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Classification of Diffuse Subcellular Morphologies

Neelima Pulagami, Marcus Hill*, Mojtaba Fazli*, Rachel Mattson®, Meekail Zain*, Andrew Durden*, Frederick D
Quinn, S Chakra Chennubhotlall, Shannon P Quinn***

Abstract—Characterizing dynamic sub-cellular morphologies in response to
perturbation remains a challenging and important problem. Many organelles
are anisotropic and difficult to segment, and few methods exist for quantifying
the shape, size, and quantity of these organelles. The OrNet (Organelle Net-
works) framework models the diffuse organelle structures as social networks
using graph theoretic and probabilistic approaches. Specifically, this architec-
ture tracks the morphological changes in mitochondria because its structural
changes offer insight into the adverse effects of pathogens on the host and
aid the diagnosis and treatment of diseases; such as tuberculosis. The OrNet
framework offers a segmentation pipeline to preprocess confocal imaging videos
that display various mitochondrial morphologies into social network graphs.
Earlier methods of anomaly detection in organelle structures include manual
identification by researchers in the biology domain. Although those approaches
were successful, manual classification is time consuming, tedious, and error-
prone. Existing convolutional architectures do not have the capability to adapt
to general graphs and fail to represent diffuse organelle morphologies due
their amorphous characteristic. Thus, we propose the two different methods
to perform classification on these organelles that captures their dynamic be-
haviors and identifies the fragmentation and fusion of mitochondria. One is a
graph deep learning architecture, and the second is an approach that finds a
graph representation for each social network and uses a traditional machine
learning method for classification. Recent studies have demonstrated graph
neural network models perform well on time-series imaging tasks, and the
graph architectures are better able to represent amorphous and spatially diffuse
structures such as mitochondria. Alternatively, much research has established
traditional machine learning methods to be promising and robust models. Testing
and comparing different architectures and models will effectively improve the
robustness of categorizing distinct structural changes in subcellular organelle
structures that is very useful for identifying infection patterns, offering a new way
to understand cellular health and dynamic responses.

Introduction

Automation of cell classification remains to be a challenging but
very important problem that offers significant benefits to immunol-
ogy and biomedicine. Specifically, classification of sub cellular
perturbations can help characterize healthy cells from infected
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cells. Morphological changes of sub cellular organelles play a vital
role in providing insight into infection patterns [RJICC19].

Tuberculosis (TB), a bacterial disease that mainly infects the
lungs, causes structural changes to the mitochondria of cells
that have been infected. [DSF13].This ancient disease, although
curable and treatable, can be fatal when not diagnosed properly
and remains to be the world’s leading infectious disease killer
having claimed 1.4 million lives in 2019 alone. Each following
year brings rising cases of drug resistant TB, with more than
10 million people falling ill with active TB each year. A deeper
understanding of the pathogenic processes associated with new
infections will allow for the development of effective drug regi-
mens. Although much research has been conducted on the disease,
there are many questions on the mechanisms of pathogenesis
that remain unanswered. Automating the process of classification
offers a faster way to study the rising number of mutations of the
Mtb pathogen which will help with the development of treatment
plans and vaccines [DSF13].

Recent advancements in fluorescence microscopy and biomed-
ical imaging have offered new ways to analyze these pathogens
and their effects on cell health [ADATLBR™ 18]. Previous studies
have proposed artificial intelligence based cell classifiers using
convolutional neural networks [OHL"19] , [YRS19]. These net-
works had a few shortcomings due to the diversity of cells in any
system and the studies in modeling different biological phenomena
have been disproportionate. Most segmentation tasks deal with
morphologies of cells and nuclei. These structures are much easier
to segment, model and track than spatially diffuse structures
such as mitochondria. Mitochondria act as significant signaling
platforms in the cell whose dynamics modulate in response to
pathogens to maintain their environment [RICCI19]. Infections
induce mitochondrial changes and automating the classification of
these anomalies will lead to more knowledge on the morphological
changes which can further help create targeted therapies.

We propose two methods to classify mitochondria based on
their dynamics by representing the subcellular structures as social
network graphs. Graphs offer an effective way to represent the
amorphous mitochondrial structures and capture the different
spatial morphologies. Furthermore, machine learning on graphs
is becoming a very relevant and ubiquitous task that has made
significant contributions to deep learning, helping find solutions to
several problems in the biomedicine domain.

