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Abstract—Why did a decision maker select a certain decision? What behaviour
does a certain objective incentivise? How can we improve this behaviour and
ensure that a decision-maker chooses decisions with safer or fairer conse-
quences? This paper introduces the Python package PyCID, built upon pgmpy,
that implements (causal) influence diagrams, a widely used graphical modelling
framework for decision-making problems. By providing a range of methods to
solve and analyse (causal) influence diagrams, PyCID helps answer questions
about behaviour and incentives in both single-agent and multi-agent settings.

Index Terms—Influence Diagrams, Causal Models, Probabilistic Graphical
Models, Game Theory, Decision Theory

Introduction

Influence-diagrams (IDs) are used to represent and analyse deci-
sion making situations under uncertainty [HM05], [MIMH+76].
Like Bayesian Networks, IDs have at their core a directed acyclic
graph (DAG), but IDs also specify decision and utility nodes. Re-
lationships between variables are given by conditional probability
distributions. When these are specified, we call it an influence
model (IM). In an IM, a decision-maker selects a distribution over
its available actions at a decision (a decision rule) based on what it
knows (the values of its parents in the ID) to maximise its expected
utility. To demonstrate, consider the following example:

Grade Prediction: To decide who to admit, a university uses
a model to predict the grades of applicants based on information
in their application forms.

Fig. 1: A (C)ID for the Grade Prediction example.

Figure 1 shows the DAG for this example, which displays
clearly the structure of the decision situation. The decision being
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made by an agent, the model, is the grade prediction (decision
node). The agent selects a decision rule for this decision, based on
information about the applicant (chance node), in order to optimise
their prediction accuracy (utility node). The edges denote associ-
ational relationships in the case of a statistical IM, but denote
causal links in causal influence models (CIMs). This difference in
semantics [ECL+21] allows one to use CIMs to query the effect
of causal interventions and provides a setting to ask counterfactual
questions [Pea09]. (C)IMs have also been extended to multi-agent
settings by [KM03], [HFE+21], and [HFE+].

Statistical and causal IDs have shown promise for a wide
variety of applications. In business and medical decision making,
statistical IDs provide a simple yet powerful model for optimising
decisions by making assumptions explicit and revealing what
information is relevant [Góm04], [KM08]. Moreover, for the
design of safe and fair AI systems, causal IDs have been used to
help predict the behaviour of agents arising due to their incentives
in an environment [ECL+21], [CLEL20], [EHKK21], [Hol20],
[EKKL19], [LE21], and [CVH20]. Nevertheless, although Python
libraries exist for Bayesian networks, perhaps most prominently
pgmpy [AP15], these libraries lack specific support for IDs. We
found two Python wrappers of C++ influence diagram libraries:
pyAgrum [DBDSMW20] and PySMILE [Bay]. These were lim-
ited by usability (hard to install), maintainability (using multiple
languages) and versatility (they did not cover multi-agent or causal
IDs). A Python library that focuses on implementing statistical and
causal IDs is therefore needed to ensure their potential application
can be explored, probed, and fully realised.

Consequently, this paper introduces PyCID1, a Python library
built upon pgmpy [AP15] and NetworkX [HSS08], which im-
plements IDs and IMs (including their causal and multi-agent
variants) and provides researchers and practitioners with conve-
nient methods for analysing decision-making situations. PyCID
can solve single-agent (C)IMs, find Nash equilibria in multi-
agent (C)IMs, and compute the effect of causal interventions in
CIMs (e.g., fixing the prediction model in Figure 1 to always
predict a high grade regardless of the applicant’s information).
PyCID can also find which variables in an ID admit incentives.
For example, positive value of information [How66] and value of
control [Sha86] tell us when an agent can benefit from observing
or controlling a variable. Meanwhile, other incentives concepts,
recently proposed in [ECL+21], reveal which variables it can
be instrumentally useful to control and when a decision-maker
benefits from responding to a variable. Reasoning patterns are a
related concept in multi-agent IDs: they analyze why a decision-
maker would care about a decision [PG07], and these can also be
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computed in PyCID.
The first two sections of this paper provide the necessary

background on (C)IDs and describe the architecture of the Py-
CID library. We then move to showcasing some of PyCID’s
features through applications for discovering agent incentives and
analysing games. In the * Instantiating Causal Influence Dia-
grams* section, we demonstrate how to instantiate a (C)ID for the
Grade Prediction example in PyCID. In the Analysing Incentives
section, we demonstrate how to find the nodes which admit value
of information, response, value of control, or instrumental control
incentives for more complex (C)IDs. We then turn to multi-agent
(C)IDs (MA(C)IDs) and show how to use PyCID to compute Nash
equilibria. Next, we explain how PyCID can construct random
(MA)CIDs. Finally, we discuss the future of PyCID.

