106

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

PyRSB: Portable Performance on Multithreaded
Sparse BLAS Operations

Michele Martone**, Simone Bacchio®

Abstract—This article introduces PyRSB, a Python interface to the LIBRSB
library. LIBRSB is a portable performance library offering so called Sparse BLAS
(Sparse Basic Linear Algebra Subprograms) operations for modern multicore
CPUs. It is based on the Recursive Sparse Blocks (RSB) format, which is
particularly well suited for matrices of large dimensions. PyRSB allows LIBRSB
usage with an interface styled after that of SciPy’s sparse matrix classes, and
offers the extra benefit of exploiting multicore parallelism. This article introduces
the concepts behind the RSB format and LIBRSB, and illustrates usage of
PyRSB. It concludes with a user-oriented overview of speedup advantage of
rsb_matrix over scipy.sparse.csr_matrix running general sparse
matrix-matrix multiplication on a modern shared-memory computer.

Introduction

Sparse linear systems solving is one of the most widespread prob-
lems in numerical scientific computing. The key to timely solution
of sparse linear systems by means of iterative methods resides
in fast multiplication of sparse matrices by dense matrices. More
precisely, we mean the update: C <— C+ 0AB (at the element level,
equivalent to C;; < Cjx + tA; jB; ) where B and C are dense
rectangular matrices, A is a sparse rectangular matrix, and alpha a
scalar. If B and C are vectors (i.e. have one column only) we call
this operation SpMV (short for Sparse Matrix-Vector product);
otherwise SpMM (short for Sparse Matrix-Matrix product).

PyRSB [PYRSB] is a package suited for problems where: i)
much of the time is spent in SpMV or SpMM, ii) one wants to
exploit multicore hardware, and iii) sparse matrices are large (i.e.
occupy a significant fraction of a computer’s memory).

The PyRSB interface is styled after that of the sparse matrix
classes in SciPy [Virtanen20]. Unlike certain similarly scoped
projects ([Abbasil8], [PyDataSparse]), PyRSB is restricted to 2-
dimensional matrices only.

Background: LIBRSB

LIBRSB [LIBRSB] is a LGPLv3-licensed library written primar-
ily to speed up solution of large sparse linear systems using
iterative methods on shared-memory CPUs. It takes its name from
the Recursive Sparse Blocks (RSB) data layout it uses. The RSB
format is geared to execute multithreaded SpMV and SpMM as
fast as possible. LIBRSB is not a solver library, but provides
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most of the functionality required to build one. It is usable via
several languages: C, C++, Fortran, GNU Octave [SPARSERSB],
and now Python, too. Bindings for the Julia language have been
authored by D.C. Jones [RSB_JL].

LIBRSB has been reportedly used for: Plasma physics
[Stegmeirl5], sub-atomic physics [Klosl8], data classifica-
tion [Leel5], eigenvalue computations [Wul6], meteorology
[Brownel5T], and data assimilation [Brownel5M].

It is available in pre-compiled form in popular GNU/Linux
distributions like Ubuntu [UBUNTU], Debian [DEBIAN], Open-
SUSE [OPENSUSE]; this is the best way have a LIBRSB installa-
tion to familiarize with PyRSB. However, pre-compiled packages
will likely miss compile-time optimizations. For this reason,
the best performance will be obtained by bulding on the target
computer. This can be achieved using one of the several source-
based code distributions offering LIBRSB, like Spack [SPACK],
or EasyBuild [EASYBUILD], or GUIX [GUIX]. LIBRSB has
minimal dependencies, so even bulding by hand is trivial.

PyRSB [PYRSB] is a thin wrapper around LIBRSB based on
Cython [Behnell1]. It aims at bringing native LIBRSB perfor-
mance and most of its functionality at minimal overhead.

Basic Sparse Matrix Formats

The explicit (dense) way to represent any numerical matrix is to
list each of its numerical entries, whatever their value. This can be
done in Python using e.g. scipy.matrix.

