
140 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Multithreaded parallel Python through OpenMP
support in Numba

Todd Anderson‡†, Tim Mattson‡∗

F

Abstract—A modern CPU delivers performance through parallelism. A program
that exploits the performance available from a CPU must run in parallel on
multiple cores. This is usually best done through multithreading. Threads belong
to a process and share the memory associated with that process. The most
popular approach for writing multithreaded code is to use directives to tell the
compiler how to convert code into multithreaded code. The most commonly
used directive-based API for writing multithreaded code is OpenMP. Python is
not designed for parallel programming with threads. The GlobalInterpreterLock
(GIL) prevents multiple threads from simultaneously accessing Python objects.
This effectively prevents data races and makes Python naturally thread safe.
Consequently, the GIL prevents parallel programming with multiple threads and
therefore keeps Python from accessing the full performance from a CPU. In this
paper, we describe a solution to this problem. We implement OpenMP in Python
so programmers can easily annotate their code and then let the Numba just-
in-time (JIT) compiler generate multithreaded, OpenMP code in LLVM, thereby
bypassing the GIL. We describe this new multithreading system for Python and
and show that the performance in our early tests is on par with the analogous C
code.

Index Terms—OpenMP, Python, Numba

Introduction

Python emphasizes productivity over performance. Given the
growth of Python and the fact it is by some measures the most
popular programming language in the world [PyP21] , this focus
on productivity has turned out to be the right choice at the right
time.

Performance from Python code, however, has suffered. The
recent paper about software performance ("There’s plenty of room
at the top..." [Lei20]) used a simple triply nested loop for a matrix
multiply routine and found that the Python code delivered results
that, when rounded to the correct number of significant digits,
were zero percent of the available peak performance from the
chip.

A common attitude in the high performance computing com-
munity is that Python is for developing new algorithms or manag-
ing workflows built up from external, high performance modules
written in low level languages. If the performance is not good
enough from Python, then the code is reimplemented in a low-level
language such as C. Why sacrifice productivity for performance if

† These authors contributed equally.
‡ Intel Corp.
* Corresponding author: timothy.g.mattson@intel.com

Copyright © 2021 Todd Anderson et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

programmers who need high performance will rewrite their code
in C anyway?

In our line of research, we are developing technologies that let
programmers stay in Python. Some of our prior work in this area is
ParallelAccelerator in Numba (i.e., the parallel=True option to the
Numba JIT decorator) ([Lam15] [And17] [NPar]) In this work,
common patterns in code are exploited to expose concurrency in
the code which is then executed in parallel. The parallelism is
implicit in the patterns of code written by a programmer aware of
these tools. Implicit parallelism is powerful but there are too many
cases where it can not find sufficient concurrency to support the
levels of parallelism needed to fully occupy the cores on a modern
CPU.

Another approach is to embed parallelism inside the functions
from modules such as NumPy. This is an effective way to exploit
the parallel resources of a system. However, there are two well
known limitations to this approach. First, if the parallelism is
constrained to the body of a function, there is startup overhead
in launching the parallel threads and shutting them down for
each function call. This overhead may be small, but they add up
since they occur each time a function is called. This increases
the fraction of a program execution time that is not reduced as
parallel resources are added (the "serial fraction") and limits the
maximum possible speedup (which is restricted by Amdahl’s law
to one over the serial fraction). Second, limiting parallelism to
the bodies of parallelized functions misses the opportunity for
additional parallelism that comes from running those functions in
parallel. A great deal of available parallelism is missed if such
cross-function parallelism is not exploited.

Taken together, we believe these limitations to parallelism
strongly suggest that a well-rounded Python tool chain needs to
include explicit parallelism. With our focus on programming the
cores in a CPU, this translates into utilizing multiple threads in
parallel from python code. The problem is that the GlobalInter-
preterLock (GIL) prevents multiple threads from simultaneously
accessing Python objects. The GIL helps programmers write
correct code. It reduces the chances that a program would produce
different results based on how threads are scheduled (a "race
condition"). It means that loads and stores from memory are
unlikely to conflict and create a "data race". There were very good
reasons for including the GIL in Python. It has the effect, however,
of preventing parallel programming with multiple threads and
therefore keeps Python from accessing the full performance from
a CPU.

