape and stripe settings
can be crucial to establishing optimal I/O performance [How10].
We tested various algorithmic optimizations for our benchmark,
including using various stripe counts (1, 48, 96), loading only
necessary coordinate information with numpy masked arrays
[HMvdW+20], and front loading all I/O by loading the entire
trajectory chunk into memory prior to the RMSD calculation.

We benchmarked H5MDReader’s parallel reading capabilities
with MDAnalysis on three HPC clusters: ASU Agave at Arizona
State University, and SDSC Comet and PSC Bridges, which are
part of XSEDE [TCD+14]. The benchmark consisted of a simple
split-apply-combine scheme [Wic11] of an I/O-bound task that
split a 90k frame (113 GiB) trajectory into N chunks for N
processes, where each process performed a computation on their
chunk of data, and the results were finally gathered back to the
root process. For the computational task, we computed the time
series of the root mean squared distance (RMSD) of the positions
of the Cα (alpha carbon) atoms in the protein to their initial
coordinates at the first frame of the trajectory. At each frame (time
step) in the trajectory, the protein was optimally superimposed
on the reference frame to remove translations and rotations. The
RMSD calculation is a very common task performed to analyze
the dynamics of the structure of a protein [MM14]. Because it is
a fast computation that is bounded by how quickly data can be
read from the file it is a suitable task to test the I/O capabilities of
H5MDReader.

We tested the effects of HDF5 file chunking and file compres-

sion on I/O performance. In general we found that altering the
stripe count and loading only necessary coordinates via masked
arrays provided little improvement in benchmark times. Loading
the entire trajectory into memory in one pass instead of iterating
through, frame by frame, showed the greatest improvement in
performance. This was compounded by our results with HDF5
chunking. Our baseline test file was auto-chunked with the auto-
chunking algorithm in h5py. When we recast the file into a
contiguous form and a custom, optimized chunk layout, we saw
improvements in serial I/O on the order of 10x. Additionally, our
results from applying gzip compression to the file showed no loss
in performance at higher processor counts, indicating H5MD files
can be compressed without losing performance in parallel analysis
tasks.

Methods

HPC environments

We tested the parallel MPI I/O capabilities of our H5MD imple-
mentation on three supercomputing environments: ASU Agave,
PSC Bridges, and SDSC Comet. The Agave supercomputer offers
498 compute nodes. We utilized the Parallel Compute Nodes that
offer 2 Intel Xeon E5-2680 v4 CPUs (2.40GHz, 14 cores/CPU,
28 cores/node, 128GB RAM/node) with a 1.2PB scratch BeeGFS
file system that uses an Intel OmniPath interconnect system. The
Bridges supercomputer offers over 850 compute nodes that supply
1.3018 Pf/s and 274 TiB RAM. We utilized the Regular Shared
Memory Nodes that offer 2 Intel Haswell E5-2695 v3 CPUs (2.3-
3.3GHz, 14 cores/CPU, 28 cores/node, 128GB RAM/node) with
a 10PB scratch Lustre parallel file system that uses an InfiniBand
interconnect system. The Comet supercomputer offers 2 Pf/s with
1944 standard compute nodes. We utilized the Intel Haswell
Standard Compute Nodes that offer 2 Intel Xeon E5-2680 v3
CPUs (2.5GHz, 12 cores/CPU, 24 cores/node, 128GB RAM/node)
with a 13PB scratch Lustre parallel file system that also uses an
InfiniBand interconnect system.

Our software library stacks were built with conda environ-
ments. Table 1 gives the versions of each library involved in
the stack. We used GNU C compilers on Agave and Bridges
and the Intel C-compiler on Comet for MPI parallel jobs as
recommended by the Comet user guide. We used OpenMPI as the
MPI implementation on all HPC resources as this was generally
the recommended environment and in the past we found it also
the easiest to build against [KPF+20]. The mpi4py [DPKC11]
package was used to make MPI available in Python code, as
required by h5py. In general, our software stacks were built in
the following manner:

• module load anaconda3
• create new conda environment
• module load parallel hdf5 build
• module load OpenMPI implementation
• install mpi4py with env MPICC=/path/to/mpicc

pip install mpi4py
• install h5py with CC="mpicc" HDF5_MPI="ON"

HDF5_DIR=/path/to/parallel-hdf5 pip
install --no-binary=h5py h5py

• install development MDAnalysis as outlined in the MD-
Analysis User Guide

http://nongnu.org/h5md/
https://github.com/pdebuyl/pyh5md
https://www.hdfgroup.org/solutions/hdf5
https://www.mpi-forum.org/
https://www.lustre.org/
https://www.beegfs.io/
https://www.h5py.org/
https://www.beegfs.io/
https://www.lustre.org/
https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-striping-guide
https://cores.research.asu.edu/research-computing/user-guide
https://www.beegfs.io/
https://portal.xsede.org/psc-bridges
https://www.lustre.org/
https://www.sdsc.edu/support/user_guides/comet.html
https://www.lustre.org/
https://conda.io/
https://www.open-mpi.org/
https://github.com/mpi4py/mpi4py
https://userguide.mdanalysis.org/stable/contributing_code.html
https://userguide.mdanalysis.org/stable/contributing_code.html


42 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

System ASU Agave PSC Bridges SDSC Comet

Python 3.8.5 3.8.5 3.6.9
C compiler gcc 4.8.5 gcc 4.8.5 icc 18.0.1

HDF5 1.10.1 1.10.2 1.10.3
OpenMPI 3.0.0 3.0.0 3.1.4

h5py 2.9.0 3.1.0 3.1.0
mpi4py 3.0.3 3.0.3 3.0.3

MDAnalysis 2.0.0-dev0 2.0.0-dev0 2.0.0-dev0

TABLE 1: Library versions installed for each HPC environment.

name format file size (GiB)

H5MD-default H5MD 113
H5MD-chunked H5MD 113

H5MD-contiguous H5MD 113
H5MD-gzipx1 H5MD 77
H5MD-gzipx9 H5MD 75

DCD DCD 113
XTC XTC 35
TRR TRR 113

TABLE 2: Data files benchmarked on all three HPCS. name is the
name that is used to identify the file in this paper. format is the
format of the file, and file size gives the size of the file in gibibytes.
H5MD-default original data file written with pyh5md which uses the
auto-chunking algorithm in h5py. H5MD-chunked is the same file
but written with chunk size (1, n atoms, 3) and H5MD-contiguous is
the same file but written with no HDF5 chunking. H5MD-gzipx1 and
H5MD-gzipx9 have the same chunk arrangement as H5MD-chunked
but are written with gzip compression where 1 is the lowest level of
compression and 9 is the highest level. DCD, XTC, and TRR are
copies H5MD-contiguous written with MDAnalysis.