We analyze the cells of the last frame of the video data that
portray the cells after the fusion or fission event to classify which
structural change has occurred. We explore two methods that
utilize graph machine learning and have proven to be effective
in characterizing morphological events given only the last frame
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of the video. The first involves using an aggregate statistic that
acts as a graph representaion and a traditional classifier to sort the
different frames. The next method involves a graph neural network
architecture that utilizes graph convolutional and pooling layers to
categorize the different frames. Both methods show to be effective
methods for classifying the different classes of mitochondira.

Background
Mitochondria

Mitochondria are double-membrane organelles that act as the
powerhouse of the cell because they generate a high amount
of Adenosine triphosphate (ATP), an energy-carrying molecule
that is essential for many fuctions and processes in living cells,
modulate programmed cell death pathways [RJCC19]. One of
their critical roles includes shaping the functions of immune cells
during infection. Their network structure allows for the dynamic
regulation which is necessary to maintain a functional state and
allows the mitochondria to be morphologically and functionally
independent within cells [KYO03]. These morphologies ,fission
and fusion, are common events in mitochondria allowing it to
continuously change and adapt in response to changes in en-
ergy and stress status. Mitochondrial fission, characterized by
the cell dispersing and fragmenting over time, allows for dam-
aged organelles to have a quick turnover and fusion allows for
the mitochondria to continuously adapt to environmental needs.
The fusion of mitochondria is characterized by the mitochondria
fusing togheter allowign the mitochondria to merge with other
mitochondria that have different defects than itself. Additionally,
frequent fusion and fission within the dynamic network is a sign
of efficient mitochondrial DNA (mtDNA) complementation as a
result of fusing mitochondria which allows for the exchange of
genomes [KYO03]. These functions are regulated by the frequency
of fusion and fusion events. Studies show that the rate of these
changes serves as the efficient means of maintaining a good cell
environment [LMJH20]. An excess of either function could lead
to mitochondrial fragmentation, a sign of cell dysfunction.

Anomalies in a cell’s dynamics are very telling of the health of
a cell and could be a result of toxic conditions. In recent studies,
it has been shown that pathogens attack the host by disturbing the
metabolic hub of the cell that is mitochondria. Evidence suggests
some pathogens interfere with the mitochondrial network to favor
their own replication. Bacteria induce rapid mitochondrial frag-
mentation by releasing listeriolysin O (LLO) into the mitochondria
which causes membrane potential loss and eventually a drop in
ATP production [RWH18]. Mitochondria and their dynamics not
only help regulate the cell environment but also play a huge role in
controlling cell functions during pathogen invasion. Studying the
disturbance in these mitochondrial dynamics could help track and
detect infections in a quicker manner. Changes in the mitochondria
network requires effective detection, and modeling them as a
social network and applying graph classification offers a viable
solution.

Cell Classification

Advancements to microscopy and deep learning has led way to
a new generation of cell and cell morphologies classification
techniques. More recently, image based analyses have advanced
past single cell classification and are able to allow morphological
profiling as seen in [MLTS19]. [MLTS19] examines the advan-
tages and challenges of different machine learning algorithms

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

useful for large-scale label free multi-class cell classification
tasks which would be applicable to a diverse set of biological
applications ranging from cancer screening to drug identification.
The authors propose a single cell classification network that uses
a convolutional neural network (CNN) architecture and compare
it against traditional methods such as k-nearest neighbors and
support vector machines. The CNN architecture proves to be an
effective method for human somatic cell types and their morpholo-
gies. These morphologies are easier to segment and analyze than
spatially diffuse structures like mitochondria.

Transfer learning has also given rise to novel advancements
and shows much promise in cell classification tasks [RSTT19].
[RST'19] utilizes a hybrid between generative adversarial net-
works (GANs) and transfer learning dubbed transferring of per-
tained generating adversarial networks (TOP-GAN) to classify
various cancer cells. This approach tackles the main bottleneck of
deep learning, small training datasets. To cope with the problem,
[RST*19] suggests using a large number of unclassified images
from other cell types. This solution is valid only for the context
of a few problems. The problem is another label-free multi-
class classification problem trying to categorize different types
of healthy and unhealthy cancer cells. The context of the problem
allows the model to train on a variety of different cells which can
then be applied to classify several other types of cells.

Our problem, although having a relatively small data size,
does not allow to generalize between different cells. We propose
a model that uses only the spatial-temporal aspects of subcellular
organelles, in this case the last frames of videos tracking the fusion
and fission events, to classify between healthy and unhealthy cells.