Multithreading for performance has been a foundational tech-
nology for writing applications in high performance computing

mailto:timothy.g.mattson@intel.com

MULTITHREADED PARALLEL PYTHON THROUGH OPENMP SUPPORT IN NUMBA 141

for over four decades. Its use grew rapidly in 1997 with the
introduction of OpenMP [deS18] . This API worked with C, C++
and Fortran compilers so a programmer could direct the compiler
to generate multithreaded code through a sequence of directives.
The power of OpenMP is that a programmer can add parallelism
to a serial program incrementally, evolving a program step by step
into a parallel program.

In this paper, we introduce PyOMP: a research prototype sys-
tem with support for OpenMP directives in Python. PyOMP uses
the Python with statement to expose the directives in OpenMP.
These with statements are interpreted by our custom Numba JIT
and combined with a backend that connects these constructs to
analogous entry points in the generated LLVM code. This LLVM
code is then compiled using the Intel LLVM system, which
includes support for the full range of OpenMP constructs. For
this early research prototype, we restrict ourselves to a subset of
OpenMP known as the OpenMP Common Core [Mat19] . We
describe the subset of OpenMP supported from Python including
the most common design patterns used by OpenMP programmers.
We then discuss details of how we worked with Numba to imple-
ment this tool. Finally, we include some preliminary benchmark
numbers and then close with a description of our future plans for
PyOMP.

We want to be clear about what this paper is not. It is
not a review of alternative approaches for parallel programming
in Python. It is not a benchmarking paper where we compare
major approaches for parallel programming in Python. We hope
to write those papers in the future, but that is work-in-progress.
Furthermore, we take benchmarking very seriously. We will not
publish benchmarks that have not been fully optimized, reviewed
for correctness by the authors of the alternative systems we are
comparing against, and address patterns application developers
actually use. A good benchmarking paper is a major undertaking,
which we fully intend to do. For now, however, we just want to
introduce this new form of parallel programming in Python; to
gauge interest and find fellow-travelers to join us as we turn this
research prototype system into a robust technology for the general
Python programming community.

PyOMP: Python and OpenMP

OpenMP is a standard API that defines a set of compiler directives
that can be used with C, C++ and Fortran to help applications
programmers write multithreaded code. First released in 1997, it
continues to be the most common way programmers in the high
performance computing community write multithreaded code.

The standard has grown in size and complexity as it has
evolved from version 1.0 to the current release (version 5.1).
Important new features have been added over the years including
support for programming GPUs and detailed controls over how a
computation is mapped onto many cores in a nonuniform address
space. Most OpenMP programmers, however, restrict themselves
to a subset of the OpenMP 3.0 specification released in 2008. This
subset of the 21 most commonly used elements of OpenMP is
called the "OpenMP Common Core" [Mat19] .

PyOMP is a research prototype system implementing OpenMP
in Python. In PyOMP, we cover 90% of the common core. These
are are summarized in table I. PyOMP is tied to the Numba JIT
(Just-In-Time) compilation system. Any function using PyOMP
must be JIT’ed with Numba. The contents of PyOMP are provided
as a module included with Numba. The Numba compiler works

with NumPy arrays which must be used for any arrays inside a
PyOMP function.

The essence of OpenMP is the well-known fork-join paral-
lelism foundational to most multithreaded programming models.
A program begins as a serial thread. At some point, a compute
intensive block of work is encountered. If this can be broken down
into a set of tasks that can run at the same time AND unordered
with respect to each other (in other words, they are concurrent),
a team of threads is forked to do this work in parallel. When the
threads are done, they join together and the original serial thread
continues.