Benchmark Data Files

The test data files used in our benchmark consist of a topol-
ogy file YiiP_system.pdb with 111,815 atoms and a tra-
jectory file YiiP_system_9ns_center100x.h5md with
90100 frames. The initial trajectory data file (H5MD-default
in Table 2) was generated with pyh5md [dBCH14] using the
XTC file YiiP_system_9ns_center.xtc [SFMLIP+19],
[LRFK+21], using the "ChainReader" facility in MDAnalysis with
the list 100 * ["YiiP_system_9ns_center.xtc"] as
input. The rest of the test files were copies of H5MD-default and
were written with MDAnalysis using different HDF5 chunking
arrangements and compression settings. Table 2 gives all of the
files benchmarked with how they are identified in this paper as
well as their corresponding file size.

Parallel Algorithm Benchmark

We implemented a simple split-apply-combine parallelization
algorithm [Wic11], [SFMLIP+19], [KPF+20] that divides the
number of frames in the trajectory evenly among all available
processes. Each process receives a unique start and stop for
which to iterate through their section of the trajectory. As the
computational task, the root mean square distance (RMSD) of the
protein Cα atoms after optimal structural superposition [MM14]
is computed at each frame with the QCProt algorithm [The05], as
described in our previous work [SFMLIP+19], [KPF+20].

In order to obtain detailed timing information we instrumented
code as follows below. Table 3 outlines the specific lines in the
code that were timed in the benchmark.
1 import MDAnalysis as mda
2 from MDAnalysis.analysis.rms import rmsd
3 from mpi4py import MPI

line number id description

11 t init_top load topology file
12 t init_traj load trajectory file
38 tI/O read data from time step into memory
39 tcompute perform rmsd computation
42 twait wait for processes to synchronize
47 tcomm_gather combine results back into root process

TABLE 3: All timings collected from the example benchmark code.
id gives the reference name used in this paper to reference the
corresponding line number and timing collected. description gives
a short description of what that specific line of code is doing in the
benchmark.

4 import numpy as np
5

6 comm = MPI.COMM_WORLD
7 size = comm.Get_size()
8 rank = comm.Get_rank()
9

10 def benchmark(topology, trajectory):
11 u = mda.Universe(topology)
12 u.load_new(trajectory,
13 driver="mpio",
14 comm=comm)
15 CA = u.select_atoms("protein and name CA")
16 x_ref = CA.positions.copy()
17

18 # make_balanced_slices divides n_frames into
19 # equally sized blocks and returns start:stop
20 # indices for each block
21 slices = make_balanced_slices(n_frames,
22 size,
23 start=0,
24 stop=n_frames,
25 step=1)
26 start = slices[rank].start
27 stop = slices[rank].stop
28 bsize = stop - start
29

30 # sendcounts is used for Gatherv() to know how
31 # many elements are sent from each rank
32 sendcounts = np.array([
33 slices[i].stop - slices[i].start
34 for i in range(size)])
35

36 rmsd_array = np.empty(bsize, dtype=float)
37 for i, frame in enumerate(range(start, stop)):
38 ts = u.trajectory[frame]
39 rmsd_array[i] = rmsd(CA.positions,
40 x_ref,
41 superposition=True)
42 comm.Barrier()
43 rmsd_buffer = None
44 if rank == 0:
45 rmsd_buffer = np.empty(n_frames,
46 dtype=float)
47 comm.Gatherv(sendbuf=rmsd_array,
48 recvbuf=(rmsd_buffer, sendcounts), root=0)

The HDF5 file is opened with the mpio driver and the
MPI.COMM_WORLD communicator to ensure the file is accessed
in parallel via MPI I/O. The topology and trajectory initialization
times must be analyzed separately because the topology file is
not opened in parallel and represents a fixed cost each process
must pay to open the file. MDAnalysis reads data from MD
trajectory files one frame, or "snapshot" at a time. Each time
the u.trajectory[frame] is iterated through, MDAnalysis
reads the file and fills in numpy arrays [HMvdW+20] correspond-
ing to that time step. Each MPI process runs an identical copy
of the script, but receives a unique start and stop variable

https://github.com/pdebuyl/pyh5md


MPI-PARALLEL MOLECULAR DYNAMICS TRAJECTORY ANALYSIS WITH THE H5MD FORMAT IN THE MDANALYSIS PYTHON PACKAGE 43

such that the entire file is read in parallel. Gathering the results is
done collectively by MPI, which means all processes must finish
their iteration blocks before the results can be returned. Therefore,
it is important to measure twait as it represents the existence of
"straggling" processes. If one process takes substantially longer
than the others to finish its iteration block, all processes are slowed
down. These 6 timings are returned and saved as an array for each
benchmark run.