Another transfer learning method that deals specifically with
classifying organelle morphology is [LPJ"21]. This approach ap-
plies CNNs and their advantages of automatic feature engineering
and invariance of learning non-linear, input-output mapping to
predict morphological abnormalities in plant cells. [LPJ"21] looks
at the morphologies of three different subcellular organelles in
plant cells, chloroplasts, mitochondria, and peroxisomes to cate-
gorize abnormal perturbations. This results in three different types
of images for each class with numerous organelles distributed
across every image. Nine variants of five different CNN-based
models were tested, Inception-v3 [SVIT16], VGG16 [SZ14],
ResNet [HZRS16], DenseNet220 [HLvdMW 17], and MobileNet-
v2 [SHZ" 18], all of which proved to be effective methods.

Our problem deals primarily with using mitochondria to cat-
egorize anomalies in the cell. Plant cells and their functions vary
largely compared to human cells. Most work in cell classification,
thus far, deals largely with image data as is and utilizes a CNN
or hybrid architecture due to their advantages for analyzing visual
imagery. We leverage the principles of graph theory to model the
mitochondrial patterns as a social network to study the changing
topology of the graphs. Additionally, we look to apply a super-
vised single-class classification to single frames of mitochondria
after a morphological change has occurred.

Graph Learning

Graph machine learning has been drawing increasing attention
in recent years due to its versatility and numerous applications
especially in biomedical research. Graphs offer a unique way
to represent complex systems as set of entities (vertices) and
relationships (edges) [ZCH'20]. Graphs are able to capture the
relationships between several biological entities including cells,
genes, molecules, diseases and drugs. This area of deep learning
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Fig. 1: The first, middle and last frames on a control cell with no chemical exposure.

Fig. 2: The first, middle and last frames on an cell exposed to listeriolysin O (llo). The frames show the resulting fragmentation.

Fig. 3: The first, middle and last frames on an cell exposed mitochondrial- division inhibitor 1 (mdivi). The frames show the resulting fusion.

has been showing much promise in modeling the interactions of
various cell functions. In our work, we propose classification in
a lesser known setting, categorizing the graph as a whole to cat-
egorize the different morphologies by analyzing their topologies.
Thus, we explored a couple graph neural networks (GNNs), a
class of deep learning methods designed to perform inference
on graph data [PWBI18]. GNNs have proven to be very robust
models because they are able to generalize to adapt to dynamic
graphs and new unseen graphs. Following the success of word
embeddings, node embeddings rose to prominence with DeepWalk
[PARS14], an embedding method often referred to as the first
graph embedding for representation learning [ZCH*20].

One of our methods does employ a simple embedding method
based extracting graph feature information using node feature

statistics. Although [HYL17] explains these traditional methods to
be limited and sometime inflexible, the method showed favorable
results in our experiments. Several new methodologies to produce
embeddings followed after DeepWalk but the methods suffer a
few drawbacks: node embeddings are computationally inefficient
because the number of parameters increased with number of nodes
as a result of no shared parameters and the direct embeddings
lacked the ability to generalize to a new data. As a means to
solve these problems and drawing inspiration to generalize CNNss,
GNNs were proposed to aggregate information from the graph
structure and better capture the elements and dependencies of the
graphs.

There are two main operations at the core of GNNs, convo-
lution and pooling layers. Convolution layers are used to learn a



118

non-linear transformation of the input graphs perform message
passing between the nodes and their neighborhoods. Pooling
layers aim to reduce the number of nodes in the graph into a
single vector representation and have a similar role to pooling in
traditional convolutional neural networks for learning hierarchical
representations [GA20].

Because of their general nature, graph neural networks are
applicable to three different tasks: node level tasks, link level tasks
and graph level tasks. The most applicable task for our problem
context is graph level because we attempt to perform classification
of graph structures, where each whole graph is assigned a label.

For the context of our problem we utilize graph convolution
operations defined by graph convolutional networks in [KW16]
and a GCS layer operations used to build graph neural networks
with convolutional auto-regressive moving average filters also
known as ARMA filters [BGLA21].