In essence, an OpenMP program is a sequence of serial and
parallel executions. The API is expressed in terms of directives to
the compiler which handles the tedious work of packaging code
into functions for the threads, managing threads, and synchroniz-
ing the threads to maintain a consistent view of memory. The
programming style is one of incremental parallelism so a program
evolves in phases from a serial program into a parallel program.

Obviously, a detailed course on OpenMP is well beyond the
scope of this paper. Instead, we present the three core design
patterns used in OpenMP. These are SPMD (Single Program
Multiple Data), Loop Level Parallelism, and Divide and Conquer
with tasks. We will describe each of these patterns in turn and
in doing so describe the key elements of PyOMP. We will apply
these patterns to a single problem; the numerical integration of
4/(1+x^2) from zero to one. If the program is correct, the result of
this definite integral should be an approximation of pi.

The SPMD Pattern

A classic use of the SPMD pattern is shown in figure
1. In an SPMD pattern, you create a team of threads
and then, using the rank of a thread (a number ranging
from zero to the number of threads minus one) and
the number of threads, explicitly control how work is
divided between the threads. Threads are created with
the parallel construct expressed in PyOMP using the
with context statement. We see this in line 14-15. The
identifier openmp indicates this is an element of PyOMP
and parallel indicates that the compiler should fork a
team of threads. These threads come into "existence"
at that point in the program and they each redundantly
execute the work in the code associated with the with
statement. This code is called a structured block in
OpenMP and is outlined into a function that will be
passed to each thread in the team. OpenMP requires that
a structured block has one point of entry at the top and
one point of exit at the bottom (the only exception being
a statement that shuts down the entire program).

As with multithreaded programming environments in general,
OpenMP is a shared memory API. The threads "belong" to a
single process and they all share the heap associated with the
process. Variables visible outside a parallel construct are by default
shared inside the construct. Variables created inside a construct
are by default private to the construct (i.e., there is a copy of
the variable for each thread in the team). It is good form in
OpenMP programming to make the status of variables explicit
in an OpenMP construct which we do with the shared and private
clauses in lines 14 and 15 in figure 1.

In an SPMD program, you need to find the rank (or thread
number) and number of threads. We do this with OpenMP runtime

142 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Fig. 1: A program using the SPMD pattern to numerically approxi-
mate a definite integral that should equal pi

functions in lines 16 and 18. The rank of a thread, threadID, is
private since each thread needs its own value for its ID. All threads
in a single team, however, see the same value for the number of
threads (numThrds) so this is a shared variable. In multithreaded
programming, it is a data race if multiple threads write to the
same variable; even if the value being written is the same for each
thread. So we must assure that only one thread sets the value for
the number of threads. This is done with the single construct on
line 17.

The extent of the parallel algorithm is the for-loop starting at
line 22. Each thread starts with a loop iteration (i) equal to its rank,
which is incremented by the number of threads. The result is loop
iterations dealt out as if from a deck of cards. This commonly used
technique is called a "cyclic distribution of loop iterations". This
loop is summing values of the integrand which we accumulate into
a private variable for each thread. Since we need to later combine
these local sums to get the final answer (on line 27), we store the
local sum into a shared array (partialSums) on line 25.

The parallel region ends at line 25 at which point the team of
threads join back together and the single original thread continues.
We time the block of code with calls to the OpenMP runtime
function omp_get_wtime() (lines 13 and 28) which returns the
elapsed time since a fixed point in the past. Hence, differences in
time values returned from omp_get_wtime() provides the elapsed
time for execution of a block of code. We show runtimes for this
SPMD program in figure 2 and compare to the same algorithm
implemented in C. The runtimes are comparable. This supports our
assertion that once the path for execution passes from the Python
interpreter to machine code via Numba and LLVM, performance
should match that from lower-level programming languages pass-

Fig. 2: Programs to approximate a definite integral whose value
equals pi using the SPMD, loop level, and divide-and-conquer/task
pattern. Runtimes in seconds for PyOMP and analogous C programs.
Programs were run on an Intel(R) Xeon(R) E5-2699 v3 CPU with 18
cores running at 2.30 GHz. For the C programs we used the Intel(R)
icc compiler version 19.1.3.304 as "icc -qnextgen -O3 -fiopenmp".

ing through the same LLVM/runtime infrastructure.