Background

Notation

Throughout this paper, we will use capital letters, X , for ran-
dom variables and let dom(X) denote their domain. An assign-
ment x ∈ dom(X) to X is an instantiation of X denoted by
X = x. X = {X1, . . . ,Xn} is a set of variables with instantiation
x = {x1, . . . ,xn}. We also let PaV denote the parents of a node V
in a (MA)CID and paV be the instantiation of PaV . Moreover, we
define DescV and FaV := PaV ∪{V} to be the descendants and
family of V . We use subscripts to index the elements of a set and,
in a multi-agent setting, superscripts to indicate a player i∈N; e.g.,
the set of decisions belonging to player i is Di = {Di

1, ...,D
i
n}.

Causal Influence Diagrams

A Bayesian network is a model consisting of a directed acyclic
graph (DAG) and a joint distribution that is Markov compatible
with that graph [Pea09]. The nodes in the DAG denote random
variables and the directed edges represent the associational rela-
tionships between them. To parameterise the DAG and encode the
joint distribution, each random variable, V , in the DAG is assigned
a conditional probability distribution (CPD), P(V |PaV ), dependent
on its set of graphical parents, PaV . Taken together, these CPDs
define the Bayesian network’s joint distribution.

A causal Bayesian network is a Bayesian network where the
directed edges in the DAG now represent every causal relation-
ship between the Bayesian network’s variables. This enables the
model the ability to answer questions about the effect of causal
interventions from outside of the system.

Causal Influence Diagrams (CIDs) are DAGs where the nodes
are partitioned into chance, decision, and utility nodes and the
edges adopt the same causal semantics as causal Bayesian net-
works [ECL+21]. Causal Influence models (CIMs) are parame-
terised CIDs where, at the outset, the CPDs for chance and utility
nodes are defined, but only the domains for the decision variables
are fixed.

Definition 1 [ECL+21] A Causal influence Diagram (CID)
is a directed acyclic graph (V,E) where the set of vertices (V)
connected by directed edges (E ⊆ V×V) are partitioned into
chance (X), decision (D), and utility (U) nodes. Utility nodes lack
children.

Definition 2 [ECL+21] A Causal influence Model (CIM) is
a tuple (V,E,θ) where (V,E) is a CID and θ ∈ Θ is a particular
parametrisation over the nodes in the graph specifying for each

1. This paper describes PyCID version 0.2.6.

node V ∈V a finite domain dom(V ), for each utility node U ∈U a
real-valued domain dom(U)⊆R, and for every chance and utility
node a conditional probability distribution (CPD) P(V | PaV ).

Multi-agent Causal Influence Diagrams (MACIDs) partition
decision and utility nodes further into sets associated with each
agent. In a (MA)CID, a decision rule, πD(D|PaD), is a probability
distribution over the actions available at decision node D condi-
tional on the value of its parents in the graph, PaD. A policy, π i,
assigns decision rules to all of agent i’s decision nodes, and, in a
MACIM, a policy profile, π , assigns policies to every agent. In a
(MA)CID, each agent i’s expected utility, U i

M (π), under a policy
(profile) π is the sum of the expected values of their utility nodes.

Package Architecture

In this section, we outline the structure (Figure 2) and describe the
key classes of the PyCID library2.

Fig. 2: An overview of PyCID’s file structure.

Installation

PyCID is released under the Apache License 2.0. It requires Python
3.7 or above, but only depends on Matplotlib [Hun07], NetworkX
[HSS08], NumPy [HMvdW+20], and pgmpy [AP15]. It can be
downloaded and installed in a Python virtual environment or in a
Conda environment using:
python3 -m pip install pycid

PyCID is under continual development and so one can install the
latest developmental package using a git checkout from the PyCID
repository on GitHub: https://github.com/causalincentives/pycid.

2. PyCID is under continued development, so more features will be added
over time. Any updated documentation may be found in the repository’s
README file.

https://github.com/causalincentives/pycid
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Classes Inherited from pgmpy

PyCID’s key classes inherit from pgmpy’s BayesianModel,
TabularCPD, and BeliefPropagation classes [AP15]. The
BayesianModel class represents a Bayesian network and CPDs
are assigned to each random variable in the model using instances
of the TabularCPD class. These CPDs define the Bayesian
Network’s joint distribution and the BeliefPropagation
class is then used to perform probabilistic inference on a
BayesianModel object; for instance, one can query the proba-
bility that node V takes value v given some instantiation of other
variables in the DAG (known as a context).

