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Abstract—Molecular dynamics (MD) computer simulations help elucidate de-
tails of the molecular processes in complex biological systems, from protein
dynamics to drug discovery. One major issue is that these MD simulation files
are now commonly terabytes in size, which means analyzing the data from
these files becomes a painstakingly expensive task. In the age of national
supercomputers, methods of parallel analysis are becoming a necessity for the
efficient use of time and high performance computing (HPC) resources but for
any approach to parallel analysis, simply reading the file from disk becomes
the performance bottleneck that limits overall analysis speed. One promising
way around this file /O hurdle is to use a parallel message passing interface
(MPI) implementation with the HDF5 (Hierarchical Data Format 5) file format to
access a single file simultaneously with numerous processes on a parallel file
system. Our previous feasibility study suggested that this combination can lead
to favorable parallel scaling with hundreds of CPU cores, so we implemented a
fast and user-friendly HDF5 reader (the HSMDReader class) that adheres to
H5MD (HDF5 for Molecular Dynamics) specifications. We made HSMDReader
(together with a HSMD output class H5MDWriter) available in the MDAnalysis
library, a Python package that simplifies the process of reading and writing vari-
ous popular MD file formats by providing a streamlined user-interface that is in-
dependent of any specific file format. We benchmarked HSMDReader’s parallel
file reading capabilities on three HPC clusters: ASU Agave, SDSC Comet, and
PSC Bridges. The benchmark consisted of a simple split-apply-combine scheme
of an I/O bound task that split a 90k frame (113 GiB) coordinate trajectory
into N chunks for N processes, where each process performed the commonly
used RMSD (root mean square distance after optimal structural superposition)
calculation on their chunk of data, and then gathered the results back to the
root process. For baseline performance, we found maximum 1/O speedups at 2
full nodes, with Agave showing 20x, and a maximum computation speedup on
Comet of 373x on 384 cores (all three HPCs scaled well in their computation
task). We went on to test a series of optimizations attempting to speed up
1/0 performance, including adjusting file system stripe count, implementing a
masked array feature that only loads relevant data for the computation task,
front loading all I/0O by loading the entire trajectory into memory, and manually
adjusting the HDF5 dataset chunk shapes. We found the largest improvement in
1/0 performance by optimizing the chunk shape of the HDF5 datasets to match
the iterative access pattern of our analysis benchmark. With respect to baseline
serial performance, our best result was a 98x speedup at 112 cores on ASU
Agave. In terms of absolute time saved, the analysis went from 4623 seconds
in the baseline serial run to 47 seconds in the parallel, properly chunked run.
Our results emphasize the fact that file I/O is not just dependent on the access
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pattern of the file, but more so the synergy between access pattern and the
layout of the file on disk.
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Introduction

The molecular dynamics (MD) simulation approach [HBD™19]
is widely used across the biomolecular and materials sciences,
accounting for more than one quarter of the total computing time
[FQC*19] in the Extreme Science and Engineering Discovery
Environment (XSEDE) network of national supercomputers in
the US [TCD ™" 14]. MD simulations, especially in the realm of
studying protein dynamics, serve an important purpose in charac-
terizing the dynamics, and ultimately the function of a protein
[Orol4]. For example, recent award-winning work [CDG'21]
involving the SARS-CoV-2 spike protein was able to use all-
atom MD simulations to elucidate the dynamics of the virus-to-
human cell interaction that was inaccessible to experiment. While
the parameters involved in fine tuning the physics driving these
simulations continue to improve, the computational demand of
longer, more accurate simulations increases [DDG " 12]. As high
performance computing (HPC) resources continue to improve in
performance, the size of MD simulation files are now commonly
terabytes in size, making serial analysis of these trajectory files
impractical [CR15]. Parallel analysis is a necessity for the effi-
cient use of both HPC resources and a scientist’s time [BFJ18],
[FQC ' 19]. MD trajectory analysis can be parallelized using task-
based or MPI-based (message passing interface) approaches, each
with their own advantages and disadvantages [PLK™18]. Here
we investigate parallel trajectory analysis with the MDAnalysis
Python library [MADWBI11], [GLB ™ 16]. MDAnalysis is a widely
used package in the molecular simulation community that can
read and write over 25 popular MD trajectory file formats while
providing a common object-oriented interface that makes data
available as numpy arrays [HMvdW"20]. MDAnalysis aims to
bridge the entrenched user communities of different MD packages,
allowing scientists to more easily (and productively) move be-
tween these entrenched communities. Previous work that focused
on developing a task-based approach to parallel analysis found
that an I/O bound task only scaled to 12 cores due to a file [/O
bottleneck [SFMLIP ' 19]. Our recent feasibility study suggested
that parallel reading via MPI-1O and the HDFS file format could