Loop Level Parallelism

The Loop Level Parallelism pattern is where most people start
with OpenMP. This is shown in figure 2. The code is almost
identical to the serial version of the program. Other than the import
and timing statements, parallelism is introduced through a single
with statement to express the parallel for construct. This construct
creates a team of threads and then distributes the iterations of the
loop among the threads. To accumulate the summation across loop
iterations, we include the reduction clause. This clause defines
reduction with the + operator over the variable sum. A copy of
this variable is created for each thread in the team. It is initialized
to the identity for the operator (which in this case is zero). At
the end of the loop, all the threads wait for the other threads
(a synchronization operation called a barrier). Before exiting the
barrier, the local copies of sum are combined into a single value,
that value is combined with the value of sum from before the
parallel loop construct, and the threads join so only the single,
original thread continues.

This program uses the default number of threads established
outside the code of the program. This is set using an environment
variable, OMP_NUM_THREADS; hence, we run our program
pi_loop with the command line:

OMP_NUM_THREADS=16 python pi_loop.py
The results for this pattern are shown as the second column in

figure 2. Once again, the performance is similar to that achieved
with the C version of the program.

Tasks and Divide and Conquer

Our final pattern is more complex than the other two. This
important pattern is heavily used by more advanced parallel
programmers. A wide range of problems including optimization
problems, spectral methods, and cache oblivious algorithms use
the Divide and Conquer pattern. The general idea is to define
three basic phases of the algorithm: split, compute, and merge.
The split phase recursively divides a problem into smaller sub-
problems. After enough splits, the subproblems are small enough
to directly compute in the compute phase. The final phase merges
subproblems together to produce the final answer.

A Divide and Conquer solution to our pi problem is shown in
figure 3. We start by creating a team of threads on line 37. We
use the single construct to select one thread to start the algorithm
with a call to our recursive function piComp(). With the single
construct, one thread does the computation within the construct
while the other threads wait at the end of the single construct (a

MULTITHREADED PARALLEL PYTHON THROUGH OPENMP SUPPORT IN NUMBA 143

Fig. 3: A program using the Loop Level Parallelism pattern to
numerically approximate a definite integral that should equal pi

Fig. 4: A program using the Divide and Conquer pattern with tasks
to numerically approximate a definite integral that should equal pi.

so-called implied barrier). While those threads wait at the barrier,
they are available for other computation on behalf of the program.

Inside the piComp() function, we test if the problem size is
small enough for direct computation (is it smaller than a minimum
block size) on line 13. If it is, we just compute the numerical
integration for that block of loop iterations (lines14 to 17) and
return the partial sum (line 30). If an instance of the function,
piComp(), has a block of iterations greater than MIN_BLK, we
enter the split phase of the algorithm. The split occurs in lines
19 to 25 using the task construct. This construct takes the code
associated with the construct (in this case, a single line) and
outlines it with its data environment to define a task. This task
is placed in a queue for other threads in the team to execute. In
this case, that would be the threads waiting at the barrier defined
with the single construct on line 38.

As tasks complete, we enter the merge phase of the algorithm.
This occurs at lines 27 and 28. The task that launches a pair of
tasks must wait until its "child tasks" complete. Once they do, it
takes the results (the shared variables sum1 and sum2), combines
them, and returns the result. The results are summarized in figure
2. Even though the code is more complex than for the other two
patterns, the runtimes for this simple problem are comparable to
the other patterns for both Python and C.

Numba and the implementation of PyOMP

Numba is a Just In Time (JIT) compiler that translates Python
functions into native code optimized for a particular target. The
Numba JIT compiles PyOMP to native code in 4 basic phases.