We applied this benchmark scheme to H5MD test files on
Agave, Bridges, and Comet. Each benchmark run received a
unique, freshly copied test file that was only used once so as
to avoid any caching effects of the operating system or file
system. We also tested three algorithmic optimizations: Lus-
tre file striping, loading the entire trajectory into memory, and
using masked arrays in numpy to only load the Cα coor-
dinates required for the RMSD calculation. For striping, we
ran the benchmark on Bridges and Comet with a file stripe
count of 48 and 96. For the into memory optimization, we
used MDAnalysis.Universe.transfer_to_memory()
to read the entire file in one go and pass all file
I/O to the HDF5 library. For the masked array optimiza-
tion, we allowed u.load_new() to take a list or ar-
ray of atom indices as an argument, sub, so that the
MDAnalysis.Universe.trajectory.ts arrays are in-
stead initialized as numpy.ma.masked_array instances and
only the indices corresponding to sub are read from the file.

Performance was quantified by measuring the I/O timing
returned from the benchmarks, and strong scaling was assessed
by calculating the speedup S(N) = t1/tN and the efficiency
E(N) = S(N)/N.

Data Sharing

All of our SLURM submission shell scripts and Python bench-
mark scripts for all three HPC environments are available in the
repository https://github.com/Becksteinlab/scipy2021-mpiH5MD-
data and are archived under DOI 10.5281/zenodo.5083858.

Results and Discussion

Baseline Benchmarks

We first ran benchmarks with the simplest parallelization scheme
of splitting the frames of the trajectory evenly among all partici-
pating processes. The H5MD file involved in the benchmarks was
written with the pyh5md library, the original Python reference
implementation for the H5MD format [dBCH14]. The datasets in
the data file were chunked automatically by the auto-chunking
algorithm in h5py. File I/O remains the largest contributor to
the total benchmark time, as shown by Figure 1 (A). Figure 1
(B, D-F) also show that the initialization, computation, and MPI
communication times are negligible with regards to the overall
analysis time. twait, however, becomes increasingly relevant as the
number of processes increases (Figure 1 C), indicating a growing
variance in the iteration block time across all processes. In effect,
twait is measuring the occurrence of "straggling" processes, which
has been previously observed to be an issue on busy, multi-user
HPC environments [KPF+20]. We found that the total benchmark
time continues to decrease as the number of processes increases
to over 100 (from 4648 ± 319 seconds at N = 1 to 315.6 ± 59.8
seconds at N = 112 on Agave) (Fig. 2 A). While the absolute time
of each benchmark is important in terms of measuring the actual
amount of time saved with our parallelization scheme, results are

10 4
10 3
10 2
10 1
100
101
102
103
104

I/O RMSD Wait

1 28 56 112
10 4
10 3
10 2
10 1
100
101
102
103
104

Initialize Topology

1 28 56 112

Initialize Trajectory

1 28 56 112

Communication

Agave Bridges Comet

NProcesses

Ti
m

e(
s)

A B C

D E F

Fig. 1: Benchmark timings breakdown for the ASU Agave, PSC
Bridges, and SDSC Comet HPC clusters. The benchmark was run
on up to 4 full nodes on each HPC, where Nprocesses was 1, 28, 56,
and 112 for Agave and Bridges, and 1, 24, 48, and 96 on Comet.
The H5MD-default file was used in the benchmark, where the
trajectory was split in N chunks for each corresponding N process
benchmark. Points represent the mean over three repeats with the
standard deviation shown as error bars.

1 28 56 112
101

102

103

104

Ti
m

e(
s)

Total Benchmark Time

1 28 56 112
0

20
40
60
80

100
120

S(
N

)=
t 1

/t N

Scaling

1 28 56 112
0.0

0.2

0.4

0.6

0.8

1.0

E(
N

)=
S(

N
)/N

Efficiency

Agave Bridges Comet
IO
RMSD

NProcesses

A B C

Fig. 2: Strong scaling I/O and RMSD performance of the RMSD
analysis task of the H5MD-default data file on Agave, Bridges,
and Comet. Nprocesses ranged from 1 core, to 4 full nodes on each
HPC, and the number of trajectory blocks was equal to the number
of processes involved. Points represent the mean over three repeats
where the error bars are derived with the standard error propagation
from the standard deviation of absolute times.

often highly variable in a crowded HPC environment [How10] and
therefore we focus our analysis on the speedup and efficiency of
each benchmark run. The maximum total I/O speedup observed is
only 15x and efficiencies at around 0.2 (Fig. 2 B, C). The RMSD
computation scaling, on the other hand, remains high, with nearly
ideal scaling on Bridges and Comet, with Agave trailing behind at
71x speedup at 122 cores. Therefore, for a computationally bound
analysis task, our parallel H5MD implementation will likely scale
well.

Effects of Algorithmic Optimizations on File I/O

We tested three optimizations aimed at shortening file I/O time
for the same data file. In an attempt to optimize I/O, we tried
to minimize "wasted I/O". For example, in any analysis task,
not all coordinates in the trajectory may be necessary for the
computation. In our analysis test case, the RMSD was calculated
for only the Cα atoms of the protein backbone, therefore the

https://github.com/Becksteinlab/scipy2021-mpiH5MD-data
https://github.com/Becksteinlab/scipy2021-mpiH5MD-data
https://doi.org/10.5281/zenodo.5083858
https://github.com/pdebuyl/pyh5md


44 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

10 4
10 3
10 2
10 1
100
101
102
103
104

I/O RMSD Wait

1 28 56 112
10 4
10 3
10 2
10 1
100
101
102
103
104

Initialize Topology

1 28 56 112

Initialize Trajectory

1 28 56 112

Communication

Agave Bridges Comet

NProcesses

Ti
m

e(
s)

A B C

D E F

Fig. 3: Benchmark timings breakdown for the ASU Agave, PSC
Bridges, and SDSC Comet HPC clusters for the masked_array
optimization technique. The benchmark was run on up to 4 full nodes
on each HPC, where N processes was 1, 28, 56, and 112 for Agave
and Bridges, and 1, 24, 48, and 96 on Comet. The H5MD-default
file was used in the benchmark, where the trajectory was split in N
chunks for each corresponding N process benchmark. Points represent
the mean over three repeats with the standard deviation shown as
error bars.