http://nongnu.org/h5md/
mailto:obeckste@asu.edu
https://www.mdanalysis.org
https://numpy.org/
https://www.hdfgroup.org/solutions/hdf5

MPI-PARALLEL MOLECULAR DYNAMICS TRAJECTORY ANALYSIS WITH THE HSMD FORMAT IN THE MDANALYSIS PYTHON PACKAGE 41

lead to good scaling although only a reduced size custom HDF5
trajectory was investigated and no usable implementation of a true
MD trajectory reader was provided [KPF20].

H5MD, or "HDF5 for molecular data", is an HDF5-based file
format that is used to store MD simulation data, such as particle
coordinates, box dimensions, and thermodynamic observables
[dBCH14]. A Python reference implementation for HSMD exists
(pyh5md [dBCH14]) but the library is not maintained anymore,
and with advice from the original author of pyhSmd, we imple-
mented native support for HSMD I/O in the MDAnalysis package.
HDFS is a structured, binary file format that organizes data into
two objects: groups and datasets. It implements a hierarchical,
tree-like structure, where groups represent nodes of the tree, and
datasets represent the leaves [Coll4]. An HDFS5 file’s datasets
can be stored either contiguously on disk, or scattered across
the disk in different locations in chunks. These chunks must be
defined on initialization of the dataset, and for any element to be
read from a chunk, the entire chunk must be read. The HDF5
library can be built on top of a message passing interface (MPI)
implementation so that a file can be accessed in parallel on a
parallel file system such as Lustre or BeeGFS. We implemented a
parallel MPI-1IO capable HDF5-based file format trajectory reader
into MDAnalysis, HSMDReader, that adheres to the HSMD spec-
ifications. HSMDReader interfaces with h5py, a high level Python
package that provides a Pythonic interface to the HDF5 format
[Col14]. In h5py, accessing a file in parallel is accomplished
by passing a keyword argument into h5py.File, which then
manages parallel disk access.

The BeeGFS and Lustre parallel file systems are well suited
for multi-node MPI parallelization. One key feature of a Lustre
parallel file systems is file striping, which is the ability to store
data from a file across multiple physical locations, known as object
storage targets (OSTs), where "stripe count" refers to the number
of OSTs to which a single file is striped across. Thinking carefully
about the synchronization of chunk shape and stripe settings
can be crucial to establishing optimal I/O performance [How10].
We tested various algorithmic optimizations for our benchmark,
including using various stripe counts (1, 48, 96), loading only
necessary coordinate information with numpy masked arrays
[HMvdW"20], and front loading all I/O by loading the entire
trajectory chunk into memory prior to the RMSD calculation.

We benchmarked HSMDReader’s parallel reading capabilities
with MDAnalysis on three HPC clusters: ASU Agave at Arizona
State University, and SDSC Comet and PSC Bridges, which are
part of XSEDE [TCD™ 14]. The benchmark consisted of a simple
split-apply-combine scheme [Wicl1] of an I/O-bound task that
split a 90k frame (113 GiB) trajectory into N chunks for N
processes, where each process performed a computation on their
chunk of data, and the results were finally gathered back to the
root process. For the computational task, we computed the time
series of the root mean squared distance (RMSD) of the positions
of the Cy (alpha carbon) atoms in the protein to their initial
coordinates at the first frame of the trajectory. At each frame (time
step) in the trajectory, the protein was optimally superimposed
on the reference frame to remove translations and rotations. The
RMSD calculation is a very common task performed to analyze
the dynamics of the structure of a protein [MM14]. Because it is
a fast computation that is bounded by how quickly data can be
read from the file it is a suitable task to test the I/O capabilities of
H5MDReader.