• Untyped phase: Numba converts Python bytecode into
its own intermediate representation (IR), including "with"
contexts that are OpenMP-represented in the IR as "with"
node types, and performs various optimizations on the IR.
Later, Numba removes these "with" nodes by translating
them to other node types in the IR. For our PyOmp
implementation, we added a new OpenMP node type into
the IR, and we convert OpenMP with contexts into these
new OpenMP IR nodes.

• Type inference phase: Numba performs type inference on
the IR starting from the known argument types to the
function and then performs additional optimizations. No
changes were made to the Numba typed compilation phase
to support OpenMP.

• IR conversion phase: Numba converts its own IR into
LLVM IR.

• Compilation phase: Numba uses LLVM to compile the
LLVM IR into machine code and dynamically loads the
result into the running application.

For PyOmp, we replaced the mainline LLVM normally used
by Numba with the custom LLVM used within the Intel compiler,
icx. This custom icx LLVM supports the bulk of OpenMP through
two special function calls to demarcate the beginning and end
of OpenMP regions (we will refer to these as OpenMP_start and
OpenMP_end respectively) and LLVM tags on those function calls
are used to apply the equivalent of OpenMP directives/clauses to
those regions. Our PyOMP prototype passes the equivalent of the
"-fiopenmp" icx compiler option to the icx LLVM which causes it
to convert the demarcated OpenMP regions into OpenMP runtime
function calls. The Intel OpenMP runtime is thus also needed
and loaded into the process by the PyOMP prototype OpenMP

144 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Fig. 5: Summary of the elements of OpenMP included in PyOMP. This includes constructs (using the Python with statement), clauses that
modify constructs, functions from the OpenMP runtime library, and a single environment variable. These elements include 19 of the elements
in the OpenMP Common core (missing only nowait and the dynamic schedule).

system. In PyOMP during the third phase, we convert the Numba
OpenMP IR nodes to these two special function calls along with
the corresponding LLVM tags. Additional details are described
later.

OpenMP includes a number of runtime functions to in-
teract with the system as a program runs. This is used to
manage the number of threads, discover thread IDs, measure
elapsed time, and other operations that can only occur as a
program executes. For these functions, our prototype using CFFI
to make those functions from the OpenMP runtime accessible
from Python. The importing of some of these functions such as
omp_get_num_threads, omp_get_thread_num, omp_get_wtime,
and omp_set_num_threads can be seen, for example, in the initial
"from numba.openmp import" ... lines at the beginning of the code
example in figure 1.

Converting PyOMP with clauses to Numba IR

When removing OpenMP with contexts and replacing them with
OpenMP IR nodes, Numba provides basic block information to
demarcate the region that the with context covers. PyOMP places
one OpenMP IR node at the beginning of this region and one at
the end with a reference from the end node back to the start node
to associate the two. To determine what to store in the OpenMP
IR node, PyOMP first parses the string passed to the OpenMP
with context to create a parse tree. Then, we perform a postorder
traversal of the parse tree, accumulating the information as we go
up the tree until we reach a node that has a direct OpenMP LLVM
tag equivalent. At this point, we convert the information from the
sub-tree into tag form and then subsequently pass that tag up the
parse tree. These tags are accumulated as lists of tags up the parse
tree until the traversal reaches a top-level OpenMP construct or
directive, which have their own tags. Some of these directives
are simple and require no additional processing whereas others,
particularly those that support data clauses, require additional
clauses to be added to the Numba OpenMP node that are not
necessarily explicitly present in the programmer’s OpenMP string.

For example, all variables used within the parallel, for and parallel
for directives must be present as an LLVM tag even if they are
not explicitly mentioned in the programmer’s OpenMP statement.
Therefore, for these directives our PyOmp prototype performs a
use-def analysis of the variables used within the OpenMP region
to determine if they are also used before or after the OpenMP
region. If they are used exclusively within the OpenMP region
then their default data clause is private. In all other cases, the
default data clause is shared but of course these defaults can be
overridden by explicit data clauses in the programmer OpenMP
string. For looping constructs, icx LLVM only supports loops in
a certain canonical form that differs from the standard Numba IR
loop form. For this purpose, our prototype transforms the Numba
IR loop structure to match the icx LLVM loop structure.