coordinates of all other atoms read from the file is essentially
wasted I/O. To circumvent this issue, we implemented the use of
NumPy ma.masked_array [HMvdW+20], where the arrays of
coordinate data are instead initialized as masked arrays that only
fill data from selected coordinate indices. We found that Bridges
showed the best scaling with the masked array implementation,
with a total scaling of 23x at 4 full nodes (1642 ± 115 seconds at
N = 1 to 71 ± 33 seconds at N = 112 cores) as seen in Figure 4
(A, B). Agave showed a maximum scaling of 11x at 2 full nodes,
while Comet showed 5x scaling at 4 full nodes (Figure 4 B). In
some cases, the masked array implementation resulted in slower
I/O times. For example, Agave went from 4623 seconds in the
baseline 1 core run to 5991 seconds with masked arrays. This
could be due to the HDF5 library not being optimized to work
with masked arrays as with numpy arrays. On the other hand, for
Bridges and Comet, we observed an approximate 5x speedup in
I/O time (Fig. 4 B) for the masked array case when compared
to the baseline benchmark. In terms of the RMSD computation
scaling, we once again found all three systems scaled well, with
Comet displaying ideal scaling all the way to 4 full nodes, while
Agave and Bridges hovering around 85x at 112 cores.

With an MPI implementation, processes participating in par-
allel I/O communicate with one another. It is commonly un-
derstood that repeated, small file reads performs worse than a
large, contiguous read of data. With this in mind, we tested
this concept in our benchmark by loading the entire trajectory
into memory prior to the RMSD task. Modern super computers
make this possible as they contain hundreds of GiB of memory
per node. On Bridges, loading into memory strangely resulted in
slower I/O times (1466s baseline to 2196s at N = 1 and 307s
baseline to 523s at N = 112, Fig. 1 A and Fig. 5 A). Agave and
Comet, on the other hand, showed surprisingly different results.
They both performed substantially better for the N = 1 core case.

1 28 56 112
101

102

103

104

Ti
m

e(
s)

Total Benchmark Time

1 28 56 112
0

20
40
60
80

100
120

S(
N

)=
t 1

/t N

Scaling

1 28 56 112

0.2

0.4

0.6

0.8

1.0

E(
N

)=
S(

N
)/N

Efficiency

Agave Bridges Comet
IO
RMSD

NProcesses

A B C

Fig. 4: Strong scaling performance of the RMSD analysis task with
the masked_array optimization technique. The benchmark used the
H5MD-default data file on Agave, Bridges, and Comet. Nprocesses
ranged from 1 core, to 4 full nodes on each HPC, and the number
of trajectory blocks was equal to the number of processes involved.
Points represent the mean over three repeats where the error bars
are derived with the standard error propagation from the standard
deviation of absolute times.

Agave’s serial I/O performance was boosted from 4623s to 891s
(Fig. 5 A) by loading the data into memory in one slurp rather
than iterating through the trajectory frame by frame. Similarly,
Comet’s serial I/O performance went from 4101s to 1740s, with
multi-node performance continuing to show improvement versus
the baseline numbers (excluding the peak at N = 48). Agave
steady improvements in performance all the way to 4 full nodes,
where the I/O time reached 73s (Fig. 5 A, Fig. 6 A). Figure 7
gives a direct comparison on Agave of the baseline benchmark
performance with the two optimization methods outlined. With
respect to the baseline serial performance, loading into memory
gives a 91x speedup (4658s at 1 core to 73s at 112 cores) (Figure 7,
A). This result was interesting in that the only difference between
the two was the access pattern of the data - in one case, the file
was read in small repeated bursts, while in the other the file was
read from start to finish with HDF5. We hypothesized that this
was due to layout of the file itself on disk.

Also, we found that the twait does not increase as the number of
processes increases as in all of the other benchmark cases (Figure
5 C). In the other benchmarks, twait was typically on the order of
10-200 seconds, whereas twait on the order of 0.01 seconds for the
memory benchmarks (Figure 7 C). This indicates that the cause
of the iteration block time variance among processes stems from
MPI rank coordination when many small read requests are made.

To investigate MPI rank competition, we increased the stripe
count on Bridge’s and Comet’s Lustre file system up to 96, where
found marginal I/O scaling improvements of 1.2x on up to 4 full
nodes (not shown). While our data showed no improvement with
altering the stripe count, this may have been a byproduct the poor
chunk layout of the original file on disk. In the next section we
discuss the effects of HDF5 chunking on I/O performance.

Effects of HDF5 Chunking on File I/O

To test the hypothesis that the increase in serial file I/O between
the baseline performance in loading into memory performance was
caused by the layout of the file on disk, we created H5MDWriter,
an MDAnalysis file format writer class that gives one the ability
to write H5MD files with the MDAnalysis user interface. These
files can be written with user-decided custom chunk layouts, file
compression settings, and can be opened with MPI parallel drivers
that enable parallel writing. We ran some initial serial writing
tests and found that writing from DCD, TRR, and XTC to H5MD



MPI-PARALLEL MOLECULAR DYNAMICS TRAJECTORY ANALYSIS WITH THE H5MD FORMAT IN THE MDANALYSIS PYTHON PACKAGE 45

10 4
10 3
10 2
10 1
100
101
102
103
104

I/O RMSD Wait

1 28 56 112
10 4
10 3
10 2
10 1
100
101
102
103
104

Initialize Topology

1 28 56 112

Initialize Trajectory

1 28 56 112

Communication

Agave Bridges Comet

NProcesses

Ti
m

e(
s)

A B C

D E F

Fig. 5: Benchmark timings breakdown for the ASU Agave, PSC
Bridges, and SDSC Comet HPC clusters for the loading-into-memory
optimization technique. The benchmark was run on up to 4 full nodes
on each HPC, where N processes was 1, 28, 56, and 112 for Agave
and Bridges, and 1, 24, 48, and 96 on Comet. The H5MD-default
file was used in the benchmark, where the trajectory was split in N
chunks for each corresponding N process benchmark. Points represent
the mean over three repeats with the standard deviation shown as
error bars.