We tested the effects of HDFS file chunking and file compres-

sion on I/O performance. In general we found that altering the
stripe count and loading only necessary coordinates via masked
arrays provided little improvement in benchmark times. Loading
the entire trajectory into memory in one pass instead of iterating
through, frame by frame, showed the greatest improvement in
performance. This was compounded by our results with HDF5
chunking. Our baseline test file was auto-chunked with the auto-
chunking algorithm in h5py. When we recast the file into a
contiguous form and a custom, optimized chunk layout, we saw
improvements in serial I/O on the order of 10x. Additionally, our
results from applying gzip compression to the file showed no loss
in performance at higher processor counts, indicating HSMD files
can be compressed without losing performance in parallel analysis
tasks.

Methods
HPC environments

We tested the parallel MPI I/O capabilities of our HSMD imple-
mentation on three supercomputing environments: ASU Agave,
PSC Bridges, and SDSC Comet. The Agave supercomputer offers
498 compute nodes. We utilized the Parallel Compute Nodes that
offer 2 Intel Xeon E5-2680 v4 CPUs (2.40GHz, 14 cores/CPU,
28 cores/node, 128GB RAM/node) with a 1.2PB scratch BeeGFS
file system that uses an Intel OmniPath interconnect system. The
Bridges supercomputer offers over 850 compute nodes that supply
1.3018 Pf/s and 274 TiB RAM. We utilized the Regular Shared
Memory Nodes that offer 2 Intel Haswell E5-2695 v3 CPUs (2.3-
3.3GHz, 14 cores/CPU, 28 cores/node, 128GB RAM/node) with
a 10PB scratch Lustre parallel file system that uses an InfiniBand
interconnect system. The Comet supercomputer offers 2 Pf/s with
1944 standard compute nodes. We utilized the Intel Haswell
Standard Compute Nodes that offer 2 Intel Xeon E5-2680 v3
CPUs (2.5GHz, 12 cores/CPU, 24 cores/node, 128GB RAM/node)
with a 13PB scratch Lustre parallel file system that also uses an
InfiniBand interconnect system.

Our software library stacks were built with conda environ-
ments. Table 1 gives the versions of each library involved in
the stack. We used GNU C compilers on Agave and Bridges
and the Intel C-compiler on Comet for MPI parallel jobs as
recommended by the Comet user guide. We used OpenMPI as the
MPI implementation on all HPC resources as this was generally
the recommended environment and in the past we found it also
the easiest to build against [KPF'20]. The mpidpy [DPKCI11]
package was used to make MPI available in Python code, as
required by h5py. In general, our software stacks were built in
the following manner:

o module load anaconda3

« create new conda environment

« module load parallel hdf5 build

« module load OpenMPI implementation

o install mpidpy with env MPICC=/path/to/mpicc
pip install mpidpy

e install h5py with CC="mpicc" HDF5_MPI="ON"
HDF5_DIR=/path/to/parallel-hdf5 pip
install —--no-binary=h5py hbpy

« install development MDAnalysis as outlined in the MD-
Analysis User Guide
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System ASU Agave  PSC Bridges  SDSC Comet

Python 3.8.5 3.8.5 3.6.9
C compiler gec 4.8.5 gec 4.8.5 icc 18.0.1
HDF5 1.10.1 1.10.2 1.10.3
OpenMPI 3.0.0 3.0.0 3.14

h5py 2.9.0 3.1.0 3.1.0
mpidpy 3.03 3.0.3 3.0.3

MDAnalysis 2.0.0-dev0O 2.0.0-dev0 2.0.0-dev0

TABLE 1: Library versions installed for each HPC environment.

name format file size (GiB)
H5MD-default H5MD 113
H5MD-chunked H5MD 113
H5MD-contiguous ~ HSMD 113
H5MD-gzipx1 H5MD 77
H5MD-gzipx9 H5MD 75
DCD DCD 113
XTC XTC 35
TRR TRR 113

TABLE 2: Data files benchmarked on all three HPCS. name is the
name that is used to identify the file in this paper. format is the
format of the file, and file size gives the size of the file in gibibytes.
HSMD-default original data file written with pyhSmd which uses the
auto-chunking algorithm in h5py. HSMD-chunked is the same file
but written with chunk size (1, n atoms, 3) and HSMD-contiguous is
the same file but written with no HDF5 chunking. HSMD-gzipx1 and
H5MD-gzipx9 have the same chunk arrangement as HSMD-chunked
but are written with gzip compression where 1 is the lowest level of
compression and 9 is the highest level. DCD, XTC, and TRR are
copies HSMD-contiguous written with MDAnalysis.