>>> from scipy import matrix

>>>
>>> A = matrix([[11., 12.], [ 0., 22.11)
matrix ([[11., 12.],

[ 0., 22.11)
>>> A.shape
(2, 2)

This matrix has two rows and two columns; it contains three non-
zero elements and one zero element in the second row. Many
scientific problems give rise to systems of linear equations with
many (e.g. millions) of unknowns, but relatively few coefficients
which are different than zero (e.g. <I%) in their matrix-form
representation. It is usually the case that representing these zeroes
in memory and processing them in linear algebraic operations
does not impact the results, but takes compute time nevertheless.
In these cases the matrix is usually referred as sparse, and
appropriate sparse data structures and algorithms are sought.
The most straightforward sparse data structure for a numeric
matrix is one listing each of the non-zero elements, along with its
coordinate location, by means of three arrays. This is called COO.
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It’s one of the classes in scipy.sparse; see the following
listing, whose output also illustrates conversion to dense:

>>> from scipy.sparse import coo_matrix

>>>
>>> VvV = [11.0, 12.0, 22.0]

>>> 1 = [0, 0, 1]

>>> J = [0, 1, 1]

>>> A = coo_matrix ((V, (I, J)))

<2x2 sparse matrix of type '<class 'numpy.float64'>"
with 3 stored elements in COOrdinate format>
>>> B = A.todense ()

>>> B

matrix ([[11., 12.],
[ 0., 22.11)

>>> A.shape

(2, 2)

Even if yielding the same results, the algorithms beneath differ
considerably. To carry out the Gy < Cix + 0tA; ;B updates
the scipy.coo_matrix implementation will get the matrix
coefficients from the V array, its coordinates from the I and J
arrays, and use those (notice the indirect access) to address the
operand’s elements.

In contrast to that, a dense implementation like
scipy.matrix does not use any index array: the location of
each numerical value (including zeroes) is in direct relation with
its row and column indices.

Beyond the v, I, J arrays, COO has no extra structure. COO
serves well as an exchange format, and allows expressing many
operations.

The second most straightforward format is CSR (Compressed
Sparse Rows). In CSR, non-zero matrix elements and their column
indices are laid consecutively row after row, in the respective ar-
rays V and J. Differently than in COO, the row index information
is compressed in a row pointers array P, dimensioned one plus
rows count. For each row index i, P [1] is the count of non-zero
elements (nonzeroes) on preceding rows. The count of nonzeroes
at each row 1 is therefore P[i+1]-P[1], with P [0]==0. SciPy
offers CSR matrices via scipy.csr_matrix:

>>> import scipy
>>> from scipy.sparse import csr_matrix

>>>
>>> VvV = [11.0, 12.0, 22.0]
>>> P = [0, 2, 3]
>>>J = [0, 1, 1]
>>> A = csr_matrix ((V, J, P))
>>> A.todense ()
matrix ([[11., 12.],

[ 0., 22.11)
>>> A.shape
(2, 2)

CSR’s P array allows direct access of each sparse row. This helps
in expressing row-oriented operations. In the case of the SpMV
operation, CSR encourages accumulation of partial results on a
per-row basis.

Notice that indices’ occupation with COO is strictly propor-
tional to the non-zeroes count of a matrix; in the case of CSR, only
the J indices array. Consequently, a matrix with more nonzeroes
than rows (as usual for most problems) will use less index space
if represented by CSR. But in the case of a particularly sparse
block of such a matrix, that may not be necessarily true. These
considerations back the usage choice of COO and CSR within the
RSB layout, described in the following section.
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Fig. 1: Rendering of an RSB instance of classical matrix bayer02
(sized 14k x 14k with 64k nonzeroes, from the SuiteSparse Matrix
Collection [SSMC]); each sparse block is labeled with its own format
(the "H’ prefix indicating use of a shorter integer type); each block’s
effectively non-empty rectangle is shown, in colour; greener blocks
have fewer nonzoeroes than average; rosier ones have more. Blocks’
rows and columns ranges are highlighted (respectively magenta and
green) on the blocks’ sides. Note that larger blocks (like "9/9") may
have fewer nonzeroes than smaller ones (like "4/9").

From RSB to PyRSB
Recursive Sparse Blocks in a Nutshell

The Recursive Sparse Blocks (RSB) format in LIBRSB
[Martone14] represents sparse matrices by exploiting a hierarchi-
cal data structure. The matrix is recursively subdivided in halves
until the individual submatrices (also: sparse blocks or simply
blocks) occupy approximately the amount of memory contained
in the CPU caches. Each submatrix is then assigned the most
appropriate format: COO if very sparse, CSR otherwise.