1 28 56 112
101

102

103

104

Ti
m

e(
s)

Total Benchmark Time

1 28 56 112
0

20
40
60
80

100
120

S(
N

)=
t 1

/t N

Scaling

1 28 56 112
0.0

0.5

1.0

1.5

2.0

E(
N

)=
S(

N
)/N

Efficiency

Agave Bridges Comet
IO
RMSD

NProcesses

A B C

Fig. 6: Strong scaling I/O performance of the RMSD analysis task
with the loading-into-memory optimization technique. The benchmark
used the H5MD-default data file on Agave, Bridges, and Comet.
Nprocesses ranged from 1 core, to 4 full nodes on each HPC, and the
number of trajectory blocks was equal to the number of processes
involved. Points represent the mean over three repeats where the
error bars are derived with the standard error propagation from the
standard deviation of absolute times.

typically took ~360 seconds on Agave. For the 113 GiB test file,
this was a 0.31 GiB/s write bandwidth. We rewrote the H5MD-
default test file and tested two cases: one in which the file is
written with no chunking applied (H5MD-contiguous), and one
in which we applied a custom chunk layout to match the access
pattern on the file (H5MD-chunked). Our benchmark follows a
common MD trajectory analysis scheme in that it iterates through
the trajectory one frame at a time. Therefore, we applied a chunk
shape of (1, n atoms, 3) which matched exactly the shape
of data to be read at each iteration step. An important feature of
HDF5 chunking to note is that, for any element in a chunk to
be read, the entire chunk must be read. When we investigated
the chunk shape of the H5MD-default that was auto-chunked with
h5py’s chunking algorithm, we found that each chunk contained
data elements from multiple different time steps. This means,

10 4
10 3
10 2
10 1
100
101
102
103
104

I/O RMSD Wait

1 28 56 112
10 4
10 3
10 2
10 1
100
101
102
103
104

Initialize Topology

1 28 56 112

Initialize Trajectory

1 28 56 112

Communication

Baseline Masked Array Memory

NProcesses

Ti
m

e(
s)

A B C

D E F

Fig. 7: Benchmark timings on ASU Agave comparing the baseline
benchmark with the masked array and loading into memory opti-
mizations. Each benchmark was run on up to 4 full nodes where N
processes was 1, 28, 56, and 112. The H5MD-default test file was
used in all benchmarks. Points represent the mean over three repeats
with the standard deviation shown as error bars.

for every time step of data read, an exorbitant amount of excess
data was being read and discarded at each iteration step. Before
approaching the parallel tests, we tested how the chunk layout
affects baseline serial I/O performance for the file. We found
I/O performance strongly depends on the chunk layout of the
file on disk. The auto-chunked H5MD-default file I/O time was
4101s, while our custom chunk layout resulted in an I/O time of
460s (Figure 8). So, we effectively saw a 10x speedup just from
optimizing the chunk layout alone, where even the file with no
chunking applied showed similar improvements in performance.
In our previous serial I/O tests, we found that H5MD performed
worse than other file formats, so we repeated those tests with
our custom chunked file, H5MD-chunked. We found for our test
file of 111,815 atoms and 90100 frames, H5MD outperformed
XTC and TRR, while performing equally well to the DCD file, an
encouraging result (Fig. 9).

Next, we investigated what effect the chunk layout had on
parallel I/O performance. We repeated our benchmarks on Agave
(at this point, Bridges had been decommissioned and our Comet
allocation had expired) but with the H5MD-chunked and H5MD-
contiguous data files. For the serial one process case, we found
a similar result in that the I/O time was dramatically increased
with an approximate 10x speedup for both the contiguous and
chunked file, with respect to the baseline benchmark (Figure 10
A). The rest of the timings remained unaffected (Figure 10 B-F).
Although the absolute total benchmark time is much improved
(Figure 11 A), the scaling remains challenging, with a maximum
observed speedup of 12x for the contiguous file (Figure 11 B).
The N = 112 H5MD-contiguous run’s I/O time was 47s (Fig. 10
A). When compared to the 4623s baseline serial time, this is a
98x speedup. Similarly, the H5MD-chunked 4 node run resulted
in an I/O time of 83s, which is a 56x speedup when compared to
baseline serial performance. Therefore, the boost in performance
seen by loading the H5MD-default trajectory into memory rather
than iterating frame by frame is indeed most likely due to the
original file’s chunk layout. This emphasizes the point that one



46 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

H5MD-chunked H5MD-contiguous H5MD-default
0

1000

2000

3000

4000

5000

Ti
m

e 
(s

)
Serial IO Time

Fig. 8: Serial I/O time for H5MD-default, H5MD-contiguous, and
H5MD-chunked data files. Each file contained the same data (113
GiB, 90100 frames) but was written with a different HDF5 chunk
arrangement, as outlined in Table 2. Each bar represents the mean of
5 repeat benchmark runs, with the standard deviation shown as error
bars.

H5MD-chunked DCD TRR XTC
0

200

400

600

800

1000

1200

1400

Ti
m

e 
(s

)

Serial IO Time

Fig. 9: Comparison of serial I/O time for various popular MD file
formats. All files contain the same amount of data (90100 frames).
Each bar represents the mean of 10 repeat benchmark runs, with the
standard deviation shown as error bars.

may garner substantial I/O improvements if one thinks carefully
not only about how their algorithm accesses the file, but also
how the file is actually stored on disk. The relationship between
layout on disk and disk access pattern is crucial for optimized I/O.
Furthermore, as the auto-chunked layout of the H5MD-default
file scattered data from a single time step across multiple chunks,
it is very likely that these chunks themselves were also scattered
across stripes. In this case, multiple processes are still attempting
to read from the same chunk which would nullify any beneficial
effect striping has on file contention. We would have liked to
further test the effects of striping with a proper chunk layout,
but our XSEDE allocation expired.