Benchmark Data Files

The test data files used in our benchmark consist of a topol-
ogy file YiiP_system.pdb with 111,815 atoms and a tra-
jectory file YiiP_system_9ns_centerl00x.h5md with
90100 frames. The initial trajectory data file (HSMD-default
in Table 2) was generated with pyh5md [dBCH14] using the
XTC file YiiP_system_9ns_center.xtc [SFMLIP"19],
[LRFK*21], using the "ChainReader" facility in MDAnalysis with
the list 100 » ["YiiP_system 9ns_center.xtc"] as
input. The rest of the test files were copies of HSMD-default and
were written with MDAnalysis using different HDF5 chunking
arrangements and compression settings. Table 2 gives all of the
files benchmarked with how they are identified in this paper as
well as their corresponding file size.

Parallel Algorithm Benchmark

We implemented a simple split-apply-combine parallelization
algorithm [Wicl1], [SEMLIP"19], [KPF20] that divides the
number of frames in the trajectory evenly among all available
processes. Each process receives a unique start and stop for
which to iterate through their section of the trajectory. As the
computational task, the root mean square distance (RMSD) of the
protein Cy atoms after optimal structural superposition [MM14]
is computed at each frame with the QCProt algorithm [The05], as
described in our previous work [SFMLIP*19], [KPF20].

In order to obtain detailed timing information we instrumented
code as follows below. Table 3 outlines the specific lines in the
code that were timed in the benchmark.

1 import MDAnalysis as mda

2 from MDAnalysis.analysis.rms import rmsd
3 from mpidpy import MPI
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line number id description
11 ¢init_top load topology file
12 pinit_traj load trajectory file
38 /0 read data from time step into memory
39 geompute perform rmsd computation
42 pwait wait for processes to synchronize
47 geomm_gather 5 mbine results back into root process

TABLE 3: All timings collected from the example benchmark code.
id gives the reference name used in this paper to reference the
corresponding line number and timing collected. description gives
a short description of what that specific line of code is doing in the
benchmark.

4 import numpy as np

5

6 comm = MPI.COMM_WORLD

7 size = comm.Get_size()

8 rank = comm.Get_rank ()

9

10 def benchmark (topology, trajectory):
11 u = mda.Universe (topology)

12 u.load_new (trajectory,

13 driver="mpio",

14 comm=comm)

15 CA = u.select_atoms ("protein and name CA")

16 x_ref = CA.positions.copy ()

17

18 # make_balanced _slices divides n_frames into
19 # equally sized blocks and return

20 # indices for each block

21 slices = make_balanced_slices (n_frames,

22 size,

23 start=0,

24 stop=n_frames,
25 step=1)

26 start = slices[rank].start

27 stop = slices[rank].stop

28 bsize = stop - start

29

30 # sendcounts is used for Gatherv () to know how
31 # many elements are sent from each rank

32 sendcounts = np.array ([

33 slices[i].stop - slices[i].start

34 for i in range(size)])

35

36 rmsd_array = np.empty(bsize, dtype=float)

37 for i, frame in enumerate (range (start, stop)):
38 ts = u.trajectory[frame]

39 rmsd_array[i] = rmsd(CA.positions,

40 x_ref,

41 superposition=True)
42 comm.Barrier ()

43 rmsd_buffer = None

44 if rank ==

45 rmsd_buffer = np.empty (n_frames,

46 dtype=float)