The pycid.core module

PyCID’s base class is CausalBayesianNetwork. This class
inherits from pgmpy’s BayesianModel and represents a causal
Bayesian network. In particular, it extends BayesianModel by
adding the ability to query the effect of causal interventions. It
also adds methods for determining the expected value of a variable
for a given context (again under an optional causal intervention)
and for plotting the DAG of the Causal Bayesian Network using
NetworkX [HSS08]. CPDs for a CausalBayesianNetwork
object can be defined using pgmpy’s TabularCPD class, but
we also allow relationships to be specified more directly with
stochastic functions (under the hood, these are implemented via a
StochasticFunctionCPD class). This can be used to specify
relationships between variables with a stochastic function, rather
than just with a probability matrix (see the Instantiating Causal
Influence Diagrams section). CausalBayesianNetwork
also has an inner class, Model, which keeps track of CPDs and
domains for all CausalBayesianNetwork objects’ variables
in the form of a dictionary.

The MACIDBase class, which inherits from
CausalBayesianNetwork, provides the underlying methods
necessary for single-agent and multi-agent causal influence
diagrams. The class includes methods for determining the
expected utility of an agent, for finding optimal decision rules and
policies, and for finding various new graphical criteria defined in
influence diagrams (e.g. r-relevance).

CID and MACID are classes, inheriting from MACIDBase,
that represent single-agent and multi-agent (C)IDs and are the
models of most concern in PyCID. They include methods for
finding the optimal policy for an agent in a (C)IM and for finding
Nash equilibria [N+50] and subgame perfect Nash equilibria
[Sel65] in a MA(C)IM. It is important to highlight here that
statistical (i.e., non-causal) single-agent and multi-agent influence
diagrams can also be defined as CID and MACID objects using
PyCID. In their case, all class methods are permitted except those
that involve causal interventions.

The pycid.core module also contains functions that exploit
relationships between the (MA)(C)ID’s variables such as finding
all (active) (directed) paths between variables and classes that
find the relevance graphs [KM03] associated with MACIDBase
objects.

PyCID’s other modules

The pycid.analyse module includes functions for determining
incentives in (C)IDs [ECL+21], reasoning patterns in MA(C)IDs
[PG07], and a function for computing the total effect of interven-
ing on a variable with different values. pycid.examples contains
pre-implemented (C)IDs and MA(C)IDs, whilst pycid.random

contains functions for generating random (C)IDs and MA(C)IDs.
pycid.notebooks contains jupyter notebooks with demonstrations
of how to use the codebase; these can also be run directly as Colab
notebooks. Finally, pycid.tests houses unit tests for all functions
and public class methods.

Instantiating Causal Influence Diagrams

Having covered PyCID’s basic library structure, the remaining
sections will demonstrate some use cases. We begin, in this
section, by instantiating the structure of the simple (C)ID given in
the introduction (Figure 1). For many purposes, including finding
incentives, the graph is enough for analysis.

A (C)ID for the Grade Prediction example is created as an
instance of our CID class. Its initializer takes a list of edges as
its first argument and then two more lists specifying the (C)ID’s
decision and utility nodes. All other nodes introduced in the edge
pairs, which are not decision or utility nodes, are chance nodes.
For conciseness, we abbreviate and use P to denote the prediction
model’s decision node, A for the applicant’s information, and Ac
to denote the accuracy of the predictions:
import pycid
cid = pycid.CID(

[("A", "P"), ("A", "Ac"), ("P", "Ac")],
decisions=["P"],
utilities=["Ac"],

)
cid.draw()

The CID class method, draw, plots this (C)ID (Figure 3) with a
node colour and shape convention that matches what is given in
Figure 1’s legend.

Fig. 3: A simple (C)ID (Left) and corresponding CIM (Right) plotted
using PyCID.

To then parameterise this (C)ID as a (C)IM by adding a domain
for P and CPDs for A and Ac, we pass keyword arguments to the
add_cpds method:
1 cid.add_cpds(
2 A=pycid.discrete_uniform([0, 1]),
3 P=[0, 1],
4 Ac=lambda a, p: int(a == p),
5 )

CPDs in PyCID can be instantiated directly as TabularCPD
objects, but more often PyCID’s StochasticFunctionCPD
subclass is used. This provides multiple ways to easily specify
how a chance or utility variable’s CPD depends on its parents or
follows some distribution; it then converts that expression into
a TabularCPD object under the hood. On line 2 above, we
assign variable A a discrete uniform distribution over its domain,
dom(A) = {0,1}; on line 3, we specify dom(P) = {0,1}; and on
the final line, we specify how the value of Ac depends on the
values of its parents, A and P. Within the lambda function, other
variables are referred to by their lower case form to denote that
variable’s instantiation. Using a CID class method, solve, we can



