132

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Training machine learning models faster with Dask

Joesph Holt*, Scott Sievert*

Abstract—Machine learning (ML) relies on stochastic algorithms, all of which
rely on gradient approximations with "batch size" examples. Growing the batch
size as the optimization proceeds is a simple and usable method to reduce
the training time, provided that the number of workers grows with the batch
size. In this work, we provide a package that trains PyTorch models on Dask
clusters, and can grow the batch size if desired. Our simulations indicate that for
a particular model that uses GPUs for a popular image classification task, the
training time can be reduced from about 120 minutes with standard SGD to 45
minutes with a variable batch size method.

Index Terms—machine learning, model training, distributed computation

Introduction

Training deep machine learning models takes a long time. For ex-
ample, training a popular image classification model [RRSS19] to
reasonable accuracy takes "around 17 hours" on Google servers.!
Another example includes training an NLP model for 10 days on 8
high-end GPUs [RNSS18].2 Notably, the number of floating point
operations (FLOPs) required for "the largest Al training runs"
doubles every 3.4 months.?

Model training is fundamentally an optimization problem: it
tries to find a model w that minimizes a loss function F:

fw:z)

S| =
-

w =argminF(w) :=
w

I
where there are n examples in the training set, and each example
is represented by z;. For classification, z; = (x;,y;) for a label y;
and feature vector x;. The loss function F' is the mean of the loss
f over different examples. To compute this minimization for large
scale machine learning, stochastic gradient descent (SGD) or a
variant thereof is used [BCN18]. SGD is iterative, and the model

update at each step k is computed via

By

Y
Wip1 =wi— = Y 8(Wiizi,)

B o
where g is the gradient of the loss function f for some batch
size By > 1, is is chosen uniformly at random and 7y > 0 is

£ University of Wisconsin-Madison
x Corresponding author: stsievert@wisc.com

Copyright © 2021 Joesph Holt et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. Specifically, a ResNet-50 model on the
database using a Google Tensor Proceesing Unit
(github.com/tensorflow/tpu/.../resnet/ README.md).

2. See OpenAl’s blog post "Improving Language Understanding with Unsu-
pervised Learning."

3. See OpenAl’s blog post "Al and Compute."

ImageNet
(TPU)

the learning rate or step size. The objective function’s gradient
is apgroximated with Bj examples — the gradient approximation
BikZi ¥, 8(Wi;z;,) is an unbiased estimator of the loss function
F’s gradient. This computation is common in the vast majority of
SGD variants, and is found in popular variants like Adam [KB14],
RMSprop [ZSJ719], Adagrad [DHS11], Adadelta [Zeil2], and
averaged SGD [PJ92]. Most variants make modifications to the
learning rate , [DHS11], [Zeil2], [KB14], [ZSJ"19].

Increasing the batch size By will reduce the number of model
updates while not requiring more FLOPs or gradient computations
— both empirically [SKYL17] and theoretically [Sie20]. Typically,
the number of FLOPs controls the training time because training
is performed with a single processor. At first, fewer model updates
seems like an internal benefit that doesn’t affect training time.

The benefit comes when training with multiple machines, aka a
distributed system. Notably, the time required to complete a single
model update is (nearly) agnostic to the batch size provided the
number of workers in a distributed system grows with the batch
size. In one experiment, the time to complete a model update
grows by 13% despite the batch size growing by a factor of
44 [GDG ™17, Sec. 5.5]. This acceleration has also been observed
with an increasing batch size schedule [SKYL17, Sec. 5.4].

Contributions

We provide software to accelerate machine learning model train-
ing, at least with certain distributed systems. For acceleration, the
distributed system must be capable of assigning a different number
of workers according to a fixed schedule. Specifically, this work
provides the following:

e A Python software package to train machine learning
models. The implementation® provides a Scikit-learn API
[BLB*13] to PyTorch models [PGM ™ 19].

o Our software works on any cluster that is configured to
work with Dask, many of which can change the number of
workers on demand.’

« Extensive experiments to illustrate that our software can
accelerate model training in terms of wall-clock time when
an appropriate Dask cluster is used.

A key component of our software is that the number of workers
grows with the batch size. Then, the model update time is agnostic
to the batch size provided that communication is instantaneous.
This has been shown empirically: Goyal et al. grow the batch

4. https://github.com/stsievert/adadamp

5. Including the default usage (through LocalCluster), supercomputers
(through Dask Job-Queue), YARN/Hadoop clusters (through Dask Yarn) and
Kubernetes clusters (through Dask Kubernetes).

mailto:stsievert@wisc.com
https://github.com/tensorflow/tpu/blob/4cee6f16f78a92b4da8b1b7bad1e4841c9bda77a/models/official/resnet/README.md
https://openai.com/blog/language-unsupervised/
https://openai.com/blog/language-unsupervised/
https://openai.com/blog/ai-and-compute/
https://github.com/stsievert/adadamp
https://distributed.dask.org/en/latest/api.html#distributed.LocalCluster
https://jobqueue.dask.org/en/latest/
https://yarn.dask.org/en/latest/
https://docs.dask.org/en/latest/setup/kubernetes.html

TRAINING MACHINE LEARNING MODELS FASTER WITH DASK

size (and the number of workers with it) by a factor of 44 but
the time for a single model update only increases by a factor of
1.13 [GDG" 17, Sec. 5.5].