47 comm.Gatherv (sendbuf=rmsd_array,

48 recvbuf= (rmsd_buffer, sendcounts),

The HDFS5 file is opened with the mpio driver and the
MPI.COMM_WORLD communicator to ensure the file is accessed
in parallel via MPI I/O. The topology and trajectory initialization
times must be analyzed separately because the topology file is
not opened in parallel and represents a fixed cost each process
must pay to open the file. MDAnalysis reads data from MD
trajectory files one frame, or "snapshot" at a time. Each time
the u.trajectory[frame] is iterated through, MDAnalysis
reads the file and fills in numpy arrays [HMvdW *20] correspond-
ing to that time step. Each MPI process runs an identical copy
of the script, but receives a unique start and stop variable

root=0)
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such that the entire file is read in parallel. Gathering the results is
done collectively by MPI, which means all processes must finish
their iteration blocks before the results can be returned. Therefore,
it is important to measure "' as it represents the existence of
"straggling" processes. If one process takes substantially longer
than the others to finish its iteration block, all processes are slowed
down. These 6 timings are returned and saved as an array for each
benchmark run.

We applied this benchmark scheme to HSMD test files on
Agave, Bridges, and Comet. Each benchmark run received a
unique, freshly copied test file that was only used once so as
to avoid any caching effects of the operating system or file
system. We also tested three algorithmic optimizations: Lus-
tre file striping, loading the entire trajectory into memory, and
using masked arrays in numpy to only load the C, coor-
dinates required for the RMSD calculation. For striping, we
ran the benchmark on Bridges and Comet with a file stripe
count of 48 and 96. For the into memory optimization, we
used MDAnalysis.Universe.transfer_to_memory ()
to read the entire file in one go and pass all file
I/O to the HDFS5 library. For the masked array optimiza-
tion, we allowed u.load_new() to take a list or ar-
ray of atom indices as an argument, sub, so that the
MDAnalysis.Universe.trajectory.ts arrays are in-
stead initialized as numpy .ma.masked_array instances and
only the indices corresponding to sub are read from the file.

Performance was quantified by measuring the I/O timing
returned from the benchmarks, and strong scaling was assessed
by calculating the speedup S(N) = #;/ty and the efficiency
E(N)=S(N)/N.

Data Sharing

All of our SLURM submission shell scripts and Python bench-
mark scripts for all three HPC environments are available in the
repository https://github.com/Becksteinlab/scipy2021-mpiH5SMD-
data and are archived under DOI 10.5281/zenodo.5083858.

Results and Discussion
Baseline Benchmarks

We first ran benchmarks with the simplest parallelization scheme
of splitting the frames of the trajectory evenly among all partici-
pating processes. The HSMD file involved in the benchmarks was
written with the pyhSmd library, the original Python reference
implementation for the HSMD format [{BCH14]. The datasets in
the data file were chunked automatically by the auto-chunking
algorithm in h5py. File I/O remains the largest contributor to
the total benchmark time, as shown by Figure 1 (A). Figure 1
(B, D-F) also show that the initialization, computation, and MPI
communication times are negligible with regards to the overall
analysis time. 7", however, becomes increasingly relevant as the
number of processes increases (Figure 1 C), indicating a growing
variance in the iteration block time across all processes. In effect,
¥t is measuring the occurrence of "straggling” processes, which
has been previously observed to be an issue on busy, multi-user
HPC environments [KPF™20]. We found that the total benchmark
time continues to decrease as the number of processes increases
to over 100 (from 4648 + 319 seconds at N =1 to 315.6 + 59.8
seconds at N = 112 on Agave) (Fig. 2 A). While the absolute time
of each benchmark is important in terms of measuring the actual
amount of time saved with our parallelization scheme, results are
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Fig. 1: Benchmark timings breakdown for the ASU Agave, PSC
Bridges, and SDSC Comet HPC clusters. The benchmark was run
on up to 4 full nodes on each HPC, where Nppocesses was 1, 28, 56,
and 112 for Agave and Bridges, and 1, 24, 48, and 96 on Comet.
The H5MD—-default file was used in the benchmark, where the
trajectory was split in N chunks for each corresponding N process
benchmark. Points represent the mean over three repeats with the
standard deviation shown as error bars.
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Fig. 2: Strong scaling 1/0 and RMSD performance of the RMSD
analysis task of the HSMD-default data file on Agave, Bridges,
and Comet. Nprocesses ranged from 1 core, to 4 full nodes on each
HPC, and the number of trajectory blocks was equal to the number
of processes involved. Points represent the mean over three repeats
where the error bars are derived with the standard error propagation
from the standard deviation of absolute times.