Effects of HDF5 GZIP Compression on File I/O

HDF5 files also offer the ability to compress the files. With our
writer, users are easily able to apply any of the compression
settings allowed by HDF5. To see how compression affected
parallel I/O, we tested HDF5’s gzip compression with a minimum

10 4
10 3
10 2
10 1
100
101
102
103
104

I/O RMSD Wait

1 28 56 112
10 4
10 3
10 2
10 1
100
101
102
103
104

Initialize Topology

1 28 56 112

Initialize Trajectory

1 28 56 112

Communication

H5MD-default H5MD-contiguous H5MD-chunked

NProcesses

Ti
m

e(
s)

A B C

D E F

Fig. 10: Benchmark timings breakdown on ASU Agave for the three
chunk arrangements tested. The benchmark was run on up to 4 full
nodes on each HPC, where N processes was 1, 28, 56, and 112.
H5MD-default was auto-chunked by h5py. H5MD-contiguous was
written with no chunking applied, and H5MD-chunked was written
with a chunk shape of (1, n atoms, 3). The trajectory was split
in N chunks for each corresponding N process benchmark. Points
represent the mean over three repeats with the standard deviation
shown as error bars.

1 28 56 112
101

102

103

104

Ti
m

e(
s)

Total Benchmark Time

1 28 56 112
0

20
40
60
80

100
120

S(
N

)=
t 1

/t N

Scaling

1 28 56 112
0.0

0.2

0.4

0.6

0.8

1.0

E(
N

)=
S(

N
)/N

Efficiency

H5MD-default H5MD-contiguous H5MD-chunked
IO
RMSD

NProcesses

A B C

Fig. 11: Strong scaling I/O performance of the RMSD analysis task
with various chunk layouts tested on ASU Agave. Nprocesses ranged
from 1 core, to 4 full nodes, and the number of trajectory blocks was
equal to the number of processes involved. Points represent the mean
over three repeats where the error bars are derived with the standard
error propagation from the standard deviation of absolute times.

setting of 1 and a maximum setting of 9. In the serial 1 process
case, we found that I/O performance is slightly hampered, with I/O
times approximately 4x longer with compression applied (Figure
13 A) This is expected as you are giving up disk space for the time
it takes to decompress the file, as is seen in the highly compressed
XTC format (Fig. 9). However, at increasing number of processes
(N > 28), we found that this difference disappears (Figure 13 A
and Figure 12 A). This shows a clear benefit of applying gzip
compression to a chunked HDF5 file for parallel analysis tasks, as
the compressed file is ~2/3 the size of the original. Additionally we
found speedups of up to 36x on 2 full nodes for the compressed
data file benchmarks (Figure 13 B), although we recognize this
number is slightly inflated due to the slower serial I/O time. From
this data we can safely assume that H5MD files can be compressed
without fear of losing parallel I/O performance, which is a nice
boon in the age of terabyte sized trajectory files.



MPI-PARALLEL MOLECULAR DYNAMICS TRAJECTORY ANALYSIS WITH THE H5MD FORMAT IN THE MDANALYSIS PYTHON PACKAGE 47

10 4
10 3
10 2
10 1
100
101
102
103
104

I/O RMSD Wait

1 28 56 112
10 4
10 3
10 2
10 1
100
101
102
103
104

Initialize Topology

1 28 56 112

Initialize Trajectory

1 28 56 112

Communication

H5MD-chunked H5MD-gzipx1 H5MD-gzipx9

NProcesses

Ti
m

e(
s)

A B C

D E F

Fig. 12: Benchmark timings breakdown on ASU Agave for the
minimum gzip compression 1 and maximum gzip compression 9. The
benchmark was run on up to 4 full nodes on each HPC, where N
processes was 1, 28, 56, and 112. The trajectory was split in N chunks
for each corresponding N process benchmark. Points represent the
mean over three repeats with the standard deviation shown as error
bars.

1 28 56 112
101

102

103

104

Ti
m

e(
s)

Total Benchmark Time

1 28 56 112
0

20
40
60
80

100
120

S(
N

)=
t 1

/t N

Scaling

1 28 56 112
0.00
0.25
0.50
0.75
1.00
1.25

E(
N

)=
S(

N
)/N

Efficiency

H5MD-chunked H5MD-gzipx1 H5MD-gzipx9
IO
RMSD

NProcesses

A B C

Fig. 13: Strong scaling I/O performance of the RMSD analysis task
with minimum and maximum gzip compression applied. Nprocesses
ranged from 1 core, to 4 full nodes, and the number of trajectory
blocks was equal to the number of processes involved. Points represent
the mean over three repeats where the error bars are derived with the
standard error propagation from the standard deviation of absolute
times.

Conclusions

The growing size of trajectory files demands parallelization of
trajectory analysis. However, file I/O has become a bottleneck
in the workflow of analyzing simulation trajectories. Our im-
plementation of an HDF5-based file format trajectory reader in
MDAnalysis can perform parallel MPI I/O, and our benchmarks
on various national HPC environments show that speed-ups on
the order of 20x for 48 cores are attainable. Scaling up to
achieve higher parallel data ingestion rates remains challenging,
so we developed several algorithmic optimizations in our analysis
workflows that lead to improvements in I/O times. The results
from these optimization attempts led us to find that the our original
data file that was auto-chunked by h5py’s chunking algorithm had
an incredibly inefficient chunk layout of the original file. With a
custom, optimized chunk layout and gzip compression, we found
maximum scaling of 36x on 2 full nodes on Agave. In terms
of speedup with respect to the file chunked automatically, our
properly chunked file led to I/O time speedups of 98x at 112 cores

on Agave, which means carefully thinking not only about how
your file is accessed, but also how the file is stored on disk can
result in a reduction of analysis time from 4623 to 47 seconds.
To garner further improvements in parallel I/O performance, a
more sophisticated I/O pattern may be required, such as two-
phase MPI I/O or carefully synchronizing chunk sizes with Lustre
stripes. The addition of the HDF5 reader provides a foundation for
the development of parallel trajectory analysis with MPI and the
MDAnalysis package.