68 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

now solve this (C)IM by finding the agent’s optimal decision rule
for P. This returns the following output, saying that the optimal
decision rule for P is to choose action 0 (low grade prediction)
when the value of A is 0 (the quality of the application is poor),
and action 1 (high grade prediction) when the value of A is 1 (the
quality of the application is high):
{'P': StochasticFunctionCPD<D>

{'a': 0} -> 0
{'a': 1} -> 1}

If the agent behaves according to this optimal decision rule, we
find that their expected utility is 1 using the code below; ex-
pected_utility accepts optional dictionaries for specifying contexts
and causal interventions:
solution = cid.solve()
optimal_d_cpd = solution['P']
cid.add_cpds(optimal_d_cpd)
cid.expected_utility(context={}, intervention={})

There are several other ways to specify CPDs for variables. For
example, on line 1 below, the CPD for A is updated to now follow
a Bernoulli(0.8) distribution and line 2 specifies that now Ac just
copies the value of P with probability 0.7:
1 cid.add_cpds(A=pycid.bernoulli(0.8))
2 cid.add_cpds(Ac=lambda a, p: pycid.noisy_copy(p,
3 probability=0.7, domain=[0, 1]))

Analysing Incentives

In this section, we demonstrate how to use PyCID to find which
nodes in a single-decision CID admit different types of incentives
using their graphical criterion [ECL+21]. In general, a graphical
criterion tells you what properties influence models can have
based on the influence diagram (i.e, the graph) alone. A graphical
criterion takes a graph and several nodes as arguments and returns
whether or not the property (in this case the incentive) can occur
for those nodes. Incentives are helpful for applications in safety
and fairness ([ECL+21], [Hol20]), understanding the behaviour of
RL algorithms ([LE21], [EHKK21]), and comparing the promise
of different AGI safety frameworks [EKKL19]. We believe that
PyCID can further mature these enquiries.

PyCID currently finds the following incentives in single-
decision CIDs using their graphical criteria:

• Value of Information (VoI)
• Response Incentives (RI)
• Value of Control (VoC)3

• Instrumental Control Incentives (ICI)

Value of Information (VoI)

Intuitively, a variable has positive value of information (VoI) if a
decision-maker would benefit (get more utility) from observing its
value before making a decision:

VoI Definition: For a CIM4 M , and a node X ∈ V \DescD,
let MX 6→D and MX→D be M modified by respectively removing
and adding the edge X → D. The value of information for X is
then max

π
U i

MX→D
(π)−max

π
U i

MX 6→D
(π).

VoI has been applied to a wide array of problems in eco-
nomics and computer science [BP16]. Although PyCID’s function

3. Nodes can be specified further as admitting indirect or direct Value of
Control.

4. This definition is also valid in (non-causal) statistical influence models.

quantitatative_voi returns the quantitative VoI of a variable in
a CIM, for the remainder of this section we shall focus on its
graphical criterion, which depends upon which nodes are requisite
observations in the CID.

Requisite Observation Graphical Criterion: Let UD ∈ U∩
DescD be the utility nodes downstream of D. An observation X ∈
PaD in a single-decision CID is requisite if X 6⊥G UD|(PaD ∪
{D}\{X})5.

VoI Graphical Criterion: A single decision CID, G , admits
VoI for X ∈ V \DescD if and only if X is a requisite observation
in GX→D, the graph obtained by adding X → D to G .

To demonstrate how to find nodes that admit VoI using
PyCID, we extend the Grade Prediction example given in the
introduction:

Extended Grade Prediction: [ECL+21] The university wants
to admit the brightest students using their grade prediction model,
but doesn’t want to treat students differently based on their gender
(Ge) or race (R). The model uses the gender of the student and the
high school (HS) they attended to make its grade prediction. We
make the following assumptions:

• Performance at university is evaluated by a student’s
grades (Gr) and this depends on the quality of education
(E) the student received before university (which depends
on the high school they attended).

• A student’s high school is assumed to be impacted by their
race, but not by their gender.

We want to know whether the predictor is incentivised to
behave in a discriminatory manner with respect to the students’
gender or race. A CID for this example is defined below:
cid = pycid.CID(

[
("R", "HS"),
("HS", "E"),
("HS", "P"),
("E", "Gr"),
("Gr", "Ac"),
("Ge", "P"),
("P", "Ac"),

],
decisions=["P"],
utilities=["Ac"],

)

PyCID finds that HS, E, and Gr can all have positive VoI for
the predictor model (line 1). We can also display this visually
(Figure 4) by passing, as an argument, a lambda function into
CID’s draw_property method (line 2):
1 pycid.admits_voi_list(cid, 'P')
2 cid.draw_property(lambda node:
3 pycid.admits_voi(cid, 'P', node))

Our implementation of this example in PyCID has revealed that
there exists a parameterisation of this setup (i.e., a CIM with the
given CID) where the model would benefit from knowing the value
of one or more of ’High School’, ’Education’, or the student’s true
’Grade’ before making a grade prediction.