Any operation on an RSB matrix is effectively a polyalgo-
rithm, i.e. each block’s contribution will use an algorithm specific
to its format, and the intermediate results will be combined. For a
more detailed description, please consult [Martonel4] and further
references from there.

The above details are useful to understand, but not necessary
to use PyRSB. To create an rsb_matrix object one proceeds
just as with e.g. coo_matrix:

>>> from pyrsb import rsb_matrix

>>>
>>> VvV = [11.0, 12.0, 22.0]
>>> I = [0, 0, 1]
>>>J = [0, 1, 1]
>>> A = rsb_matrix ((V, (I, J)))
>>> A.todense ()
matrix ([[11., 12.],
[ 0., 22.11)
>>> A.shape
(2, 2)

Direct conversion from scipy.sparse classes is also sup-
ported. Instancing an RSB structure is computationally more
demanding than with COO or CSR (in both memory and time).
Exploiting multiple cores and the savings from faster SpMM’s
shall make the extra construction time negligible.
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Fig. 2: SpMV goes through steps leading to the following states: 1)
upper left block becomes active; 2) lower left block becomes active;
3) upper left block is done (not active anymore); 4) upper right block
becomes active; 5) upper right block is done; 6) lower left block is
done; 7) lower right block is now active; 8) lower right block is done.

Multi-threaded Sparse Matrix-Vector Multiplication with RSB

The following sequence of pictures schematizes eight states of a
two-threaded SpMV on an RSB matrix consisting of four (non-
empty sparse) blocks. At any moment, up to two blocks are being
object of concurrent SpMV (active). Here each active block has a
gray background; its rows and column ranges are highlighted. Left
of the matrix, a (out-of-horizontal-scale) result vector is depicted.
For each of the active blocks, the corresponding active range
(corresponding to the rows) is highlighted on the vector. Similarly,
right of the matrix, the (out-of-horizontal-scale) operand vector is
shown; its active ranges (corresponding to each blocks’ column
range) are highlighted.

The idea behind the algorithm is that a thread won’t write to
a portion of the result array which is currently being updated by
another thread. Beyond that, there is no further synchronization of
threads.

This algorithm applies to square as well as non-square matri-
ces. It supports transposed operation (in which case the ranges of
each block are swapped). Symmetric operation is supported, too;
in this case, an additional transposed contribution is considered
for each block.

As depicted in the first RSB illustration (Fig. 1), the order of
the sparse blocks in memory proceeds along a space-filling curve.
That order of processing the individual blocks can help to deliver
data from the memory to the cores faster. For this reason the
individual cores attempt to follow that order whenever possible.

To have enough work for each thread, RSB arranges to have
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Fig. 3: A Matrix and its SpMM operands, in columns-major order.
Matrix consisting of four sparse blocks, of which one highlighted. Left
hand side and right hand side operands consist of two vectors each.
These are stored one column after the other (memory follows blue
line). Consequently, the two column portions operands pertaining a
given sparse block are not contiguous.

more blocks than threads. For this and other trade-offs involved,

as well for a formal description of the multiplication algorithm,

see [Martone14] and further literature about RSB listed there.
The SpMV algorithm sketched above is what happens under

the hood in PyRSB. In practice, rsb_matrix is used in SpMV

just as with scipy. sparse classes seen earlier:

>>> from numpy import ones

>>> B = ones([2], dtype=A.dtype)
>>> C A « B

Multi-threaded Sparse Matrix-Matrix Multiplication with RSB

With multiple column operands (in jargon, multiple right hand
sides), the operation result is equivalent to that of performing
correspondingly many SpMVs.

In these cases it comes naturally to lay the columns one
after the other (consecutively) in memory, and have the resulting
rectangular dense matrix as operand to the SpMM. Also here
the same notation of the previous section is supported; see this
example with 2 right hand sides:
>>> from numpy import ones

>>> B = ones([2,2], dtype=A.dtype)
>>> C = A « B

Let’s look at how to deal with this when using the RSB layout.
As anticipated, the individual right hand sides may lay after each
other, as columns of a rectangular dense matrix. See Fig. 3, where
a broken line follows the two operands’ layout in memory, also by
columns.