Data
Microscopy Imagery

The data consists of a series of live confocal imaging videos that
portray the various mitochondrial morphologies in HeL A cells.
Figures 1 , 2 and 3 show the raw images of the first, middle
and last frames of cells that belong to three different classes. For
visualization purposes, the cell was transfected with the DsRed2-
Mito-7 protein which gives the mitochondria a red hue. Three
different groups of cells with different dynamics were captured: a
group experiencing fragmentation from being exposed to toxin
listeriolysin O (llo) as seen in figure ref:fig23, another group
experiencing fusion as a result of being exposed to mitochondrial-
division inhibitor 1 (mdivi) as seen in figure 3 and finally a control
group that was not exposed to any chemical as seen in figure 1. All
the videos were taken using a Nikon A1R confocal microscope.
The camera captured 20,000 frames per video with dimensions
512x512 pixels, i.e one image every 10 seconds for the length of
the video. All the cells were kept at a temperature of 37 degrees C
and 5% CO2 levels for the duration of imaging.

Graph Data

From the 114 videos, we take the last frame and create node
features for each single cell video. The dataset we used to train and
test our methods contains a node feature matrix and an adjacency
matrix for last frames of 114 videos.

The existing OrNet' frameworks utilizes Gaussian mixture
models (GMMs) to construct the social networks graphs. GMMs
were used to determine the spatial regions of the microscope im-
agery that constructed mitochondrial cluster graphs by iteratively
updating the parameters of the underlying mixture distribution
until they converged. The parameters of the mixture distributions,
post convergence, were used to construct the social network
graph [ADATLBR " 18], [MHMFRM "20], [FHD "20]. The Gaus-
sian mixture components update over each frame to track the
morphologies and the last frames show the social network graph
of Gaussians after a series of events. It is for this reason, we use
the last frames as the mixture components in the last frame are
most indiative of the morphology.

The nodes in the graph correspond to the gaussian mixture
components, and the statistics that describe each mixture dis-
tribution act as the features. The Gaussian distributions are 2-

1. https://github.com/quinngroup/ornet
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dimensional, because they model the spatial locations of mito-
chondrial clusters in the microscopy imagery. Intuitively, the five
node features correspond to the location of the Gaussian, the
shape of its distribution, and the density of the mitochondrial
cluster. Computationally, the location of the gaussian is repre-
sented by the pixel coordinates of the center of the distribution,
which corresponds to the means of both dimensions; the shape
is defined by the variance of each dimension; and the density of
the mitochondrial cluster is represented by the number of pixels
that are "members" of the mixture component, meaning it is more
probable that those pixel belong to the given mixture distribution
than any of the others.

After the data preprocessing, there are 114 feature matrices
of the shape [N,5] where N is the number of nodes in the
mitochondrial cluster and a fully connected adjacency matrix of
shape [N,N] that belong to one of three classes: llo which indicates
a fusion event, mdivi which indicates a fission event and control,
which indicates no abnormal morphology. Both the feature matrix
and the adjacency matrix serve as the input to the GNN and there is
a target variable associated with each input either 1 or 0 depending
on the context of the problem.

Methodology

To contextualize the empirical results, we split the problem up into
two different binary classification problems. One problem is to
differentiate between the fusion and fission events, i.e categorize
between llo and mdivi groups. And the second is to categorize
between the fusion event and no abnormal changes i.e, categorize
between llo and control and between mdivi and control.

GNN

We trained two different architectures one for each of the two
classification problems at hand. One involves a GCN and sec-
ond is a slightly altered GCN architecture with a trainable skip
connection called a GCS layer [BGLA21]. Each of the GCN and
GCS layers were followed by a MinCut Pooling layer [BGA19]
to get a more refined graph representation after each layer. The
models accept a node feature matrix, X, and an adjacency matrix,
A; each matrix individually is uninformative to the model but
combined they provide the model with enough information about
the graph structure. The GCS filter operation is similar to [KW16]
with an additional skip connection which has shown to sometimes
be more applicable to graph classification. The generally known
GCN convolution operation looks like the following,

Xt = o (LxOw )

where o is the non linear activation function, W is the weight
matrix at t-th neural network layer and L is the graph Laplacian
which can be computed using the normalized grpah adjacency
matrix A and identiy matrix I. L=1—A

The GCS operation which has an additional skip connection
looks like the following

X = o(LX YW 4 xV)

where o is the non linear activation function that can be ReLU,
sigmoid or hyperbolic tangent (tanh) functions. W and V are
trainable parameters. L is the graph Laplacian which can be
computed using the normalized grpah adjacency matrix A and
identiy matrix I. L =1 — A Each GCS layer is localized in the
node space, and it performs a filtering operations between the local
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neighboring nodes through the skip connection and the initial node
features X [BGLA21].