Response Incentives (RI)

Response incentives (RI) are a related type of incentive and we
explain how implementing them in PyCID can help improve the

5. X 6⊥G Y |W denotes that X is d-connected to Y conditional on the set
of nodes in W and X ⊥G Y |W would denote that X is d-separated from Y
conditional on W [Pea09].
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Fig. 4: A CID for the Extended Grade Prediction example with the
variables that admit VoI in a darker colour, red (plotted using PyCID).

fairness of AI systems. A variable admits an (RI) if a decision-
maker benefits from making its decision causally responsive to
the variable [ECL+21]6.

RI Graphical Criterion: A single decision CID, G , admits
a response incentive on X ∈ X if and only if there is a directed
path X 99K D in the requisite graph7 Greq where Greq is the result
of removing from G all information links from non-requisite
observations.

To demonstrate how to find the nodes which admit RIs, we
will again consider the Extended Grade Prediction example. As
we did with VoI, we can list all of the nodes that admit RIs in the
CID (line 1) or we can display the result visually (line 2) with the
result shown in Figure 5 (Left):
1 pycid.admits_ri_list(cid, 'P')
2 cid.draw_property(lambda node:
3 pycid.admits_ri(cid, 'P', node))

Implementing CIDs in PyCID can help suggest how to improve
the fairness of AI systems because [ECL+21] argue that an RI on a
sensitive attribute can be interpreted as problematic from a fairness
perspective. A decision is considered counterfactually unfair if
a change to a sensitive attribute, such as race or gender, would
change the decision [KLRS17]. Therefore, an RI on a sensitive
attribute indicates that counterfactual unfairness is incentivised;
specifically, it implies that all optimal policies are counterfactually
unfair. To mitigate this, [ECL+21] propose redesigning the grade-
predictor. By removing the predictor’s access to knowledge about
the student’s high school (i.e., the edge HS→ P ), there will no
longer be an RI on a sensitive attribute. The following code trims
the edge and shows that now no node admits an RI in the modified
CID (Figure 5 (Right)):
cid.remove_edge('HS', 'P')
cid.draw_property(lambda node: \

pycid.admits_ri(cid, 'P', node))

Value of Control (VoC) and Instrumental Control Incentives (ICI)

We now turn to Value of Control (VoC) and Instrumental Control
Incentives (ICI) and show that implementing the latter in PyCID
can help design safer AI systems. Intuitively, a variable has
positive value of control (VoC) if a decision-maker could benefit
from choosing that variable’s value.

VoC Definition: For a CIM M , the value of control for a
non-decision node X ∈ V\D is max

π
max

gX
U i

MgX
(π)−max

π
U i

M (π).

MgX denotes the CIM M after intervening on X with any CPD,
gX , that respects the graph.

6. For a formal definition, we refer the reader to [ECL+21].
7. A requisite graph is also known as a minimal reduction, trimmed_graph,

or d-reduction.

Fig. 5: (Left) The original CID for the Extended Grade Prediction
example with the variables that admit an RI in a darker colour, red,
and (Right) the modified CID in which now no node admits an RI
(plotted using PyCID).

VoC Graphical Criterion: A single decision CID, G , admits
positive value of control for a node X ∈ V \ {D} if and only if
there is a directed path X 99KU in the requisite graph Greq.

Although VoC is a useful concept, it does not consider whether
it is actually possible for an agent to control that variable. There-
fore, [ECL+21] introduce Instrumental Control Incentives, which
can be intuitively understood as follows: if the agent got to choose
D to influence X independently of how D influences other aspects
of the environment, would that choice matter? In other words, is
controlling X instrumentally useful for maximising utility? The
graphical criteria for ICI in a single-decision CID is:

ICI Graphical Criterion: A single decision CID, G , admits
an instrumental control incentive on X ∈ V if and only if G has
a directed path from the decision D to a utility node U ∈ U that
passes through X .

To demonstrate how to find these incentives in PyCID, we
introduce another example from [ECL+21].