A straightforward SpMM implementation may run two indi-
vidual SpMV over the entire matrix, one column at a time. That
would have the entire matrix (with all its blocks) being read once
per column.

A first RSB-specific optimization would be to run all the per-
column SpMVs at a block level. That is, given a block, repeat
the SpMVs over all corresponding column portions. This would
increase chance of reusing cached matrix elements as the operands
are visited. This reuse mechanism is being exploited by LIBRSB-
1.2. The by columns layout (or order) is the recommended one for
SpMM there.

The most convenient thing though, would be to read the entire
matrix only once. That is the case for LIBRSB-1.3 (scheduled
for release in summer 2021): for small column counts, block-level
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Fig. 4: A Matrix and its SpMM operands, in rows-major order.
Matrix consisting of four sparse blocks, of which one highlighted.
Left hand side and right hand side operands consist of two vectors
each, interspersed (memory follows blue line). Consequently, the
two column portions operands pertaining a given sparse blocks are
contiguous.

SpMM goes through all the columns while reading a block exactly
once.

The aforementioned SpMM algorithm is to be regarded as
LIBRSB-specific internals, with not much user-level control over
it.

But there is another factor instead, that plays a certain role in
the efficiency of SpMM, where the PyRSB user has a choice: the
layout of the SpMM operands.

SpMM with different Operands Layout

The by-columns layout described earlier and shown in Fig. 3
appears to be the most natural one if one thinks of the columns as
laid in successive multiple arrays. However, one may instead opt
to choose a by-rows layout instead, shown in figure 4.

A by-rows layout can be thought as interspersing all the
columns, one index at a time. Here in the figure, the blue line
follows their order in memory. At SpMM time, given one of
the input columns, an element at a given index is multiplied by
nonzeroes located at that column index. Similarly, given one of the
output columns, an element at a given index receives a contribution
from the nonzeroes located at that row coordinate. With a by-
rows layout of the operands, SpMM may proceed by reading a
nonzero once, read all right hand sides at that row index (they
are adjacent), and then update the corresponding left hand sides’
elements (which are also adjacent). On current cache- and register-
based CPUs, the locality induced by this layout leads often to a
slightly faster operation than with a by-columns layout.

The by-columns and by-rows layouts go by the respective
names of Fortran ('F') and C ('C'") order. A user can choose
which dense layout to use when creating operands for SpMM.
Their physical layouts differ, but NumPy makes their results are
interoperable; see e.g.:

>>> import scipy, numpy, rsb

>>>

>>> size = 1000

>>> density = 0.01

>>> nrhs = 10

>>>

>>> A = scipy.sparse.random(size, size, density)
>>> A = rsb.rsb_matrix(A)

>>>

>>> B = numpy.random.rand(size, nrhs)
>>>

>>> B_c = numpy.ascontiguousarray (B)
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>>> B_f = numpy.asfortranarray (B)
>>>

>>> assert B.flags.c_contiguous
>>> assert B_c.flags.c_contiguous
>>> assert B_f.flags.f_contiguous

>>>
>>> C = A x B

>>> C_c = A x B_c
>>> C_f = A x B_f

While both layouts are supported, the 'C' layout is the rec-
ommended one for SpMM operands when using PyRSB with
LIBRSB-1.3. Also notice that SpMV is a special case of SpMM
with one left-hand side and one right-hand side, so the two layouts
are equivalent here. In the following, we will often refer to right-
hand sides count as by NRHS.

Using PyRSB: Environment Setup and Autotuning

Usage of PyRSB requires no knowledge beyond its documenta-
tion. However, the underlying LIBRSB library can be configured
in a variety of ways, and this affects PyRSB. To begin using
PyRSB, a distribution-provided installation shall suffice. To expect
best performance results, a native LIBRSB build is recommended.
The next section comments some basic facts to control LIBRSB
and make the most out of PyRSB.