The graph convolution layer of each model is followed by
the MinCut Pooling layer [BGA19]. This method is based on the
minCUT optimization problem which finds a cut of the graph
that still preserves the topology and representation of the graph.
It computes a soft clustering of the input graphs and outputs a
reduced node features and adjacency matrix. The dimensions are
reduced to the parameter k which is specified when calling the
pooling layer. Finally, the last layer of both architectures is a global
pooling architecture that pools the graph by computing the sum of
the inputs node features. Then the model is through a Dense layer,
a fully connected output layer The architectures were trained using
Adam optimizer, and L2 penalty loss with weight le-3 and 16
hidden units. The GCS layers used a tanh activation function. The
MinCut pooling layer is set to output N/2 nodes in the first layer
and N/4 at the second layer and N is the average order of the
graphs in the dataset. The Dense layer used a sigmoid activation
function and we used binary cross entropy for the loss. The models
ran for 3000 epochs.

Graph level features using node statistics

This approach deals with finding a good graph representation by
using a method similar to bag of nodes. Because the available
number of graphs for each class are limited, we create a graph
feature by reducing the node features to a vector of statistics. We
created four different statistics to act as the graph features: min,
max, mean and median. Meaning, for each of the node features,
one aggregate statistic (min, max, mean or median) is applied to
create a vector of size 5 that would serve as an input for the
classifiers. After all the data instances are reduced to a vector,
we apply a stratified split using an 80-20 train-test-split. Note, the
stratified split preserves the proportions of the classes. This is done
before any oversampling technique to ensure that all the samples
used for testing are from the original data. Then for the training set
we apply the synthetic minority oversampling technique (SMOTE)
to oversample the minority classes as a solution to combat the class
imbalance. A dataset with imbalanced classes such as the case in
this problem could keep a classifier from effectively learning the
decision boundary. SMOTE [CBHKO02] does not simply duplicate
the elements of the minority class but rather synthesizes new
instances. This unique oversampling technique selects examples
that are close to the original elements in the feature space by
drawing a line between two random existing instances and creating
a new instance at a point along the line. This method is very
effective because the new samples that are created are realistic
instances of the minority class and it helps balance the class
distributions. We used oversampled graph features as input data
for three traditional machine learning algorithms to classify the
features into a specific class, k-nearest neighbors, decision tree
classifier and random forest classifier.

Experiments and Results

We test the performance of our methods on three different clas-
sification tasks: (i) categorize between the last frame images of
mitochondria that have been exposed to toxin listeriolysin (class
1lo) and mitochondria that have been exposed to mitochondrial-
division inhibitor 1 (class mdivi), (ii)categorize between the last
frames of mitochondria that have been exposed to toxin liste-
riolysin (class 1llo) and mitochondria that was exposed to no
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external stimuli to serve as a control group (class control) and
(iii) categorize between mitochondria that have been exposed to
mitochondrial- division inhibitor 1 (class mdivi) and mitochondria
that was exposed to no external stimuli to serve as a control group
(class control). The three classification problems help evaluate
all possible differences in the morphologies. Both classification
tasks that deal with distinguishing between class 1lo versus class
control and class mdivi versus class control are meant to explore
whether our methods can distinguish between anomalous and
healthy cells. The classification task that deals with 1lo and mdivi
data investigates whether the methods can distinguish between two
different types of anomalies (fusion and fission).

Due to the class imbalance and relatively small size of the
dataset, (Illo had 54 instances, mdivi had 31 instances and control
had 29 instances) we decided to take two different approaches
for the methods. One solution was to downsample the llo class
which is the majority class to help the GNN methods. We also
used this downsampling method for the traditional classifiers to
compare the different methodologies effectively. Specifically, this
downsampling technique was chosen to keep the model from
randomly guessing the 1lo class for every test instance. Therefore,
19 frames of each of the three classes were used for training and 12
frames were used for testing. The sequence of frames that were in
the training and test sets for each run varied as they were randomly
subsampled for each time. We used two GNN architectures and
three different classifiers with four aggregate stattistics resulting
in twelve traditonal methods total.