Now, let’s cover related work to gain understanding of why
variable batch sizes provide a benefit in a distributed system.
Then, let’s cover the details of our software before presenting
simulations. These simulations confirm that model training can be
accelerated if the number of workers grows with the batch size.
Methods to workaround limitations on the number of workers will
be presented.

Related work

The data flow for distributed model training involves distributing
the computation of the gradient estimate, %Z?:] g(wi;zi). Typi-
cally, each worker computes the gradients for B/P examples when
there is a batch size of B and P machines. Then, the average of
these gradients is taken and the model is updated.®

Clearly, Amdahl’s law is relevant because there are diminish-
ing returns as the number of workers P is increased [GVY T 18].
This as referred to as "strong scaling" because the batch size is
fixed and the number of workers is treated as an internal detail. By
contrast, growing the amount of data with the number of workers
is known as "weak scaling." Of course, relevant experiments
show that weak scaling exhibits better scaling than strong scaling
[QST17].

Constant batch sizes

To circumvent Amdahl’s law, a common technique is to increase
the batch size [ZLNT19] alongside the learning rate [JAGG20].
Using moderately large batch sizes yields high quality results
more quickly and, in practice, requires no more computation than
small batch sizes, both empirically [GDG" 17] and theoretically
[YPL*18].

There are many methods to choose the best constant batch size
(e.g., [GGS19], [KSL*20]). Some methods are data dependent
[YPL 18], and others depend on the model complexity. In particu-
lar, one method uses hardware topology (e.g., network bandwidth)
in a distributed system [PKK™19].

Large constant batch sizes present generalization chal-
lenges [GDG"17]. The generalization error is hypothesized to
come from "sharp" minima, strongly influenced by the learning
rate and noise in the gradient estimate [KMNT16]. To match
performance on the training dataset, careful thought must be
given to hyperparameter selection [GDG 17, Sec. 3 and 5.2]. In
fact, this has motivated algorithms specifically designed for large
constant batch sizes and distributed systems [JAGG20], [JSHT 18],
[YGGI17].

Increasing the batch size

Model quality greatly influences the amount of information in the
gradient — which influences the batch size [Sie20]. For example,
if models are poorly initialized, then using a large batch size has
no benefit: the gradient—or direction to the optimal model—for
each example will produce very similar numbers. An illustration
is given in Figure 1.

Various methods to adaptively change the batch size based
on model performance have been proposed [Sie20], [DYJG16],
[BRHI17], [BCNW12]. Of course, these methods are adaptive so

6. Related but tangential methods include methods to efficiently communi-
cate the gradient estimates [AGL " 17], [GTAZ18], [WSL"18].

133

computing the batch size requires computation (though there are
workarounds [Sie20], [BRH17]).

Convergence results have been given for adaptive batch
sizes [Sie20], [BCN18], [ZYF18]. Increasing the batch size is
a provably good measure that requires far fewer model updates
and no more computation than standard SGD for strongly convex
functions [BCN18, Ch. 5], and all function classes if the batch
size is provided by an oracle [Sie20]. Convergence proofs have
also been given for the passively increasing the batch size, both
for strongly convex functions [BCN18, Ch. 5] and for non-convex
functions [ZYF18]. Both of these methods require fewer model
updates than SGD and do not increase the number of gradient
computations.

Notably, a geometric batch size increase schedule has shown
great empirical performance in image classification [SKYL17].
Specifically, the number of model updates required to finish train-
ing decreased by a factor of 2.2 over standard SGD [SKYLI17].
Smith et al. make an observation that increasing the batch size and
decreasing the learning rate both decay the optimization’s "noise
scale" (or variance of the model update), which has connections
to simulated annealing [SKYL17]. This motivates increasing the
batch size by the same factor the learning rate decays [SKYL17].

Both growing the batch size and using large constant batch
sizes should require the same number of floating point operations
as using standard SGD with small batch sizes to reach a partic-
ular training loss (respectively [Sie20], [BCN18] and [JAGG20],
[YLR*19], [YPL*18]). Some proof techniques suggest that vari-
able batch size methods mirror gradient descent [Sie20], [KNS16],
so correspondingly, the implementations do not require much
additional hyperparameter tuning [SKYL17].