Environment Variables

PyRSB does not use any environment variable directly; it is
affected via underlying LIBRSB and Python. By default, LI-
BRSB it is built with shared-memory parallelism enabled via
OpenMP [OPENMP]. As a consequence, a few dozen OpenMP
environment variables (all prefixed by OMP_) apply to LIBRSB
as well. Of these, the most important is the one setting the
active threads count: OMP_NUM_THREADS. Administrators of
HPC (High Performance Computing) systems customarily set
this variable to recommended values. Even if unset, chances are
good the OpenMP runtime will guess the right value for this.
Most other OpenMP variables will be of less use to PyRSB,
except one: setting OMP_DISPLAY_ ENV=TRUE will get current
defaults printed at program start (very useful when debugging a
configuration).

In addition to the above, there are environment variables
affecting specifically LIBRSB. All of those are prefixed by
RSB_, so to avoid any clash. One recommended to end users
is RSB_USER_SET_MEM_HIERARCHY_INFO, and is used to
override cache hierarchy information detected at runtime or hard-
coded at build time. Essentially, one can use it to force a finer
or coarser blocking. For its usage, and for verification of further
LIBRSB defaults, please see its documentation (accessible from
[LIBRSB]). Moditying the variables mentioned in this section will
be mostly useful on very new or not fully configured systems, or
for tuning a bit over the defaults.

RSB Autotuning Procedure for SpMM

Cores count, cache sizes, operands data layout, and matrix struc-
ture all play a role in RSB performance. The default blocks layout
chosen when assembling an RSB instance may not be the most
efficient for the particular SpMM to follow. In practice, given an
RSB instance and an SpMM context (vector and scalar operands
info, transposition parameter, run-time threads count), it may be
the case that a better-performing layout can be found by exploring
slightly coarser or finer blockings, An automated (autotuning)
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Fig. 5: Rendering of an RSB instance matrix audikw_1 (for this
and other matrices, see table) as dt ype=numpy.float32 (or S)
after autotune (order="'C"', nrhs=1) on our setup. Autotuning
merged an initial 766 blocks guess into 295, bringing a 1.56 x speedup
to rsb_matrix SpMV time. With rsb_mat rix it now takes 1/34th
of (I-threaded) csr_mat rix time; before autotuning, it took 1/22th.
Autotuning itself took the time of 1.5 csr_matrix SpMV iterations,
or 34 pre-autotuning rsb_matrix SpMYV iterations.

procedure for this exists and is accessible via autotune. The
following example shows how to use it on matrix audikw_1
from [SSMC].

>>> import sys, rsb, numpy

>>> dtype=numpy.float32

>>>

>>> A = rsb.rsb_matrix("audikw_1.mtx",dtype=dtype)
>>> print (A) # original blocking printed out

>>> sf = A.autotune (verbose=False)

>>> print ("autotune speedup for SpMV x" %sf

>>> print (A) # updated blocking printed out

>>>

>>> A = rsb.rsb_matrix("audikw_1.mtx",dtype=dtype)
>>> print (A) # original blocking printed out

>>> gsf = A.autotune (verbose=False, transA='N',

>>> order='C', nrhs=38)

>>> print ("autotune speedup for SpMM-8: x" %sf

>>> print (A) # updated blocking printed out

In scenarios where SpMM is to be iterated many times, time
spent autotuning an instance shall amortize over the now faster
iterations. See the comments of instances of autotuning on Fig. 5,
Fig. 6. and Fig. 7 for realistic use cases.

The reader impatient to see further speedup figures achievable
by autotune can already peek at Fig. 10.

Experiments with SpMM and Autotuning

Purpose of this section is to present statistics of speedups one
may encounter by using PyRSB instead of SciPy CSR in practical
usage. In our choice of experiments, and in the exposition, we
favour breadth over depth. So differently than in a paper with
HPC in focus, we focus on the achievable speedup, and not on
performance. We also take shortcuts which we would not take
otherwise, like mixing statistics from single precision computa-
tions with double precision ones, or real-valued and complex-
valued ones. Also the very focus of the article, namely comparing
directly threaded RSB to serial CSR in SciPy would be ill-
posed, were we interested to compare the parallelism grade of
the two implementations. On the plots that will follow, samples
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Fig. 6: Same matrix as Fig. 5, but autotuned with nrhs=2. Here the
initial 766 blocks have been merged into 406, with 1.14 X speedup. Be-
fore autotuning, it took 1/22th of a (I-threaded) csr_matrix time;
now it’s 1/31th. Here too, it took the time of 1.5 csr_matrix SpMM
iterations, or 34 with the pre-autotuning rsb_matrix instance.
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Fig. 7: Differently with nrhs=1 or nrhs=2,
autotune (nrhs=8) did not find a better blocking than the
original 766 blocks. Still, the procedure costed the time of 11
csr_matrix SpMM'’s, or 234 rsb_matrix ones. Though not
autotuned, (threaded) RSB takes merely 1/22th the time of CSR here.