often highly variable in a crowded HPC environment [How10] and
therefore we focus our analysis on the speedup and efficiency of
each benchmark run. The maximum total I/O speedup observed is
only 15x and efficiencies at around 0.2 (Fig. 2 B, C). The RMSD
computation scaling, on the other hand, remains high, with nearly
ideal scaling on Bridges and Comet, with Agave trailing behind at
71x speedup at 122 cores. Therefore, for a computationally bound
analysis task, our parallel HSMD implementation will likely scale
well.

Effects of Algorithmic Optimizations on File I/O

We tested three optimizations aimed at shortening file I/O time
for the same data file. In an attempt to optimize I/O, we tried
to minimize "wasted I/O". For example, in any analysis task,
not all coordinates in the trajectory may be necessary for the
computation. In our analysis test case, the RMSD was calculated
for only the C, atoms of the protein backbone, therefore the
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Fig. 3: Benchmark timings breakdown for the ASU Agave, PSC
Bridges, and SDSC Comet HPC clusters for the masked_array
optimization technique. The benchmark was run on up to 4 full nodes
on each HPC, where N processes was 1, 28, 56, and 112 for Agave
and Bridges, and 1, 24, 48, and 96 on Comet. The H5SMD-default
file was used in the benchmark, where the trajectory was split in N
chunks for each corresponding N process benchmark. Points represent
the mean over three repeats with the standard deviation shown as
error bars.

coordinates of all other atoms read from the file is essentially
wasted I/O. To circumvent this issue, we implemented the use of
NumPy ma .masked_array [HMvdW 20], where the arrays of
coordinate data are instead initialized as masked arrays that only
fill data from selected coordinate indices. We found that Bridges
showed the best scaling with the masked array implementation,
with a total scaling of 23x at 4 full nodes (1642 4 115 seconds at
N =110 71 £ 33 seconds at N = 112 cores) as seen in Figure 4
(A, B). Agave showed a maximum scaling of 11x at 2 full nodes,
while Comet showed 5x scaling at 4 full nodes (Figure 4 B). In
some cases, the masked array implementation resulted in slower
I/O times. For example, Agave went from 4623 seconds in the
baseline 1 core run to 5991 seconds with masked arrays. This
could be due to the HDF5 library not being optimized to work
with masked arrays as with numpy arrays. On the other hand, for
Bridges and Comet, we observed an approximate 5x speedup in
I/O time (Fig. 4 B) for the masked array case when compared
to the baseline benchmark. In terms of the RMSD computation
scaling, we once again found all three systems scaled well, with
Comet displaying ideal scaling all the way to 4 full nodes, while
Agave and Bridges hovering around 85x at 112 cores.

With an MPI implementation, processes participating in par-
allel /O communicate with one another. It is commonly un-
derstood that repeated, small file reads performs worse than a
large, contiguous read of data. With this in mind, we tested
this concept in our benchmark by loading the entire trajectory
into memory prior to the RMSD task. Modern super computers
make this possible as they contain hundreds of GiB of memory
per node. On Bridges, loading into memory strangely resulted in
slower I/O times (1466s baseline to 2196s at N = 1 and 307s
baseline to 523s at N = 112, Fig. 1 A and Fig. 5 A). Agave and
Comet, on the other hand, showed surprisingly different results.
They both performed substantially better for the N = 1 core case.
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the masked_array optimization technique. The benchmark used the
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are derived with the standard error propagation from the standard
deviation of absolute times.

Agave’s serial I/O performance was boosted from 4623s to 891s
(Fig. 5 A) by loading the data into memory in one slurp rather
than iterating through the trajectory frame by frame. Similarly,
Comet’s serial I/O performance went from 4101s to 1740s, with
multi-node performance continuing to show improvement versus
the baseline numbers (excluding the peak at N = 48). Agave
steady improvements in performance all the way to 4 full nodes,
where the I/O time reached 73s (Fig. 5 A, Fig. 6 A). Figure 7
gives a direct comparison on Agave of the baseline benchmark
performance with the two optimization methods outlined. With
respect to the baseline serial performance, loading into memory
gives a 91x speedup (4658s at 1 core to 73s at 112 cores) (Figure 7,
A). This result was interesting in that the only difference between
the two was the access pattern of the data - in one case, the file
was read in small repeated bursts, while in the other the file was
read from start to finish with HDF5. We hypothesized that this
was due to layout of the file itself on disk.