Distributed training with Dask

We have written "AdaDamp," a software package to to train a
PyTorch model with a Scikit-learn API on any Dask cluster.” It
supports the use of constant or variable batch sizes, which fits
nicely with Dask’s ability to change the number of workers.® In
this section, we will walk through the basic architecture of our
software and an example usage. We will defer showing the primary
benefit of our software to the experimental results.

Architecture

Our software uses a centralized synchronous parameter server and
controls the data flow of the optimization with Dask (and does not
rely on PyTorch’s distributed support). Specifically, the following
happen on every model update:

1) The master node broadcasts the model to every worker.

2) The workers calculate the gradients.

3) The workers communicate the gradients back to the
master.

4) The master performs a model update with the aggregated
gradients.

We use Dask to implement this data flow, which adds some
overhead.” AdaDamp supports static batch sizes; however, there
is little incentive to use AdaDamp with a static batch sizes: the

7. While our software works with a constant batch size, the native imple-
mentations work with constant batch sizes and very likely have less overhead
(e.g., PyTorch Distributed [LZV *20]).

8. https://github.com/stsievert/adadamp

https://github.com/stsievert/adadamp

134

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

A e =——————— > ®
——— — — — —
‘::::\\;’ 4 ;
< — K >
\‘ X
B * Model
AYRY
4 SA Datum w/ two features
2 = < Datum gradient
—P Gradient for mean of
3 all data

Fig. 1: An illustration of why the batch size should increase. Here, let’s find a model w = [wy,w,] that minimizes the function f(wy,wy) =
Y3 0wy —x:)% 4 (wy — y;)? where x; and y; are the x and y coordinates of each datum. When closer to the optimum at model A, the gradients
are more "diverse,” so the magnitude and orientation of each datum’s gradient varies more [YPL" 18].

native solution has PyTorch less overhead [LZV " 20], and already
has a Dask wrapper.'?

The key component of AdaDamp is that the number of workers
grows with the batch size. Then, the model update time is agnostic
to the batch size (provided communication is instantaneous). This
has been shown empirically: Goyal et al. grow the batch size (and
the number of workers with it) by a factor of 44 but the time for a
single model update only increases by a factor of 1.13 [GDG" 17,
Sec. 5.5].

Example usage

First, let’s create a standard PyTorch model. This is a simple
definition; a more complicated model or one that uses GPUs can
easily be substituted.

import torch.nn as nn
import torch.nn.functional as F

class HiddenLayer (nn.Module) :
def _ init_ (self, features=4,
super () .__init__ ()
self.hidden = nn.Linear (features,
self.out = nn.Linear (hidden, out)

hidden=2, out=1):

hidden)

def forward(self, x, =*args, =*xkwargs):

return self.out (F.relu(self.hidden(x)))

Now, let’s create our optimizer:

from adadamp import DaskRegressor
import torch.optim as optim

est = DaskRegressor (
module=HiddenLayer, module__features=10,
optimizer=optim.Adadelta,
optimizer__weight_decay=le-7,
max_epochs=10

)

So far, a PyTorch model and optimizer have been specified.
As per the Scikit-learn API, we specify parameters for the
model/optimizer with double underscores, so in our example
HiddenLayer (features=10) will be created. We can set
the batch size increase parameters at initialization if desired, or
inside set_params.

from adadamp.dampers import GeoDamp
est.set_params (

9. An opportunity for future work.
10. https://github.com/saturncloud/dask- pytorch-ddp

batch_size=GeoDamp, batch_size__delay=60,
batch_size_ factor=5)

This will increase the batch size by a factor of 5 every 60 epochs,
which is used in the experiments. Now, we can train:

from sklearn.datasets import make_regression

X, y = make_regression(n_features=10)

X = torch.from_numpy (X.astype ("float32"))

y = torch.from _numpy (y.astype("float32")) .reshape (-1,

est.fit (X, vy)

Experiments

In this section, we present two sets of experiments.'! Both
experiments will use the same setup, a Wide-ResNet model in
a "16-4" architecture [ZK16] to perform image classification on
the CIFAR10 dataset [KHO09]. This is a deep learning model with
about 2.75 million weights that requires a GPU to train.'> The
experiments will provide evidence for the following points:

1) Increasing the batch size reduces the number of model
updates.

2) The time required for model training is roughly propor-
tional to the number of model updates (presuming the
distributed system is configured correctly).

To provide evidence for these points, let’s run one set of
experiments that varies the batch size increase schedule. These ex-
periments will mirror the experiments by Smith et al. [SKYL17].
Additionally, let’s ensure that our software accelerates model
training as the number of GPUs increase.

We train each batch size increase schedule once, and then write
the historical performance to disk. This reduces the need for many
GPUs, and allows us to simulate different networks and highlight
the performance of Dask. That means that in our simulations,
we simulate model training by having the computer sleep for an
appropriate and realistic amount of time.