are grouped by matrix; for each one, a five-number summary
(minimum and maximum, first quartile, second (median) and third
quartiles) is drawn with a boxes and whiskers representation.

Experimental Setup

We use a AMD EPYC 7742 node with 64 cores. Scaling
of memory bandwidth in STREAM-like loops here is
around 10x. Considering we are dealing with memory-
bound operations, we chose OMP_NUM_THREADS=24,
OMP_PROC_BIND=spread, and OMP_PLACES=cores.
RSB_USER_SET_MEM HIERARCHY_INFO was set to
"1.,2:4/64/16000K,L1:8/64/32K". We use CSR from
csr_matrix in SciPy el71al from Feb 20, 2021, PyRSB
8a6d603 from Jun 08, 2021, pre-release LIBRSB-1.3. For
both, we use —Ofast -march=native -mtune=native
flags and gcc version 10.2.1 20210110 (Debian
10.2.1-6). We use matrices which were also used in
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[Martonel4], available from https://sparse.tamu.edu/ ([SSMC]);
see the table below. Many of these are symmetric; differently
than rsb_matrix, csr_matrix does not support symmetric
SpMM; therefore in both cases we expand their symmetry and
perform only unsymmetric (general) SpMM. Before starting
any measurement, we run autotune on a temporary matrix
to warm-up the OpenMP environment, once. Then we do
one non-timed warm-up SpMM before iterating for 0.2s and
taking the fastest sample. We repeat this for each of the 28
matrices, right-hand-sides (NRHS) in 1,2, 4,8, order among
'C' and 'F', BLAS numerical types in C, D, S, Z. When using
rsb_matrix, we measure both non-autotuned, and autotuned
with autotune (nrhs=...,order=...,tmax=0). So the
above totals to 28 -4 -2 -4 = 896 records with samples in SpMM
and tuning timing. To avoid also timing repeated allocation of
the SpMM result (C in C=A«B), we allocate it once, and then
instead of the % operator, we use the functions underneath it,
which take C as argument (this can be of interest to many
performance-conscious users).

matrix nonzeroes  rows ratio
1 arabic-2005 6.40e+08 2.27e+07  28.1
2 audikw_1 7.77e+07 9.44e+05 82.3
3 bone010 7.17e+07 9.87e+05 72.6
4 channel-500x100x100-b050  8.54e+07 4.80e+06 17.8
5  Cube_Coup_dt6 1.27e+08 2.16e+06  58.8
6  delaunay_n24 1.01e+08 1.68e+07 6.0
7  dielFilterV3real 8.93e+07 1.10e+06  81.0
8  europe_osm 1.08e+08 5.09e+07 2.1
9  Flan_1565 1.17e+08 1.56e+06  75.0
10 Geo_1438 6.32e+07 1.44e+06 439
11  GL7d19 3.73e+07 1.91e+06  19.5
12 gsm_106857 2.18e+07 5.89e+05 36.9
13 hollywood-2009 1.14e+08 1.14e+06  99.9
14 Hook_1498 6.09e+07 1.50e+06  40.7
15 HVI5SR 2.83e+08 2.02e+06  140.3
16  indochina-2004 1.94e+08 7.41e+06  26.2
17 kron_g500-logn21 1.82e+08 2.10e+06  86.8
18  Long_Coup_dt6 8.71e+07 1.47e+06 59.2
19 nlpkkt160 2.30e+08 8.35e+06  27.5
20 nlpkkt200 4.48e+08 1.62e+07  27.6
21 nlpkkt240 7.74e+08 2.80e+07  27.7
22 relat9 3.90e+07 1.24e+07 3.2
23 rgg.n_2 23 _s0 1.27e+08 8.39e+06 15.1
24 rgg_n 2 24 s0 2.65e+08 1.68e+07  15.8
25 RMO7R 3.75e+07 3.82e+05 98.2
26  road_usa 5.77e+07 2.39e+07 24
27  Serena 6.45e+07 1.39e+06  46.4
28  uk-2002 2.98e+08 1.85e+07  16.1