Alternatively, we utilized an oversampling technique on the
input data, which consited of the graph representation vectors,
for the traditional classifiers. The input data for the traditional
classifiers was first split into training and test sets. Eigty percent
of each class was reserved for testing and the remaining twenty
perenct for testing. The frames chosen for training and test set
for each run were randomly subsampeld for each run. Then
sythetic minority oversampling technique (SMOTE) was applied
to the data reserved for training to balance the classes. After
oversampling, the training set for the Llo-Control classification
problem had 44 samples of each class and the test set had 6
control instances and 10 llo instances. The Mdivi-Llo task also
had 44 instances of each class in the training set and had a
test set consisting of 7 mdivi instances and 10 llo. Lastly, the
Mdivi-Control task had 25 instances of each class for training
and 6 instances of each respective class for testing. The train-test
split was applied prior to oversampling to ensure that only real
data points are used for testing. Oversampling was only possible
with the data for the traditonal methods as it is not possible to
apply an oversampling technique to create entire graphs and their
node features. The input data for GNNs is a graph and its node
features. Furthermore, the shape of each graph varied based on the
instance which would make oversampling difficult and ineffective
at producing new data instances.

Both the traditional classifier and GNN methods fully train
on the test set and evaluate on the testing set. We measured the
number of correctly classified instances of each model and used
the accuracy as the main metric to evaluate the performance of
our models. Additionally, we include the precision, recall and F-
1 scores for each class to show the statistical significance of the
results.

Tables 1, 2, 3 contain the results for oversampled data using
traditional classifiers. Table 1 shows the results for classifying
mdivi and llo data instances using oversampling with SMOTE.
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Accuracy Precision Recall F-1 Score

- Mdivi LLO Mdivi LLO Mdivi LLO
Median - Random Forest  0.770 0908 0.739 0.500 0959 0.624 0.832
Mean - Random Forest 0.743 0.871 0.718 0452 0948 0.574 0.814
Min - Random Forest 0.812 0.893 0.792 0.629 0941 0.721 0.857
Max - Random Forest 0.707 0.824 0.687 0.374 0939 0494 0.791
Median - Decision Trees  0.764 0.890 0.737 0495 0952 0.613 0.828
Mean - Decision Trees 0.741 0.860 0.718 0.455 0941 0.572 0.812
Min - Decision Trees 0.781 0.866  0.762 0.565 0931 0.664 0.835
Max - Decision Trees 0.720 0.825 0.702 0418 0.932  0.531 0.798
Median - KNN 0.670 0.588 0.752 0.662 0.676 0.615 0.705
Mean - KNN 0.747 0.718 0.778 0.650 0.815 0.669  0.790
Min - kNN 0.702 0.610 0.795 0.725 0.686 0.659 0.732
Max - KNN 0.579 0479 0.646 0464 0.659 0462 0.647

TABLE 1: Results for Mdivi vs. LLO task using traditional classifiers and SMOTE oversampling technique

Accuracy Precision Recall F-1 Score

- Control LLO Control  LLO Control LLO
Median - Random Forest  0.745 0.835 0.733 0413 0.944  0.530 0.823
Mean - Random Forest 0.780 0.937 0.752  0.446 0.979  0.581 0.849
Min - Random Forest 0.739 0.819 0.730 0.403 0.941 0.517 0.820
Max - Random Forest 0.826 0.927 0.804 0.586 0.970  0.696 0.876
Median - Decision Trees ~ 0.749 0.837 0.737 0421 0.945 0.536 0.826
Mean - Decision Trees 0.763 0.875 0.746  0.439 0.958 0.559 0.836
Min - Decision Trees 0.721 0.757 0.721  0.393 0.918 0.493 0.805
Max - Decision Trees 0.814 0.923 0.791  0.555 0.969 0.671 0.869
Median - kNN 0.636 0.512 0.714  0.509 0.712  0.500 0.708
Mean - kNN 0.703 0.635 0.739  0.500 0.825 0.545 0.776
Min - kNN 0.634 0.504 0.711 0493 0.719  0.488 0.710
Max - kNN 0.560 0.391 0.651 0.388 0.664  0.382 0.652

TABLE 2: Results for Control vs. LLO task using traditional classifiers and SMOTE oversampling technique