Content recommendation: An AI algorithm has the task of
choosing posts (P) to show a user, to maximise the user’s click
rate (C). The designers want the algorithm to present content
adapted to each user’s original opinions (O) to optimize clicks;
the algorithm does not know the user’s true original opinions,
so it instead relies on an approximate model (M). However,
the designers are worried that the algorithm will use polarising
content to influence user opinions (I) so that the user clicks more
predictably:
cid = pycid.CID(

[
("O", "M"),
("O", "I"),
("M", "P"),
("P", "I"),
("I", "C"),
("P", "C"),

],
decisions=["P"],
utilities=["C"],

)

cid.draw_property(lambda node: \
pycid.admits_ici(cid, 'P', node))

With RI, we showed that implementing CIDs in PyCID can
aid the design of fairer systems; with ICI, we demonstrate how
PyCID can be used to help design safer AI systems. First, we
can use analogous functions to what we used for VoI and RI -
pycid.admits_voc_list(cid) and pycid.admits_ici_list(cid, ’P’) - to
find that O, M, I, and C can have positive VoC whilst I, P, and C
admit ICI. From this, because I (influenced user opinions) admits
an instrumental control incentive, we discover that the content
recommender may seek to influence that variable to attain utility.
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[ECL+21] offer an alternative content recommender design that
avoids this undesirable behaviour. Instead of being rewarded for
the true click-through rate, the content recommender is rewarded
for the clicks it would be predicted to have, based on a separately
trained model of the user’s preferences. The modified CID for this
changed model is shown in Figure 6 c) where the old utility node
C (actual clicks) has become PC (predicted clicks):
cid = pycid.CID(

[
("O", "M"),
("O", "I"),
("M", "P"),
("M", "PC"),
("P", "I"),
("P", "PC"),

],
decisions=["P"],
utilities=["PC"],

)

cid.draw_property(lambda node: \
pycid.admits_ici(cid, 'P', node))

Fig. 6: The original CID for the Content recommendation example
in (a) with (b) the variables that admit ICI in a darker colour, red,
and (c) the modified content recommender’s CID in which (d) I no
longer admits an ICI (plotted using PyCID).

Multi-agent (Causal) Influence Diagrams

In this section, we will show how to instantiate
MA(C)IDs/MA(C)IMs in PyCID and demonstrate a selection
of methods for analysing games (strategic interactions between
self-interested players) including strategic relevance [KM03] and
finding Nash equilibria (NE) [N+50].

Recall from the Background section that a Multi-agent Causal
Influence Diagram/Model (MACID/MACIM) is a simple multi-
agent extension of a CID/CIM [HFE+]. For our purpose, all
that’s important is that there is now a set of N agents and so
the decision and utility nodes are partitioned into {Di}i∈N and
{Ui}i∈N to correspond to their association with a particular agent
i∈N. We also again underline that the only difference between sta-
tistical multi-agent influence diagrams/models (MAIDs/MAIMs)
and MACIDs/MACIMs is that the edges represent every causal
relationship between the random variables chosen to be endoge-
nous variables in the model, as opposed to just associational
relationships. Nevertheless, because MACIDs subsume MAIDs (in
the sense of Pearl’s causal hierarchy [Pea09]), everything we can

do in a MAID, we can also do in a MACID. Therefore, for the two
examples we present here, MAIDs and MACIDs can be viewed as
the same.

To serve as our example, we shall use the Prisoner’s Dilemma,
which is probably the best known simultaneous and symmetric
two-player game:

Prisoner’s Dilemma: Two prisoners, suspected of committing
a robbery together, are isolated and urged to confess. Each is
concerned only with getting the shortest possible prison sentence
for himself and must decide whether to confess without knowing
his partner’s decision. Both prisoners, however, know the con-
sequences of their decisions. Each year spent in prison can be
represented as -1 utility and so the payoff matrix for this game (or
Normal form) is given in Figure 7.

Fig. 7: Normal form game giving the payoffs for each player in the
Prisoner’s Dilemma. Player 1 (2) is the row (column) player.

MA(C)IDs and MA(C)IMs are instantiated as MACID objects
with identical syntax to CID objects except for there being
multiple agents and so we can draw them in the same way. Figure 8
(Left) shows that in PyCID, consistent with (C)IDs, decision nodes
are drawn as rectangles and utility nodes are drawn as diamonds;
however, because we now have more than one player, we reserve
colouring to denote agent membership: each agent is assigned a
unique colour. Chance nodes remain as grey circle (Figure 11):
macid = pycid.MACID(

[
("D1", "U1"),
("D1", "U2"),
("D2", "U1"),
("D2", "U2"),

],
# specifies each agent's decision and utility nodes.
agent_decisions={1: ['D1'], 2: ['D2']},
agent_utilities={1: ['U1'], 2: ['U2']},

)

d1_dom = ['c', 'd']
d2_dom = ['c', 'd']

agent1_payoff = np.array([[-1, -3], [0, -2]])
agent2_payoff = np.transpose(agent1_payoff)

macid.add_cpds(
D1=d1_dom,
D2=d2_dom,
U1=lambda d1, d2: agent1_payoff[d1_dom.index(d1),

d2_dom.index(d2)],
U2=lambda d1, d2: agent2_payoff[d1_dom.index(d1),

d2_dom.index(d2)]
)
macid.draw()