SpMM Speedup: from csr._matrix to rsh_matrix

Figure 8 summarizes the speed ratio of non-autotuned
rsb_matrix over csr_matrix. Speedup without RSB auto-
tuning ranges from 4 x to 64 x, with median 15 x. Half of observed
speedup cases falls between 11x and 20x. A streaming memory
access benchmark we ran on this machine scaled up to circa 10x,
which just less than the observed median speedup (remember
rsb_matrix is running with multiple cores, but csr_matrix
cannot exploit that).

For the reader who is not practical of SpMM performance: the
memory access pattern of SpMM is typically very irregular, and
largely dependent on the sparsity structure of the matrix. For this
reason, for most layouts the multicore scaling of SpMM perfor-
mance (in particular SpMV) tends to be worst than a streaming
memory access scaling. But here we are comparing speed ratios
of different algorithms, and these ratios differ as well. That reflects
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Fig. 8: Performance samples grouped by matrices. Each box rep-
resents a group of measurements on the different numerical type,
NRHS, and operands layout. The middle horizontal line is the median
speedup of RSB vs CSR, corresponding to 15x. The other lines are
the extremes, and the first and third quartiles in between (the second
quartile being the median value). Notice autotuned results in Fig. 9
improve this further.

the better or worse aptness of a given format to a given matrix.
For instance, matrix 17 has nonzeroes scattered quite regularly
over the entire matrix, not much clustered: this favours RSB and
the cache blocking induced by its structure rather than CSR (serial
or not). Conversely, matrix 9 has most of its nonzeroes adjacent to
some other, which is more CSR-friendly, and a contribution to the
lesser improvement when switching to RSB here. See [Martone 14]
for more RSB-vs-CSR commentary.

The speedups shown so far and those in Fig. 8 rely on default
RSB layouts. As said earlier, the RSB format is suited best to
scenarios with large matrices and repeated SpMM applications.
These are also the scenarios where the usage of autotune,
which refines the default layout according to the operands at hand,
is most convenient.

Figure 9 shows results with autotuned instances. Here
autotune has been called for each combination of matrix,
operands layout, NRHS, and numerical type. The median speedup
over CSR here (circa 28.8x) is almost twice the one before
autotuning.

With respect to non-autotuned RSB samples, the application
of autotune brought a median improvement of 1.6x. This
includes all samples, inclusive of the lower quartile, with speedup
between 1x (no speedup) and 1.2x, which we nevertheless regard
as ineffective (see next subsection’s discussion). An overview of
which matrix benefited more, and which less from autotuning is
given by Fig. 10. There is no clear trend to see here. We observe
that most of the cases (70%) benefited from autotuning. It’s worth
mentioning that the longer the time limit chosen to run SpMM
before taking each performance sample, the less the fluctuation
we would have encountered here, and times we chose were quite
tight.

Speedups of tuned RSB vs CSR have median 29x with the
'C' layout, and 28.6x with 'F' layout; also within RSB the
'C' layout performs a few percentage points better than 'F'.

As seen in this section, autotuning can speedup RSB a further
bit, but not always. The next section quantifies the cost of autotun-


https://sparse.tamu.edu/
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Fig. 9: We observe speedup over CSR from a few up to 81.7x,
with median of 28.8x. Certain matrices benefit from RSB more (see
matrices 5, 9, 15, 18), while others less (6,22,..). Compare the relevant
improvement over non-autotuned results in Fig. 8, or see Fig. 10 for
the per-matrix ratios.
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Fig. 10: Per-sample autotuning effectiveness statistics: autotuned RSB
SpMM speed to non-autotuned one. Half of the cases improve by
> 1.6%, 25% of the cases by > 2.9x. Matrices 8,11,12,22,26 seem to
barely profit from it. These are the same ones that exhibit the highest
ineffective autotuning cost on Fig. 13.

ing in practical terms, for both effective and ineffective outcomes.