Accuracy Precision Recall F-1 Score

- Control  Mdivi Control Mdivi Control  Mdivi
Median - Random Forest ~ 0.781 0.905 0.731 0.637 0.924  0.731 0.811
Mean - Random Forest 0.750 0.876 0.705 0.595 0.905 0.688 0.786
Min - Random Forest 0.755 0.904 0.704  0.580 0.931 0.685 0.795
Max - Random Forest 0.763 0.890 0.717  0.610 0916  0.704 0.798
Median - Decision Trees  0.734 0.888 0.683  0.546 0.921 0.653 0.778
Mean - Decision Trees 0.731 0.865 0.686  0.562 0.900  0.659 0.772
Min - Decision Trees 0.719 0.869 0.670  0.524 0913  0.630 0.767
Max - Decision Trees 0.737 0.870 0.692  0.566 0.908 0.664 0.778
Median - kNN 0.613 0.692 0.591 0.433 0.794  0.512 0.671
Mean - KNN 0.691 0.726 0.677  0.602 0.781 0.648 0.719
Min - kNN 0.576 0.600 0.566  0.444 0.708  0.496 0.622
Max - KNN 0.596 0.590 0.604  0.555 0.637  0.563 0.611

TABLE 3: Results for Control vs. Mdivi task using traditional classifiers and SMOTE oversampling technique

For this task, random forest classifer using the min aggregate
statistic produced the best results with an accuracy of 0.812. Table
2 shows the results for classifying 1lo and control data instances
using oversampling with SMOTE. Max random forest had the
performed in distinguishing control versus llo frames with an
accuracy of 0.826. Table 3 shows the results for classifying mdivi
and control data instances using oversampling with SMOTE with
Median-Random Forest having the highest accuracy at 0.781.

Tables 5, 4, 6 contain the results for of the traditional classifiers
and the graph neural network architectures with the downsampled
data. Table 5 shows the results for control-llo classification task
with Max-Random Forest and GNNs with GCS layers having best
accuracy of 0.68 and 0.686 respectively. Table 5 shows the results
for mdivi-llo classificaiton. This task had four methods that had the
best accuracy, GNN with GCS layers with an accuracy of 0.736
and Mean-Random Forest, Median-Decision trees and Max-kNN

all three of which had an accuracy of 0.73. Lastly, table 6 shows
the results for Mdivi-control classification. The highest accuracy
for this task was Min-Random Forest with an accuracy of 0.619.

Discussion

Overall, both methods have proven to be effective in classifying
anomalies in mitochondria. The methods also prove that the node
features effectively capture the properties of three different or-
ganelle morphologies and graphs are an effective way to represent
mitochondria. It is clear from the results that oversampling the data
is a good way to train the models well and make better predictions.
So, it is worth noting that especially the deep learning models,
which are known to be extremely data hungry, could benefit even
more so from having more data.

When the data is oversampled, the random forest classifier
performs well consitently but the aggregate statistic varies for
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each task. It is also interesting to note that the recall metric
is disproportionately better for one class in every task. For llo-
mdivi and llo-control tasks, this can potentially be attributed to
oversampling the minority class and the majority class, which is
llo in both cases, having more real data instances.

When the data was downsampled, there was a considerable
drop in performance as depicted by tables 5, 4, 6. In this sampling
method, the recall scores for the two classes in all three tasks
appear to be closer which can again be potentially be attributed to
training on all real data. The best metrics varied across each of the
tasks. Graph deep learning methods performed well in the control-
llo task and mdivi-llo task. Random forest continued to oupefrom
most methods except for the mdivi-llo task, in which Max-kNN
and Median-decision trees had high accuracies.

Conclusion

Healthy dynamics of subcellular organelles are vital to their
metabolic functions. Identifying anomalies in the dynamics is a
challenging but important task. In this work, we propose two
approaches to classifying different cell morphologies utilizing
only the last frames of videos capturing mitochondrial fusion and
fission. One method takes the node features and applies a general
statistic to make one graph level feature to serve as input for a tra-
ditional classifier. Another approach proposes using a graph neu-
ral network architecture to perform graph classification that take
in a node feature matrix and an adjacency matrix as inputs. We
show that both approaches are effective ways to classify between
anomalous and regular mitochondria and between two different
types of anomalous morphologies. Furthermore, we prove graph
neural networks show much promise in classifying and perhaps
even tracking the mitochondria and their morphologies.
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Accuracy Precision Recall F-1 Score