The following command tells us that the second player (agent)
receives expected utility = -3 (i.e., they will spend 3 years in
prison) given that player 1 decides to defect and player 2 decides
to cooperate. This agrees with the payoff matrix in Figure 7:
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Fig. 8: A MACID for the Prisoner’s Dilemma (Left) and its corre-
sponding relevance graph (Right) (plotted using PyCID).

macid.expected_utility(context={'D1':'d', 'D2': 'c'},
agent=2)

Strategic relevance is a useful concept for analysing decisions
made in games; it asks which other decisions’ decision rules need
to be already be known before we can optimise a particular deci-
sion rule. [KM03] introduced the graphical criterion s-reachability
for determining this from the graph:

S-reachability Graphical Criterion: Another decision node
D′ is s-reachable from a decision D ∈ Di in a MA(C)ID, M =
(N,V,E), if a newly added parent D̂′ of D′ satisfies D̂′ 6⊥G Ui ∩
DescD | FaD.

Using PyCID, lines 1 and 2 below evaluate to True, which
tells us that each decision strategically relies on the other; each
prisoner would be better off knowing the other prisoner’s policy
before deciding on their own action. To show this visually, line 3
plots the MACID’s relevance graph [KM03] (Figure 8 Right):

1 macid.is_r_reachable('D1', 'D2')
2 macid.is_r_reachable('D2', 'D1')
3 pycid.RelevanceGraph(macid).draw()

We now turn to finding NE in games. We use πA to denote player
i’s set of decision rules for decisions A⊆Di, given a partial policy
profile π−A over all of the other decision nodes in a MA(C)ID, M .
We write U i

M (πA,π-A) to denote the expected utility for player i
under the policy profile π = (πA,π-A).

Definition: [KM03] A full policy profile π is a Nash equi-
librium (NE) in a MA(C)IM M if, for every player i ∈ N,
U i

M (π i,π−i)≥U i
M (π̂ i,π−i) for all π̂ i ∈Πi.

To find all pure NE in the MA(C)IM corresponding to the
Prisoner’s Dilemma:

macid.get_all_pure_ne()

This method returns a list of all pure NE in the MA(C)ID. Each
NE comes as a list of StochasticFunctionCPD objects, one
for each decision node in the MA(C)ID:

[[StochasticFunctionCPD<D1>
{} -> d,

StochasticFunctionCPD<D2>
{} -> d]]

In the Prisoner’s Dilemma, there is only one NE and this involves
both players defecting. We can then find that the expected utility
for each agent is -2 under this NE joint policy profile:

all_pure_ne = macid.get_all_pure_ne()
macid.add_cpds(*all_pure_ne[0])
macid.expected_utility({}, agent=1)
macid.expected_utility({}, agent=2)

PyCID can also be used to find subgame perfect equilibria (SPE)
[Sel65]. A SPE is a NE where no player makes a non-credible
threat - an action that, if the player is rational, they would never
actually carry out.

Definition: [HFE+21] A full policy profile π is a subgame
perfect equilibrium (SPE) in a MA(C)IM M if π is an NE in
every MAIM subgame8 of M .

The Prisoner’s Dilemma MAIM has no proper MAIM sub-
games and so the NE we found above is (trivially) also a SPE.
Therefore, to demonstrate how PyCID distinguishes between NE
and SPE, we use the following example:

Taxi Competition: Two autonomous taxis, operated by differ-
ent companies, are driving along a road with two hotels located
next to one another - one expensive and one cheap. Each taxi must
decide (one first, then the other) which hotel to stop in front of,
knowing that it will likely receive a higher tip from guests of the
expensive hotel. However, if both taxis choose the same location,
this will reduce each taxi’s chance of being chosen by that hotel’s
guests. The payoffs for each player are shown in Figure 9 and the
MACIM for this example is instantiated in PyCID below

Fig. 9: Payoff matrices for taxi 1 (left) and taxi 2 (right) for the Taxi
Competition.

macid = MACID(
[("D1", "D2"), ("D1", "U1"), ("D1", "U2"),
("D2", "U2"), ("D2", "U1")],
agent_decisions={1: ["D1"], 2: ["D2"]},
agent_utilities={1: ["U1"], 2: ["U2"]},

)

d1_dom = ["e", "c"]
d2_dom = ["e", "c"]
agent1_payoff = np.array([[2, 5], [3, 1]])
agent2_payoff = agent1_payoff.T

macid.add_cpds(
D1=d1_dom,
D2=d2_dom,
U1=lambda d1, d2: agent1_payoff[d1_dom.index(d1),

d2_dom.index(d2)],
U2=lambda d1, d2: agent2_payoff[d1_dom.index(d1),

d2_dom.index(d2)],
)

Fig. 10: A MA(C)ID for the Taxi Competition and its corresponding
relevance graph (plotted using PyCID).