11. Full detail on these experiments can be found at https://github.com/
stsievert/adadamp-experiments

12. Specifically, we used a NVIDIA T4 GPU with an Amazon
g4dn.xlarge instance. Training consumes 2.2GB of GPU memory with
a batch size of 32, and 5.5GB with a batch size of 256.

https://github.com/saturncloud/dask-pytorch-ddp
https://github.com/stsievert/adadamp-experiments
https://github.com/stsievert/adadamp-experiments

TRAINING MACHINE LEARNING MODELS FASTER WITH DASK

Batch size increase

To illustrate the primary benefit of our software, let’s perform
several trainings that require a different number of model updates.
These experiments explicitly mirror the experiments by Smith et
al. [SKYL17, Sec. 5.1], which helps reduce the parameter tuning.

Largely, the same hyperparameters are used. These experi-
ments only differ in the choice of batch size and learning rate,
as shown in Figure 2. As in the Smith et al. experiments, every
optimizer uses Nesterov momentum [Nes98] and the same mo-
mentum (0.9) and weight decay (0.5 - 1073). They start with the
same initial learning rate (0.05),13 and either the learning rate is
decreased or the batch size increases by a specified factor (5) at
particular intervals (epochs 60, 120 and 180). This means that the
variance of the model update is reduced by a constant factor at
each update.

I N
£ 10724
o
= .
g max batch size
E — 128
- —— 640
10734 — 3.2k
— 16k
—— 5.1k (*2)
0 25 50 75 100 125 150 175 200
Epochs
214 4 = —
max batch size
— 128
Ll 640
2% 9 — 3.2k
§ — 16k
- —— 5.1k (*2)
% 210
o
28 4

0 25 50 75 100 125 150 175 200
Epochs

Fig. 2: The learning rate and batch size decrease/increase schedules
for various optimizers. After the maximum batch size is reached, the
learning rate decays. A postfix of "(*2)" means the initial batch size
twice as large (256 instead of 128)

These different decay schedules exhibit the same performance
in terms of number of epochs, which is proportional to the number
of FLOPs, as shown in Figure 3. The number of FLOPs is
(approximately) to the cost, at least on Amazon EC2 where the
cost to rent a server tends to be proportional to the number of
GPUs.

Importantly, this work focuses on increasing the number of
workers with the batch size — the effect of which is hidden
in Figure 3. However, the fact that the performance does not
change with different schedules means that choosing a different
batch size increase schedule will not require more wall-clock
time if only a single worker is available. Combined with the
hyperparameter similarity between the different schedules, this
reduces deployment and debugging concerns.

13. These are the same as Smith et al. [SKYL17] with the exception of
learning rate (which had to be reduced by a factor of 2).

135
92% -
90% -
>
[}
o
3 88% 1
%)
©
%o 128
@ 86% 1 —— 640
— 3.2k
84% 1 — 16k
—— 5.1k (*¥2)
82% : : : : : : : :
0 25 50 75 100 125 150 175 200
Epochs
0.8
mbs
0.7 — 128
—— 640
0.6 — 3.2k
g — 16k
= 0.5 5.1k (*2)
(0]
R
0.4
0.3
0.2 : - :

75 100 125 150 175 200
Epochs

o
N
w
w
o

Fig. 3: The performance of the LR/BR schedules in Figure 2, plotted
with epochs—or passes through the dataset—on the x-axis.

Maximum Model wup- Training time Max.
batch size dates (min) workers
5.1k (*2) 14,960 69.87 40

3.2k 29,480 107.17 25

16k 29,240 107.49 125

640 34,520 116.86 5

128 78,200 200.19 1

TABLE 1: A summary of the simulations in Figures 3 and 4. All
training require approximately 200 epochs, so they all require the
same number of FLOPs.

If the number of workers grows with the batch size, then the
number of model updates is relevant to the wall-clock time. Figure
4 shows the number of model updates and wall-clock time required
to reach a model of a particular test accuracy. Of course, there is
some overhead to our current framework, which is why the number
of model updates does not exactly correlate with the wall-clock
time required to complete training. In summary, the time required
to complete training is shown in Table 1.

Future work
Architecture

Fundamentally, the model weights can be either be held on
a master node (centralized), or on every node (decentralized).
Respectively, these storage architectures typically use point-to-
point communication or an "all-reduce" communication. Both
centralized [LAP"14], [ABC"16] and decentralized [LZV "20],
[SDB18] communication architectures are common.