Acknowledgments

The authors thank Dr. Pierre de Buyl for advice on the im-
plementation of the h5md format reading code and acknowl-
edge Gil Speyer and Jason Yalim from the Research Computing
Core Facilities at Arizona State University for support with the
Agave cluster and BeeGFS. This work was supported by the
National Science Foundation through a REU supplement to award
ACI1443054 and used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by Na-
tional Science Foundation grant number ACI-1548562. The SDSC
Comet computer at the San Diego Supercomputer Center and PSC
Bridges computer at the Pittsburgh Supercomputing Center were
used under allocation TG-MCB130177. The authors acknowledge
Research Computing at Arizona State University for providing
HPC and storage resources that contributed to the research results
reported within this paper.

REFERENCES

[BFJ18] Oliver Beckstein, Geoffrey Fox, and Shantenu
Jha. Convergence of data generation and analysis
in the biomolecular simulation community. In
Online Resource for Big Data and Extreme-Scale
Computing Workshop, page 4, November 2018. URL:
https://www.exascale.org/bdec/sites/www.exascale.org.bdec/
files/whitepapers/Beckstein-Fox-Jha_BDEC2_WP_0.pdf.

[CDG+21] Lorenzo Casalino, Abigail C Dommer, Zied Gaieb, Emilia P
Barros, Terra Sztain, Surl-Hee Ahn, Anda Trifan, Alexan-
der Brace, Anthony T Bogetti, Austin Clyde, Heng Ma,
Hyungro Lee, Matteo Turilli, Syma Khalid, Lillian T
Chong, Carlos Simmerling, David J Hardy, Julio DC
Maia, James C Phillips, Thorsten Kurth, Abraham C
Stern, Lei Huang, John D McCalpin, Mahidhar Tatineni,
Tom Gibbs, John E Stone, Shantenu Jha, Arvind Ra-
manathan, and Rommie E Amaro. AI-driven multiscale
simulations illuminate mechanisms of SARS-CoV-2 spike
dynamics. The International Journal of High Perfor-
mance Computing Applications, page 10943420211006452,
April 2021. Publisher: SAGE Publications Ltd STM.
URL: https://doi.org/10.1177/10943420211006452, doi:10.
1177/10943420211006452.

[Col14] Andrew Collette. Python and hdf5. In Meghan Blanchette
and Rachel Roumeliotis, editors, Python and HDF5. O’Reilly
Media, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472., 2014.

[CR15] T. Cheatham and D. Roe. The impact of heterogeneous
computing on workflows for biomolecular simulation and
analysis. Computing in Science Engineering, 17(2):30–39,
2015. doi:10.1109/MCSE.2015.7.

[dBCH14] Pierre de Buyl, Peter H. Colberg, and Felix Höfling. H5MD:
A structured, efficient, and portable file format for molecular
data. Computer Physics Communications, 185(6):1546 – 1553,
2014. doi:10.1016/j.cpc.2014.01.018.

[DDG+12] Ron O Dror, Robert M Dirks, J P Grossman, Huafeng Xu,
and David E Shaw. Biomolecular simulation: a computa-
tional microscope for molecular biology. Annu Rev Biophys,
41:429–52, 2012. doi:10.1146/annurev-biophys-
042910-155245.

https://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/Beckstein-Fox-Jha_BDEC2_WP_0.pdf
https://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/Beckstein-Fox-Jha_BDEC2_WP_0.pdf
https://doi.org/10.1177/10943420211006452
http://dx.doi.org/10.1177/10943420211006452
http://dx.doi.org/10.1177/10943420211006452
http://dx.doi.org/10.1109/MCSE.2015.7
http://dx.doi.org/10.1016/j.cpc.2014.01.018
http://dx.doi.org/10.1146/annurev-biophys-042910-155245
http://dx.doi.org/10.1146/annurev-biophys-042910-155245


48 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

[DPKC11] Lisandro D. Dalcín, Rodrigo R. Paz, Pablo A. Kler, and
Alejandro Cosimo. Parallel distributed computing using
python. Advances in Water Resources, 34(9):1124 – 1139,
2011. New Computational Methods and Software Tools.
doi:10.1016/j.advwatres.2011.04.013.

[FQC+19] Geoffrey Fox, Judy Qiu, David Crandall, Gregor von
Laszewski, Oliver Beckstein, John Paden, Ioannis Paraske-
vakos, Shantenu Jha, Fusheng Wang, Madhav Marathe, Anil
Vullikanti, and III Cheatham, Thomas E. Contributions to
high-performance big data computing. In L. Grandinetti,
G. R. Joubert, K. Michielsen, S. L. Mirtaheri, M. Taufer,
and R Yokota, editors, Future Trends of HPC in a Disruptive
Scenario, volume 34 of Advances in Parallel Computing, pages
34–81. IOS Press, 2019. doi:10.3233/APC190005.

[GLB+16] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E.
Reddy, Manuel N. Melo, Sean L. Seyler, David L Dotson,
Jan Domański, Sébastien Buchoux, Ian M. Kenney, and Oliver
Beckstein. MDAnalysis: A Python package for the rapid
analysis of molecular dynamics simulations. In Sebastian
Benthall and Scott Rostrup, editors, Proceedings of the 15th
Python in Science Conference, pages 98–105, Austin, TX,
2016. SciPy. doi:10.25080/Majora-629e541a-00e.