- Control LLO Control LLO Control LLO
GNN with GCS Layers 0.59 0.58 0.6 0.59 0.59 0.58 0.59
GNN with GCS Layers 0.686 0.5 0.83 0.75 0.62 0.6 0.71
Median - Random Forest  0.59 0.6 0.58 0.55 0.64 0.57 0.61
Mean - Random Forest 0.45 0.44 0.46 0.36 0.55 0.4 0.5
Min - Random Forest 0.41 0.38 0.43 0.27 0.55 0.32 0.48
Max - Random Forest 0.68 0.7 0.67 0.64 0.73 0.67 0.7
Median - Decision Trees  0.59 0.6 0.58 0.55 0.64 0.57 0.61
Mean - Decision Trees 0.55 0.54 0.56 0.64 0.45 0.58 0.5
Min - Decision Trees 0.5 0.5 0.5 0.36 0.64 0.42 0.56
Max - Decision Trees 0.64 0.71 0.6 0.45 0.82  0.56 0.69
Median - KNN 0.55 0.57 0.53 0.36 0.73 0.44 0.62
Mean - kNN 0.41 0.25 044  0.09 0.73 0.13 0.55
Min - kNN 0.41 0.33 044  0.18 0.64 0.24 0.52
Max - KNN 0.41 0.38 043  0.27 0.55 0.32 0.48

TABLE 4: Results for Control vs. LLO task using traditional classifiers and GNNs. The data was undersampled meaning the training set had
19 instances of each class and the test set had 11 instances of each class.

Accuracy Precision Recall F-1 Score

- Mdivi LLO Mdivi LLO Mdivi LLO
GNN with GCS Layers 0.736 0.75 0.67  0.69 0.73  0.72 0.7
GNN with GCS Layers 0.58 0.58 0.58 0.58 0.58 0.58 0.58
Median - Random Forest ~ 0.55 0.55 0.55 0.55 0.55 0.55 0.55
Mean - Random Forest 0.73 0.73 0.73 0.73 0.73 0.73 0.73
Min - Random Forest 0.55 0.55 0.55 0.55 0.55 0.55 0.55
Max - Random Forest 0.45 0.45 0.45 0.45 0.45 0.45 0.45
Median - Decision Trees ~ 0.73 0.78 0.69 0.64 0.82 0.7 0.75
Mean - Decision Trees 0.64 0.71 0.6 0.45 0.82 0.56 0.69
Min - Decision Trees 0.55 0.56 0.54 045 0.64 0.5 0.58
Max - Decision Trees 0.55 0.53 0.57 0.73 0.36 0.62 0.44
Median - kKNN 0.5 0.5 0.5 0.36 0.64 042 0.56
Mean - KNN 0.5 0.5 0.5 0.64 036  0.56 0.42
Min - kNN 0.59 0.56 0.75 091 0.27  0.69 0.4
Max - KNN 0.73 0.73 0.73 0.73 0.73 0.73 0.73

TABLE 5: Results for Mdivi vs. LLO task using traditional classifiers and GNNs. The data was undersampled meaning the training set had 19
instances of each class and the test set had 11 instances of each class.

Accuracy Precision Recall F-1 Score

- Control  Mdivi Control Mdivi Control  Mdivi
GNN with GCS Layers 0.619 0.6 0.64 0.64 0.6 0.64 0.6
GNN with GCN Layers 0.57 0.6 0.55 0.55 0.6 0.57 0.57
Median - Random Forest  0.55 0.56 0.54 0.45 0.64 0.5 0.58
Mean - Random Forest 0.64 0.67 0.62 0.55 0.73 0.6 0.67
Min - Random Forest 0.69 0.69 0.68 0.80 0.56 0.73 0.62
Max - Random Forest 0.55 0.57 0.53 0.36 0.73 0.44 0.62
Median - Decision Trees  0.55 0.56 0.54 0.45 0.64 0.5 0.58
Mean - Decision Trees 0.64 0.67 0.62 0.55 0.73 0.6 0.67
Min - Decision Trees 0.55 0.55 0.55 0.55 0.55 0.55 0.55
Max - Decision Trees 0.59 0.62 0.57 0.45 0.73 0.53 0.64
Median - kKNN 0.5 0.5 0.5 0.45 0.55 0.48 0.52
Mean - kKNN 0.57 0.7 0.59 0.34 0.66 0.52 0.62
Min - KNN 0.64 0.67 0.62 0.55 0.73 0.6 0.67
Max - KNN 0.55 0.57 0.53 0.36 0.73 0.44 0.62

TABLE 6: Results for Mdivi vs. Control task using traditional classifiers and GNNs. The data was undersampled meaning the training set had
19 instances of each class and the test set had 11 instances of each class.
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