Also, we found that the 1™ does not increase as the number of
processes increases as in all of the other benchmark cases (Figure
5 C). In the other benchmarks, " was typically on the order of
10-200 seconds, whereas 4t on the order of 0.01 seconds for the
memory benchmarks (Figure 7 C). This indicates that the cause
of the iteration block time variance among processes stems from
MPI rank coordination when many small read requests are made.

To investigate MPI rank competition, we increased the stripe
count on Bridge’s and Comet’s Lustre file system up to 96, where
found marginal I/O scaling improvements of 1.2x on up to 4 full
nodes (not shown). While our data showed no improvement with
altering the stripe count, this may have been a byproduct the poor
chunk layout of the original file on disk. In the next section we
discuss the effects of HDF5 chunking on I/O performance.

Effects of HDF5 Chunking on File I/O

To test the hypothesis that the increase in serial file I/O between
the baseline performance in loading into memory performance was
caused by the layout of the file on disk, we created HSMDWriter,
an MDAnalysis file format writer class that gives one the ability
to write HSMD files with the MDAnalysis user interface. These
files can be written with user-decided custom chunk layouts, file
compression settings, and can be opened with MPI parallel drivers
that enable parallel writing. We ran some initial serial writing
tests and found that writing from DCD, TRR, and XTC to HSMD
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number of trajectory blocks was equal to the number of processes
involved. Points represent the mean over three repeats where the
error bars are derived with the standard error propagation from the
standard deviation of absolute times.

typically took ~360 seconds on Agave. For the 113 GiB test file,
this was a 0.31 GiB/s write bandwidth. We rewrote the HSMD-
default test file and tested two cases: one in which the file is
written with no chunking applied (HSMD-contiguous), and one
in which we applied a custom chunk layout to match the access
pattern on the file (HSMD-chunked). Our benchmark follows a
common MD trajectory analysis scheme in that it iterates through
the trajectory one frame at a time. Therefore, we applied a chunk
shape of (1, n atoms, 3) which matched exactly the shape
of data to be read at each iteration step. An important feature of
HDF5 chunking to note is that, for any element in a chunk to
be read, the entire chunk must be read. When we investigated
the chunk shape of the HSMD-default that was auto-chunked with
hS5py’s chunking algorithm, we found that each chunk contained
data elements from multiple different time steps. This means,
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Fig. 7: Benchmark timings on ASU Agave comparing the baseline
benchmark with the masked array and loading into memory opti-
mizations. Each benchmark was run on up to 4 full nodes where N
processes was 1, 28, 56, and 112. The H5MD—-default test file was
used in all benchmarks. Points represent the mean over three repeats
with the standard deviation shown as error bars.

for every time step of data read, an exorbitant amount of excess
data was being read and discarded at each iteration step. Before
approaching the parallel tests, we tested how the chunk layout
affects baseline serial I/O performance for the file. We found
I/O performance strongly depends on the chunk layout of the
file on disk. The auto-chunked H5MD-default file I/O time was
4101s, while our custom chunk layout resulted in an I/O time of
460s (Figure 8). So, we effectively saw a 10x speedup just from
optimizing the chunk layout alone, where even the file with no
chunking applied showed similar improvements in performance.
In our previous serial I/O tests, we found that HSMD performed
worse than other file formats, so we repeated those tests with
our custom chunked file, HSMD-chunked. We found for our test
file of 111,815 atoms and 90100 frames, HSMD outperformed
XTC and TRR, while performing equally well to the DCD file, an
encouraging result (Fig. 9).