Converting PyOMP Numba IR to LLVM

When a Numba OpenMP IR node is encountered in the process of
converting Numba IR to LLVM IR, that node is converted to an
LLVM OpenMP_start (or OpenMP_end) call. Inside the Numba
OpenMP node is a list of the clauses that apply to this OpenMP
region and we perform a 1-to-1 conversion of that list of clauses
into a list of LLVM tags on the LLVM OpenMP_start call. We
emit code that captures the result of the LLVM OpenMP_start call
and we pass that result as a parameter to the OpenMP_end, which
allows LLVM to match the beginning and end of OpenMP regions.

In the process of converting Numba OpenMP IR nodes and the
intervening OpenMP regions to LLVM, we disable certain Numba
functionality. Numba unifies the handling of exceptions and return
values by adding an additional hidden parameter to functions it
compiles that indicates whether the function has returned normally
with a given return value or is propagating an exception. After a
call site, Numba inserts code into a caller to check if the callee
function is propagating an exception by inspecting the callee’s
hidden parameter. If there is an exception, the caller places that
exception in its own hidden parameter and returns. However, this
approach of using returns for exceptions breaks the icx LLVM

MULTITHREADED PARALLEL PYTHON THROUGH OPENMP SUPPORT IN NUMBA 145

requirement that OpenMP regions be single-entry and single-exit.
Likewise, exceptions generated from within the caller, such as
divide-by-zero, also fill in the exception information in the hidden
parameter and immediately return, again breaking the single-
entry/exit requirement. It is not currently possible to explicitly
catch such exceptions in PyOMP Numba regions because the
Numba exception catching mechanism also generates control flow
that violates single-exit. As such, in our PyOMP prototype, inside
OpenMP regions, exception handling is currently elided.

The Numba process of converting Numba IR to LLVM IR
introduces many temporary variables into the LLVM IR that are
not present in the Numba IR. Thus, these variables are not visible
in the untyped phase in which the data clauses for all variables
accessed in OpenMP regions are determined. Such temporaries
used solely within an OpenMP region should be classified as
private in the tags associated with the surrounding OpenMP
region’s OpenMP_start demarcation function call. In PyOMP, we
implemented a callback in the Numba function that creates these
LLVM temporary variables such that we can learn of the existence
of these new variables and to add them as private to the previously
emitted tags of the surrounding OpenMP region.

Finally, certain OpenMP directives such as single and critical,
require the use of memory fences with acquire, release, or ac-
quire/release memory orders. Our prototype knows which direc-
tives require which kind of fences and we store that information
in the Numba OpenMP IR node as those are created during the
untyped phase. During conversion of those OpenMP IR nodes
to LLVM, if the node require memory fences then we insert the
equivalent LLVM fence instructions into the LLVM IR.

Results

The key result of this paper is that PyOMP works. As we saw
in figure 2, we achieved reasonable speedups for the three key
patterns that dominate OpenMP programming where by the word
"reasonable" we mean "achieving performance similar to that from
C". The pi programs, however, are "toy programs". They are useful
pedagogically but are far removed from actual applications.

One step above a "toy program" is dense matrix multiplication.
While this is a simple program lacking in the inevitable complex-
ities faced by real applications, dense matrix multiplication uses a
familiar loop-nest and data access patterns found in real applica-
tions. It has the further advantage that dense matrix multiplication
over double precision values (DGEMM) is compiler-friendly. If a
compilation tool-chain is going to work well, DGEMM is where
this would be most apparent.

Our DGEMM code comes from the Parallel Research Kernels
(PRK) [VdW14] version 2.17. All code is available from the
PRK repository [PRK]. The PyOMP code is summarized in figure
6. The Numba JIT was done with the ’fastmath’ option. This
resulted in a 20% performance improvement. Numba and therefore
PyOMP requires that any arrays use NumPy. They are allocated
and initialized on lines 10 to 12 and then assigned values on lines
16 to 18 such that the matrix product is known and available
for testing to verify correctness. The multiplication itself occurs
on lines 21 to 25. The ikj loop order is used since it leads to
a more cache-friendly memory access pattern. The elapsed time
is found (dgemmTime) and reported as GF/s (billions of floating
point operations per second or GFLOPS).