This MA(C)IM has three pure NE, which are found using
macid.get_all_pure_ne(). We can also find the decision nodes in

8. We refer the interested reader to [HFE+21] for a definition of a MAIM
subgame.
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each MAID subgame (see [HFE+21]), the decision nodes that can
be optimised independently from the rest:
macid.decs_in_each_maid_subgame()
[{'D2'}, {'D1', 'D2'}]

We can find the NE in the only proper subgame:
macid.get_all_pure_ne_in_sg(decisions_in_sg=['D2'])

and finally all SPE in the MA(C)IM. The Taxi Competition’s
MACIM has only one pure SPE:
macid.get_all_pure_spe()

[[StochasticFunctionCPD<D2>
{'d1': 'c'} -> e
{'d1': 'e'} -> c,

StochasticFunctionCPD<D1>
{} -> e]]

Random (C)IDs and MA(C)IDs

PyCID has other features that can be useful for researchers. In
particular, the library contains functions for instantiating random
(MA)(C)IDs. This is useful for estimating the average properties
of graphs, or for finding a counterexample to some conjecture.
The first example below finds and plots a random 10-node, single-
agent (C)ID with two decision nodes and three utility nodes. The
second example finds and plots a random 12-node MA(C)ID with
two agents. The first agent has one decision and two utility nodes,
the second agent has three decisions and two utility nodes. In
both these examples, we set the add_cpds flag to False to create
non-parameterised (MA)(C)IDs. If one sets this flag to True, each
chance and utility node is assigned a random CPD, and each
decision node a domain to instantiate a (MA)CIM. One can also
force every agent in the (MA)(C)ID to have sufficient recall;
an agent has sufficient recall if the relevance graph restricted to
include just that agent’s decision nodes is acyclic. This can be
useful for certain incentives analyses [vMCE]. The edge_density
and max_in_degree parameters set the density of edges in the
(MA)(C)ID’s DAG as a proportion of the maximum possible num-
ber (n× (n− 1)/2) and the maximum number of edges incident
to a node in the DAG. To find a (MA)(C)ID that meets all of
the specified constraints, PyCID uses rejection sampling and so
max_resampling_attempts specifies the number of samples to try
before timing out:
cid = pycid.random_cid(

number_of_nodes=10,
number_of_decisions=2,
number_of_utilities=3,
add_cpds=False,
sufficient_recall=False,
edge_density=0.4,
max_in_degree=5,
max_resampling_attempts=100,

)
cid.draw()

macid = pycid.random_macid(
number_of_nodes=12,
agent_decisions_num=(1, 3),
agent_utilities_num=(2, 2),
add_cpds=False,
sufficient_recall=False,
edge_density=0.4,
max_in_degree=5,
max_resampling_attempts=500,

)
macid.draw()

Fig. 11: A random (C)ID and MA(C)ID created in PyCID.

Conclusions and Future Directions

PyCID is a Python library for solving and analysing single-agent
and multi-agent (causal) influence diagrams. Several key classes
- CausalBayesianNetwork, CID, and MACID - enable deci-
sion problems to be solved and the effects of causal interventions
to be studied whilst PyCID’s analysis functions can find graphical
properties such as incentives in CIDs and reasoning patterns in
MACIDs. This makes PyCID a customizable, but powerful library
for testing research ideas and exploring applications. Moreover,
implementing examples programmatically can substantiate the
claims made by ID researchers about the benefit of their work;
one can assess how different quantities vary over the parameter
space or empirically verify complexity results [HFE+]. Single-
agent and multi-agent (causal) influence diagrams are an area of
active research, so as theory develops, the PyCID library will also
grow. Extensions will likely include:

• Support for finding incentives in multi-decision CIDs
[vMCE].

• Support for Structural Causal Models [Pea09] and there-
fore also quantitative RI and ICI.

• More game-theoretic concepts (e.g. more equilibrium con-
cepts).

• Support for multi-agent incentives.

In this paper, we have demonstrated the usefulness of PyCID
by focusing on causal influence diagrams; however, this library is
also well suited for working with statistical influence diagrams.
The development team would like to invite researchers from any
domain to use PyCID to test the package for diverse applications,
to contribute new methods and functions, and to join our Causal
Incentives Working Group: https://causalincentives.com/. The Py-
CID repository is available on GitHub under our working group’s
organization: https://github.com/causalincentives/pycid.
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