Next, we investigated what effect the chunk layout had on
parallel I/O performance. We repeated our benchmarks on Agave
(at this point, Bridges had been decommissioned and our Comet
allocation had expired) but with the HSMD-chunked and HSMD-
contiguous data files. For the serial one process case, we found
a similar result in that the I/O time was dramatically increased
with an approximate 10x speedup for both the contiguous and
chunked file, with respect to the baseline benchmark (Figure 10
A). The rest of the timings remained unaffected (Figure 10 B-F).
Although the absolute total benchmark time is much improved
(Figure 11 A), the scaling remains challenging, with a maximum
observed speedup of 12x for the contiguous file (Figure 11 B).
The N = 112 H5SMD-contiguous run’s I/O time was 47s (Fig. 10
A). When compared to the 4623s baseline serial time, this is a
98x speedup. Similarly, the HSMD-chunked 4 node run resulted
in an I/O time of 83s, which is a 56x speedup when compared to
baseline serial performance. Therefore, the boost in performance
seen by loading the HSMD-default trajectory into memory rather
than iterating frame by frame is indeed most likely due to the
original file’s chunk layout. This emphasizes the point that one
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may garner substantial [/O improvements if one thinks carefully
not only about how their algorithm accesses the file, but also
how the file is actually stored on disk. The relationship between
layout on disk and disk access pattern is crucial for optimized I/O.
Furthermore, as the auto-chunked layout of the H5MD-default
file scattered data from a single time step across multiple chunks,
it is very likely that these chunks themselves were also scattered
across stripes. In this case, multiple processes are still attempting
to read from the same chunk which would nullify any beneficial
effect striping has on file contention. We would have liked to
further test the effects of striping with a proper chunk layout,
but our XSEDE allocation expired.

Effects of HDF5 GZIP Compression on File I/O

HDFS5 files also offer the ability to compress the files. With our
writer, users are easily able to apply any of the compression
settings allowed by HDFS5. To see how compression affected
parallel I/O, we tested HDF5’s gzip compression with a minimum
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setting of 1 and a maximum setting of 9. In the serial 1 process
case, we found that I/O performance is slightly hampered, with I[/O
times approximately 4x longer with compression applied (Figure
13 A) This is expected as you are giving up disk space for the time
it takes to decompress the file, as is seen in the highly compressed
XTC format (Fig. 9). However, at increasing number of processes
(N > 28), we found that this difference disappears (Figure 13 A
and Figure 12 A). This shows a clear benefit of applying gzip
compression to a chunked HDFS5 file for parallel analysis tasks, as
the compressed file is ~2/3 the size of the original. Additionally we
found speedups of up to 36x on 2 full nodes for the compressed
data file benchmarks (Figure 13 B), although we recognize this
number is slightly inflated due to the slower serial I/O time. From
this data we can safely assume that HSMD files can be compressed
without fear of losing parallel I/O performance, which is a nice
boon in the age of terabyte sized trajectory files.
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Conclusions

The growing size of trajectory files demands parallelization of
trajectory analysis. However, file /O has become a bottleneck
in the workflow of analyzing simulation trajectories. Our im-
plementation of an HDF5-based file format trajectory reader in
MDAnalysis can perform parallel MPI I/O, and our benchmarks
on various national HPC environments show that speed-ups on
the order of 20x for 48 cores are attainable. Scaling up to
achieve higher parallel data ingestion rates remains challenging,
so we developed several algorithmic optimizations in our analysis
workflows that lead to improvements in I/O times. The results
from these optimization attempts led us to find that the our original
data file that was auto-chunked by h5py’s chunking algorithm had
an incredibly inefficient chunk layout of the original file. With a
custom, optimized chunk layout and gzip compression, we found
maximum scaling of 36x on 2 full nodes on Agave. In terms
of speedup with respect to the file chunked automatically, our
properly chunked file led to I/O time speedups of 98x at 112 cores

on Agave, which means carefully thinking not only about how
your file is accessed, but also how the file is stored on disk can
result in a reduction of analysis time from 4623 to 47 seconds.
To garner further improvements in parallel I/O performance, a
more sophisticated I/O pattern may be required, such as two-
phase MPI I/O or carefully synchronizing chunk sizes with Lustre
stripes. The addition of the HDFS5 reader provides a foundation for
the development of parallel trajectory analysis with MPI and the
MDAnalysis package.
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