We compare performance from PyOMP to the analogous
program written with C/OpenMP, NumPy arrays with the ikj loop-
nest, and a call to the matrix multiplication function included with

Fig. 6: A PyOMP program to multiply two matrices.

NumPy. Code fragments for these cases are shown in figure 7. The
C DGEMM program was compiled with the Intel(R) icc compiler
version 19.1.3.304. The compiler command line was:

icc -std=c11 -pthread -O3 -xHOST -qopenmp

We ran all computations on an an Intel(R) Xeon(R) E5-2699 v3
CPU CPU with 18 cores running at 2.30 GHz. For the multi-
threaded programs with OpenMP we forced the threads to map
onto specific cores with one thread per core using the following
pair of environment variables:

export OMP_PLACES="{0},{1},{2},{3},{4}"
export OMP_PROC_BIND=close

where the numbers in OMP_PLACES continued up to the number
of threads used in the computation. When combined with the
processor binding term (close) this connected the OpenMP thread
ID with the core ID (e.g., OpenMP thread ID 0 ran on core 0).
This way, we knew that the C and Python OpenMP programs
used precisely the same cores and had the same relationship to the
memory controllers on the chip.

We choose a matrix order large enough to create sufficient
work to overcome memory movement and thread overhead. These
matrices were too large for the computation to complete on
our system for matrices represented through Python lists. Using
NumPy arrays with triply nested loops in i,k,j order, the com-

146 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Fig. 7: We compare our PyOMP program to three other cases: C with
OpenMP, serial code using the NumPy arrays, and the ’matmul()’
built in function for matrix multiplication. All programs use the same
matrices, tests for correctness, and performance metrics (shown in
figure 6), hence that code is not reproduced here.

Fig. 8: The PyOMP and the C are comparable with the C results
consistently around 2.8 percent faster than the results from PyOMP.
We performed a Welch’s T-test for the two sets of data. The test showed
that while the difference between the PyOMP and C cases are small,
they are statistically significant to the 99% confidence level.

putation ran at 0.00199 GFLOPS. For our scalability studies, all
runs were repeated 250 times. Averages and standard deviations
in GFLOPS are reported. Results are shown in figure 8. For the
PyOMP results, we do not include the JIT times. These were only
done once per run (i.e. not once per iteration) and took on the
order of two seconds.

Parallel Research Kernel DGEMM gigaFLOPS per second
for order 1000 matrices. Results are the average and standard
deviation of 250 runs for execution on an Intel(R) Xeon(R) E5-
2699 v3 CPU with 18 cores running at 2.30 GHz. The python
results do not include the time to JIT compile the python code.
This one-time cost was observed to add around 2 seconds to the
runtime.

If we use NumPy and call the matrix multiplication func-
tion provided with NumPy (line 22 in figure 7, the order 1000
DGEMM ran at 11.29 +/- 0.58 GFLOPS with one thread (using the
matmul() function from NumPy). This high performance serves to
emphasize that while DGEMM is a useful benchmark to compare
different approaches to writing code, if you ever need to multiply
matrices in a real application, you should use code in a library
produced by performance optimization experts.

Discussion

In the paper "There’s plenty of room at the top..." [Lei20], much
was made of the low performance available from code written

in Python. They motivated their discussion using DGEMM. The
implication was that when you care about performance, rewrite
your code in C. We understand that sentiment and often use that
strategy ourselves. Our goal, however, is to meet programmers "on
their turf" and let them "stay with Python".

One of the key challenges to the "stay with Python" goal is
multithreading. Because of the GIL, if you want multithreaded
code to execute in parallel, you can’t use Python. In this paper, we
have addressed this issue by using Numba to map onto LLVM and
the OpenMP hooks contained therein. This resulted in our Python
OpenMP system called PyOMP.