[HBD+19] David J. Huggins, Philip C. Biggin, Marc A. Dämgen,
Jonathan W. Essex, Sarah A. Harris, Richard H. Hench-
man, Syma Khalid, Antonija Kuzmanic, Charles A. Laughton,
Julien Michel, Adrian J. Mulholland, Edina Rosta, Mark
S. P. Sansom, and Marc W. van der Kamp. Biomolecular
simulations: From dynamics and mechanisms to computa-
tional assays of biological activity. Wiley Interdisciplinary
Reviews: Computational Molecular Science, 9(3):e1393, 2019.
doi:10.1002/wcms.1393.

[HMvdW+20] Charles R Harris, K Jarrod Millman, Stéfan J van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H van Kerk-
wijk, Matthew Brett, Allan Haldane, Jaime Fernández Del Río,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E Oliphant. Array program-
ming with numpy. Nature, 585(7825):357–362, 09 2020.
doi:10.1038/s41586-020-2649-2.

[How10] Mark Howison. Tuning HDF5 for Lustre File Systems.
September 2010. URL: https://escholarship.org/uc/item/
46r9d86r.

[KPF+20] Mahzad Khoshlessan, Ioannis Paraskevakos, Geoffrey C. Fox,
Shantenu Jha, and Oliver Beckstein. Parallel performance
of molecular dynamics trajectory analysis. Concurrency
and Computation: Practice and Experience, 32:e5789, 2020.
doi:10.1002/cpe.5789.

[LRFK+21] Maria Lopez-Redondo, Shujie Fan, Akiko Koide, Shohei
Koide, Oliver Beckstein, and David L. Stokes. Zinc binding
alters the conformational dynamics and drives the transport cy-
cle of the cation diffusion facilitator YiiP. Journal of General
Physiology, 153(8), July 2021. URL: https://doi.org/10.1085/
jgp.202112873, doi:10.1085/jgp.202112873.

[MADWB11] Naveen Michaud-Agrawal, Elizabeth Jane Denning,
Thomas B. Woolf, and Oliver Beckstein. MDAnalysis:
A toolkit for the analysis of molecular dynamics
simulations. J Comp Chem, 32:2319–2327, 2011.
doi:10.1002/jcc.21787.

[MM14] Cameron Mura and Charles E. McAnany. An introduction to
biomolecular simulations and docking. Molecular Simulation,
40(10-11):732–764, 2014. doi:10.1080/08927022.
2014.935372.

[Oro14] Modesto Orozco. A theoretical view of protein dynamics.
Chem. Soc. Rev., 43:5051–5066, 2014. doi:10.1039/
C3CS60474H.

[PLK+18] Ioannis Paraskevakos, Andre Luckow, Mahzad Khoshlessan,
Goerge Chantzialexiou, Thomas E. Cheatham, Oliver Beck-
stein, Geoffrey Fox, and Shantenu Jha. Task-parallel analysis
of molecular dynamics trajectories. In ICPP 2018: 47th
International Conference on Parallel Processing, August 13–
16, 2018, Eugene, OR, USA, page Article No. 49, New York,
NY, USA, August 13–16 2018. Association for Computing
Machinery, ACM. doi:10.1145/3225058.3225128.

[SFMLIP+19] Shujie Fan, Max Linke, Ioannis Paraskevakos, Richard J. Gow-
ers, Michael Gecht, and Oliver Beckstein. PMDA - Parallel

Molecular Dynamics Analysis. In Chris Calloway, David
Lippa, Dillon Niederhut, and David Shupe, editors, Proceed-
ings of the 18th Python in Science Conference, pages 134 –
142, Austin, TX, 2019. SciPy. doi:10.25080/Majora-
7ddc1dd1-013.

[TCD+14] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D.
Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr.
XSEDE: Accelerating scientific discovery. Computing in
Science & Engineering, 16(5):62–74, Sept.-Oct. 2014. doi:
10.1109/MCSE.2014.80.

[The05] Douglas L Theobald. Rapid calculation of RMSDs using
a quaternion-based characteristic polynomial. Acta Crys-
tallogr A, 61(Pt 4):478–80, Jul 2005. doi:10.1107/
S0108767305015266.

[Wic11] Hadley Wickham. The split-apply-combine strategy for data
analysis. Journal of Statistical Software, 40(1):1–29, 2011.
doi:10.18637/jss.v040.i01.

http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://dx.doi.org/10.3233/APC190005
http://dx.doi.org/10.25080/Majora-629e541a-00e
http://dx.doi.org/10.1002/wcms.1393
http://dx.doi.org/10.1038/s41586-020-2649-2
https://escholarship.org/uc/item/46r9d86r
https://escholarship.org/uc/item/46r9d86r
http://dx.doi.org/10.1002/cpe.5789
https://doi.org/10.1085/jgp.202112873
https://doi.org/10.1085/jgp.202112873
http://dx.doi.org/10.1085/jgp.202112873
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1080/08927022.2014.935372
http://dx.doi.org/10.1080/08927022.2014.935372
http://dx.doi.org/10.1039/C3CS60474H
http://dx.doi.org/10.1039/C3CS60474H
http://dx.doi.org/10.1145/3225058.3225128
http://dx.doi.org/10.25080/Majora-7ddc1dd1-013
http://dx.doi.org/10.25080/Majora-7ddc1dd1-013
http://dx.doi.org/10.1109/MCSE.2014.80
http://dx.doi.org/10.1109/MCSE.2014.80
http://dx.doi.org/10.1107/S0108767305015266
http://dx.doi.org/10.1107/S0108767305015266
http://dx.doi.org/10.18637/jss.v040.i01

	Introduction
	Methods
	HPC environments
	Benchmark Data Files
	Parallel Algorithm Benchmark
	Data Sharing

	Results and Discussion
	Baseline Benchmarks
	Effects of Algorithmic Optimizations on File I/O
	Effects of HDF5 Chunking on File I/O
	Effects of HDF5 GZIP Compression on File I/O

	Conclusions
	Acknowledgments
	References