The Cost of RSB Autotuning

As introduced earlier, aut ot une adapts the structure of an RSB
matrix, seeking instances which execute a specified operation
(here, SpMM) faster. A consistent fraction of the autotuning time
is spent measuring SpMM timings of prospective RSB instances.
It’s important to remark: what one wants here is not merely faster
execution of SpMM after autotuning. What one wants is that
autotuning plus all following SpMM iterations shall take less time
than the same count of iterations with a non-autotuned matrix. In
other words, if the time savings of faster SpMM’s cannot cover
the autotuning duration, autotuning time is lost. For this reason
it is convenient to quantify the number of iterations to reach the
first SpMM bringing actual time saving (amortization); this is the
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Fig. 11: Were one to use RSB instead of CSR, and obtain an autotuned
instance via autotune, then this would amortize in few iterations.
Notice than in the intended scenarios, where thousands of SpMM are
foreseen, this is completely negligible. Note: autotuning was effective
in 70% of the cases, represented here and in Fig. 12.

duration of aut otune divided by the time saved at each iteration
(that is, slow time with old RSB blocking, minus faster time with
new RSB blocking).

For the purpose of this article, we chose to declare autotuning
as effective if it brings a speedup of 20% or more. With this
threshold set, while 94.5% of the cases get some speedup, it is
70% that qualify also as effective.

What one observes among effectively autotuned cases (see Fig.
11) is that in 75% of those cases, merely 2.5 CSR iterations are
enough to amortize the autotuning time. This is thanks to the large
speedup going from (serial) CSR to (parallel) RSB.

If as cost unit we consider going from non-autotuned to
autotuned RSB instead, then the relative gain is less (because
threaded non-autotuned RSB is already much faster than serial
CSR), and consequently, it takes more to amortize it; see Fig. 12.

When autotuning was ineffective (30% of the cases with our
1.2x threshold, though only 5.5% exhibit no speedup at all), we
regard its time as lost; in our test setup this was from a few dozen
to a few hundred RSB iterations, with median 33; see Fig. 13. If
expressed in terms of serial CSR iterations, these would be < 2.8
iterations in half of the cases, < 8 in 75% of the cases.

These results shall convince users that using autotune is a
good option most of the times.

Conclusions and Future Work

Full utilization of the parallelism potential is important in achiev-
ing efficient operations on current CPUs. PyRSB does that by
giving Python users transparent access to the shared-memory
parallel performance library LIBRSB. Differently than classes
in current scipy.sparse, but with a very similar usage in-
terface, PyRSB’s rsb_matrix readily exploits shared-memory
parallelism. This article’s results section gave a wide sample
of speedup statistics with respect to SciPy’s csr_matrix, on
the SpMM operation. Observed median speedup with respect to
csr_matrix exceeded the known memory bandwidth speedup
on the machine; with autotuning, it doubled that, speaking for
the good implementation in LIBRSB. Trade-off considerations in
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Fig. 12: If one were to start autotuning from RSB (thus with less
improvement potential than with CSR), the amortization times cost
more iterations (here, median is 38.4x, 75% of the cases below 76X ).
Nevertheless, for many problems, where thousands of iterations are
foreseen, this is perfectly acceptable.

cost of ineffective autotuning in units of RSB SpMM iterations
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Fig. 13: There is no guarantee autotuning improves SpMM perfor-
mance. Actually, autotuning would be unnecessary, if we were able
to guess blockings optimal under all circumstances. Indeed, without
[further analysis, one may even speculate that the default RSB blocking
matrices where autotuning was ineffective, was also the best. In our
experiment, ineffective autotuning searches cost 33x RSB (only 2.8 x
CSR) SpMM iterations in the median case. Note that for certain
matrices (1,16,21) autotuning was always effective: this is why these
have no associated box here.

using PyRSB effectively by means of autotuning have also been
delineated.

SpMM and autotuning are the workhorses of PyRSB and we
addressed their use here. Follow-up studies may address or reflect
improvements on the LIBRSB side, special use cases, as well as
mostly usability-related aspects on the PyRSB side, especially in
striving for SciPy interoperability in the user interface. Comparing
symmetric SpMM of PyRSB to that of specific symmetric formats
in SciPy may also be of interest.
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