Future work is to avoid the overhead introduced by manually
having Dask control the model update workflow. With any syn-
chronous centralized system, the time required for any one model
update is composed of the time required for the following tasks:

136
92% A
90% A
>
(o)
e
3 88% A -
I max batch size
B oro — 128
@ 86% 1 640
— 3.2k
84% - — 16k
—— 5.1k (*2)
82% T T T T T T T T
0 10 20 30 40 50 60 70 80
Model updates (thousands)
92% A
90% A
>
o)
e
3 88% -
o max batch size
% 6% — 128
Qg oo 640
— 3.2k
84% — 16k
— 5.1k (*¥2)
82% T T T T T T
0 30 60 90 120 150 180 210

Training time (min)

Fig. 4: The same simulations as in Figure 3, but plotted with the
number of model updates and wall-clock time plotted on the x-axis
(the loss obeys a similar behavior as illustrated in the Appendix).

1) Broadcasting the model from the master node to all
workers

2) Finishing gradient computation on all workers.

3) Communicating gradients back to master node.

4) Various overhead tasks (e.g., serialization,
scheduling, etc).

5) Computing the model update after all gradients are com-
puted & gathered.

worker

Items (1), (3) and (4) are a large concern in our imple-
mentation. Decentralized communication has the advantage of
eliminating items (1) and (4), and mitigates (3) with a smarter
communication strategy (all-reduce vs. point-to-point). Item (2)
is still a concern with straggler nodes [DCM™12], but recent
work has achieved "near-linear scalability with 256 GPUs" in a
homogeneous computing environment [LZV20]. Items (2) and
(5) can be avoided with asynchronous methods (e.g., [RRWN11],
[ZHAT16]).

That is, most of the concerns in our implementation will
be resolved with a distributed communication strategy. The Py-
Torch distributed communication package uses a synchronous
decentralized strategy, so the model is communicated to each
worker and gradients are sent between workers with an all-reduce
scheme [LZV*20]. It has some machine learning specific features
to reduce the communication time, including performing both
computation and communication concurrently as layer gradients
become available [LZV 720, Sec. 3.2.3].

The software library dask-pytorch-ddp'* allows use of the
PyTorch decentralized communications [LZV20] with Dask
clusters, and is a thin wrapper around PyTorch’s distributed
communication package. Future work will likely involve ensuring
training can efficiently use a variable number of workers.

14. https://github.com/saturncloud/dask- pytorch-ddp

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Maximum Centralized Decentralized Decentralized
batch size (moderate) (high)

5.1k (*2) 69.9 45.1 43.5

3.2k 107.2 67.7 65.5

16k 107.5 67.7 65.7

640 116.9 73.6 71.8

128 200.2 121.7 121.5

TABLE 2: Simulations that indicate how the training time (in minutes)
will change under different architectures and networks. The "central-
ized" architecture is the currently implemented architecture, and has
the same numbers as "training time" in Table 4.

Simulations

We have simulated the expected gain from the work of enabling
decentralized communication with two networks that use a decen-
tralized all-reduce strategy:

¢ decentralized-medium It assumes an a network
with inter-worker bandwidth of 54Gb/s and a latency of
0.05us.

e centralized uses a centralized communication strat-
egy (as implemented) and the same network as
decentralized-medium.

e decentralized-high has the same network as
decentralized-medium but has an inter-worker
bandwidth of 800Gb/s and a latency of 0.025us.

To provide baseline performance, we also show the results
with the current implementation:

uses the same network as
decentralized-medium but with the centralized
communication scheme that is currently implemented.

e centralized

decentralized-medium is most applicable for clusters
that have decent bandwidth between nodes. It’s also applicable
to for certain cases when Amazon EC2 is used with one GPU
per worker,'> or workers have a very moderate Infiniband setup.'®
decentralized-high is a simulation of the network used by
the PyTorch developers to illustrate their distributed communica-
tion [LZV120]. We have run simulations to illustrate the effects
of these networks. Of course, changing the underlying networks
does not affect the number of epochs or model updates, so Figures
3 and 4 also apply here.

A summary of how different networks affect training time
is shown in Table 2. We show the training time for a par-
ticular network (decentralized-moderate) in Figure 6;
decentralized-high shows similar performance as illus-
trated in Table 2. A visualization of 2 is shown in Figure 5.
This shows how network quality affects the performance of dif-
ferent optimization methods in Figure 6. Clearly, the optimization
method (and the maximum number of workers) is more important
than the network.

Finally, let’s show how the number of Dask workers affects
the time required to complete a single epoch with a constant

15. 50Gb/s and 25Gb/s networks can be obtained with g4dn.8xlarge
and g4dn.xlarge instances respectively. g4dn.xlarge machines have 1
GPU each and are the least expensive for a fixed number of FLOPs on the
GPU.

16. A 2011 Infiniband setup with 4 links (https://en.wikipedia.org/wiki/
InfiniBand#Performance)

https://github.com/saturncloud/dask-pytorch-ddp
https://en.wikipedia.org/wiki/InfiniBand#Performance
https://en.wikipedia.org/wiki/InfiniBand#Performance

TRAINING MACHINE LEARNING MODELS FASTER WITH DASK

Decentralized performance

1207 g high
105 4 —®— moderate
£] === ideal e
g 90 7
o 754
£
- 60_
2
€ 457 ’
o id
= 301 /
4
15 A ,/
4
0 T T T T
0 20 40 60 80

Model updates (thousands)

Fig. 5: A single point represents one run in Figure 6. The point with
about 80k model updates represents a single worker, so there’s no
overhead in this decentralized simulation. Different network qualities
are shown with different colors, and the "ideal" line is as if every
model update is agnostic to batch size.

batch size. This simulation will use the decentralized-high
network and has the advantage of removing any overhead. The
results in Figure 7 show that the speedups start saturating around
128 examples/worker for the model used with a batch size of
512. Larger batch sizes will likely mirror this performance —
computation is bottleneck with this model/dataset/hardware.

92% -
5. 90% A
[}
o
3 88% A max batch size
® — 128
2 86% A —— 640
|_
— 3.2k
84% A — 16k
— 5.1k (*2)
82% n T T T T T T
20 40 60 80 100 120

Training time (minutes)

Fig. 6: The training time required for different optimizers under the
decentralized-moderate network.

17.5 A

15.0

= =

° N

o (6]
L L

7.51

5.0 1

Median time per
epoch time (secs)

2.51

0.0 -
32 64 128 256 512

Examples per worker

Fig. 7: The median time to complete a pass through the training set
with a batch size of 512. As expected, the speedups diminish when
there is little computation and much communication (say with 32
examples per worker).

137

Conclusion

In this work, we have provided a package to train PyTorch ML
models with Dask cluster. This package reduces the amount
of time required to train a model with the current centralized
setup. However, it can be further accelerated by integration with
PyTorch’s distributed communication package as illustrated by
extensive simulations. For a particular model, only 45 minutes
is required for training — an improvement over the 120 minutes
required with standard SGD.

138

APPENDIX
0.8
max batch size
0.7 — 128
— 640
3 0.6 — 32k
5 — 16k
|9)
@ —— 5.1k (*2)
i
2@

0.2 T T T T T T
0 20 40 60 80 100 120

Training time (minutes)

Fig. 8: The training time required for different optimizers under the

decentralized-moderate network.

max batch size

0.7 — 128
‘ 640
g 0.6 — 3.2k
§ — 16k
¢ 051 —— 5.1k (*2)
& 0.4 -

0.3 A

0.2 T T T T T T
0 20 40 60 80 100 120

Training time (minutes)

Fig. 9: The training time required for different optimizers under the

decentralized-high network.

0.8
max batch size
0.7 — 128
‘ — 640
0.6 1§ — 3.2k
— 16k

5.1k (*2)

Test accuracy

0.2

0 50 100 150 200
Training time (minutes)

Fig. 10: The training time required for different optimizers under the

centralized network.

REFERENCES

[ABC*16] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat
Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

[AGL"17]

[BCN18]

[BCNW12]

[BLB"13]

[BRH17]

[DCMT12]

[DHS11]

[DYJG16]

[GDG™17]

[GGS19]

[GTAZ18]

[GVY'18]

[JAGG20]

[JSHT18]

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In /2th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 16), pages
265-283, Savannah, GA, November 2016. USENIX Associa-
tion. URL: https://www.usenix.org/conference/osdil6/technical-
sessions/presentation/abadi.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. Qsgd: Communication-efficient sgd
via gradient quantization and encoding. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural In-
Sformation Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL: https://proceedings.neurips.cc/paper/2017/file/
6¢340f25839e6acdc73414517203f5f0- Paper.pdf.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimiza-
tion methods for large-scale machine learning. SIAM Review,
60:223-223,2018. doi:10.1137/16M1080173.

Richard H Byrd, Gillian M Chin, Jorge Nocedal, and Yuchen
Wu. Sample size selection in optimization methods for machine
learning. Mathematical programming, 134(1):127-155, 2012.
doi:10.1007/s10107-012-0572-5.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pe-
dregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter
Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Lay-
ton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaél Varo-
quaux. API design for machine learning software: experiences
from the scikit-learn project. In ECML PKDD Workshop: Lan-
guages for Data Mining and Machine Learning, pages 108—122,
2013.

Lukas Balles, Javier Romero, and Philipp Hennig. Coupling
adaptive batch sizes with learning rates. In 33rd Conference
on Uncertainty in Artificial Intelligence (UAI 2017), pages 675—
684. Curran Associates, Inc., 2017. URL: http://auai.org/uai2017/
proceedings/papers/141.pdf.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc' aurelio Ranzato, An-
drew Senior, Paul Tucker, Ke Yang, Quoc Le, and An-
drew Ng. Large scale distributed deep networks. 25,
2012. URL: https://proceedings.neurips.cc/paper/2012/file/
6aca97005c68f1206823815f66102863-Paper.pdf.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal
of Machine Learning Research, 12(61):2121-2159, 2011. URL:
http://jmlr.org/papers/v12/duchil 1a.html.

Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein.
Big Batch SGD: Automated inference using adaptive batch sizes.
arXiv preprint arXiv:1610.05792, 2016.

Priya Goyal, Piotr Dolldr, Ross Girshick, Pieter Noordhuis,
Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing
Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.
Nidham Gazagnadou, Robert Gower, and Joseph Salmon. Opti-
mal mini-batch and step sizes for SAGA. In Kamalika Chaud-
huri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 2142-2150.
PMLR, 09-15 Jun 2019. URL: http://proceedings.mlr.press/v97/
gazagnadoul9a.html.

Demjan Grubic, Leo K Tam, Dan Alistarh, and Ce Zhang.
Synchronous multi-gpu deep learning with low-precision commu-
nication: An experimental study. In Proceedings of the 21st Inter-
national Conference on Extending Database Technology, pages
145-156. OpenProceedings, 2018. doi:10.3929/ethz-b-
000319485.

Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg,
Amir Gholami, Kai Rothauge, Michael W Mahoney, and Joseph
Gonzalez. On the computational inefficiency of large batch sizes
for stochastic gradient descent. arXiv preprint arXiv:1811.12941,
2018.

Tyler Johnson, Pulkit Agrawal, Haijie Gu, and Carlos Guestrin.
AdaScale SGD: A user-friendly algorithm for distributed training.
In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages 4911-4920.
PMLR, 13-18 Jul 2020. URL.: http://proceedings.mlr.press/v119/
johnson20a.html.

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://proceedings.neurips.cc/paper/2017/file/6c340f25839e6acdc73414517203f5f0-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6c340f25839e6acdc73414517203f5f0-Paper.pdf
http://dx.doi.org/10.1137/16M1080173
http://dx.doi.org/10.1007/s10107-012-0572-5
http://auai.org/uai2017/proceedings/papers/141.pdf
http://auai.org/uai2017/proceedings/papers/141.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
http://jmlr.org/papers/v12/duchi11a.html
http://proceedings.mlr.press/v97/gazagnadou19a.html
http://proceedings.mlr.press/v97/gazagnadou19a.html
http://dx.doi.org/10.3929/ethz-b-000319485
http://dx.doi.org/10.3929/ethz-b-000319485
http://proceedings.mlr.press/v119/johnson20a.html
http://proceedings.mlr.press/v119/johnson20a.html

TRAINING MACHINE LEARNING MODELS FASTER WITH DASK

[KB14]
[KHO9]

[KMNT16]

[KNS16]

[KSL*20]

[LAP'14]

[LZVT20]

[Nes98]

[PGM™19]

[PJ92]

[PKK™19]

[QST17]

[RNSS18]

[RRSS19]

[RRWNI11]

[SDB18]

[Sie20]

[SKYL17]

Rong, Feihu Zhou, Ligiang Xie, Zhenyu Guo, Yuanzhou Yang,
and Liwei Yu. Highly scalable deep learning training system
with mixed-precision: Training imagenet in four minutes. arXiv
preprint arXiv:1807.11205, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers
of features from tiny images. 2009.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-batch
training for deep learning: Generalization gap and sharp minima.
arXiv preprint arXiv:1609.04836, 2016.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear con-
vergence of gradient and proximal-gradient methods under the
polyak-tojasiewicz condition. Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, page
795-795,2016. doi1:10.1007/978-3-319-46128-1_50.
Ahmed Khaled, Othmane Sebbouh, Nicolas Loizou, Robert M
Gower, and Peter Richtdrik. Unified analysis of stochastic gra-
dient methods for composite convex and smooth optimization.
arXiv preprint arXiv:2006.11573, 2020.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola,
Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita,
and Bor-Yiing Su. Scaling distributed machine learning with
the parameter server. In //th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 14), pages
583-598, Broomfield, CO, October 2014. USENIX Associa-
tion. URL: https://www.usenix.org/conference/osdil4/technical-
sessions/presentation/li_mu.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter No-
ordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pri-
tam Damania, and Soumith Chintala. Pytorch distributed: Experi-
ences on accelerating data parallel training. Proc. VLDB Endow.,
13(12):3005-3018, August 2020. URL: https://doi.org/10.14778/
3415478.3415530, doi:10.14778/3415478.3415530.
Yurii Nesterov. Introductory lectures on convex programming
volume i: Basic course, volume 3. 1998.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Na-
talia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic
approximation by averaging. SIAM journal on control and
optimization, 30(4):838-855, 1992. doi:10.1137/0330046.
Michael P Perrone, Haidar Khan, Changhoan Kim, Anastasios
Kyrillidis, Jerry Quinn, and Valentina Salapura. Optimal mini-
batch size selection for fast gradient descent. arXiv preprint
arXiv:1911.06459, 2019.

Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo: A
performance model for deep neural networks. In ICLR (Poster),
2017. URL: https://talwalkarlab.github.io/paleo/.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative pre-
training. 2018.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal
Shankar. Do ImageNet classifiers generalize to ImageNet? In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceed-
ings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages
5389-5400. PMLR, 09-15 Jun 2019. URL: http://proceedings.
mlr.press/v97/recht19a.html.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng
Niu. Hogwild!: A lock-free approach to parallelizing stochastic
gradient descent. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 24. Curran Associates,
Inc., 2011. URL: https://proceedings.neurips.cc/paper/2011/file/
218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf.

Alexander Sergeev and Mike Del Balso. Horovod: fast and
easy distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

Scott Sievert. Improving the convergence of sgd through adaptive
batch sizes, 2020.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and
Quoc Vgra Le. Don’t decay the learning rate, increase the batch
size. arXiv preprint arXiv:1711.00489, 2017.

139

[WSL*18] Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles,

[YGG17]

[YLR'19]

[YPLT18]

[Zeil2]

[ZHA16]

[ZK16]

[ZLNT19]

[ZSTT19]

[ZYF18]

Dimitris Papailiopoulos, and Stephen Wright. Atomo:
Communication-efficient learning via atomic sparsification. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 31. Curran Associates,
Inc., 2018. URL: https://proceedings.neurips.cc/paper/2018/file/
33b3214d792caf311e1f00fd22b392c5-Paper.pdf.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training
of convolutional networks. arXiv preprint arXiv:1708.03888,
2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv
Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Demmel,
Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization
for deep learning: Training bert in 76 minutes. arXiv preprint
arXiv:1904.00962, 2019.

Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos,
Kannan Ramchandran, and Peter Bartlett. Gradient diversity:
a key ingredient for scalable distributed learning. In Amos
Storkey and Fernando Perez-Cruz, editors, Proceedings of the
Twenty-First International Conference on Artificial Intelligence
and Statistics, volume 84 of Proceedings of Machine Learning
Research, pages 1998-2007. PMLR, 09-11 Apr 2018. URL:
http://proceedings.mlr.press/v84/yin18a.html.

Matthew D Zeiler. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

Huan Zhang, Cho-Jui Hsieh, and Venkatesh Akella. Hogwild++:
A new mechanism for decentralized asynchronous stochastic
gradient descent. pages 629—638, 2016. doi:10.1109/ICDM.
2016.0074.

Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016.

Guodong Zhang, Lala Li, Zachary Nado, James Martens,
Sushant Sachdeva, George Dahl, Chris Shallue, and Roger B
Grosse. Which algorithmic choices matter at which
batch sizes? insights from a noisy quadratic model. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL: https://proceedings.neurips.cc/paper/2019/file/
e0eacd983971634327ae1819ea8b6214-Paper.pdf.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu.
A sufficient condition for convergences of adam and rmsprop. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11127-11135, 2019. doi:10.
1109/cvpr.2019.01138.

Pan Zhou, Xiaotong Yuan, and Jiashi Feng. New insight into
hybrid stochastic gradient descent: Beyond with-replacement
sampling and convexity. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL: https://proceedings.neurips.cc/paper/
2018/file/67e103b0761e60683e83c559be 18d40c-Paper.pdf.

http://dx.doi.org/10.1007/978-3-319-46128-1_50
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.14778/3415478.3415530
http://dx.doi.org/10.14778/3415478.3415530
http://dx.doi.org/10.1137/0330046
https://talwalkarlab.github.io/paleo/
http://proceedings.mlr.press/v97/recht19a.html
http://proceedings.mlr.press/v97/recht19a.html
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/33b3214d792caf311e1f00fd22b392c5-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/33b3214d792caf311e1f00fd22b392c5-Paper.pdf
http://proceedings.mlr.press/v84/yin18a.html
http://dx.doi.org/10.1109/ICDM.2016.0074
http://dx.doi.org/10.1109/ICDM.2016.0074
https://proceedings.neurips.cc/paper/2019/file/e0eacd983971634327ae1819ea8b6214-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e0eacd983971634327ae1819ea8b6214-Paper.pdf
http://dx.doi.org/10.1109/cvpr.2019.01138
http://dx.doi.org/10.1109/cvpr.2019.01138
https://proceedings.neurips.cc/paper/2018/file/67e103b0761e60683e83c559be18d40c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/67e103b0761e60683e83c559be18d40c-Paper.pdf

	Introduction
	Contributions
	Related work
	Constant batch sizes
	Increasing the batch size

	Distributed training with Dask
	Architecture
	Example usage

	Experiments
	Batch size increase

	Future work
	Architecture
	Simulations

	Conclusion
	Appendix
	References