The performance from PyOMP was within a few percent
of performance from OpenMP code written in C. Performance
differences were statistically significant, but we believe not large
enough to justify rewriting code in C. This holds for a subset of
OpenMP supported in PyOMP (known as the "Common Core"
[Mat19]) and for the three fundamental design patterns used by
OpenMP programmers.

PyOMP is a research prototype system. It is a proof-of-
concept system we created to validate that Numba together
with LLVM could enable multithreaded programming in Python
through OpenMP. A great deal of work is needed to move from
a research prototype to a production-ready tool for application
programmers.

• We need to develop a formal test suite. We currently have
a test suite that covers each PyOMP OpenMP construct
in isolation. In those tests, we use a very limited subset
(e.g., ints, floats, NumPy arrays, prints, assignments) of
the Python features supported by Numba [Numba]. We
need a test suite that covers the combinations of OpenMP
constructs encountered in real OpenMP applications with
the full set of data types and Python features supported
by Numba. In this process, we will note Numba features
incompatible with OpenMP (such as ParallelAccelerator
[And17]); fixing the cases we can fix and documenting
those we can’t.

• We need to work out the details for how we will distribute
this code. We used the Intel production LLVM-based
compiler which ties PyOMP to Intel proprietary tools. We
need to investigate whether the OpenMP support in the
Intel open source release of LLVM is sufficient to support
PyOMP.

• Currently, exception handling in PyOMP is disabled due
to the interaction of how Numba manages exceptions
with how LLVM manages execution of structured blocks
in OpenMP. We are investigating ways to address this
problem, but don’t have a solution at this time.

• We currently disable the Numba static single assignment
mode (SSA). In this mode, Numba creates variants of
variables. Those names are difficult to track relative to the
data environment of OpenMP. We believe we can account
for these variants in PyOMP, but we have not done so yet.

In additions to refinement to PyOMP itself, we need to conduct
a formal benchmarking effort with benchmarks that exercise the
system in the way real applications would. In this effort we also
need to compare to the performance of other systems for parallel
programming for a CPU with Python. In particular, we want
to understand the performance tradeoffs between PyOMP, Dask,
MPI4Py, and implicit parallelism through Numba’s ParallelAccel-
erator.

MULTITHREADED PARALLEL PYTHON THROUGH OPENMP SUPPORT IN NUMBA 147

REFERENCES

[And17] T. Anderson, H. Liu. L. Kuper, E. Totoni, J. Vitek and T. Shpeisman.
"Parallelizing Julia with a Non-Invasive DSL" 31st European Con-
ference on Object-Oriented Programming (ECOOP 2017), Leibniz
International Proceedings in Informatics (LIPIcs)}, vol. 74, pp. 4.1-
4.29, 2017.

[deS18] B. de Supinski, T. Scogland, A. Duran, M. Klemm, S. Bellido,
S. Olivier, C. Terboven, T. Mattson. "The Ongoing Evolution of
OpenMP", Proceedings of the IEEE, Vol 106, No. 11, 2018

[Lam15] S. Lam, K. Siu, A. Pitrou, and S. Seibert. "Numba: A llvm-based
python jit compiler:, Proceedings of the Second Workshop on the
LLVM Compiler Infrastructure in HPC}, pp. 1-6, 2015.

[Lei20] C. Leiserson, N. Thompson, J. Emer, B. Kuszmaul, B. Lampson, D.
Sanchez, and T. Schardl, "There’s plenty of room at the Top: What
will drive computer performance after Moore’s law?", Science, Vol.
368, P. 6495, 2020.

[Mat19] T. Mattson, Y. He, and A. Koniges. "The OpenMP Common Core:
Making OpenMP Simple Again", MIT Press, 2019.

[Numba] "Python features supported by Numba", https://numba.pydata.org/
numba-doc/dev/reference/pysupported.html.

[NPar] "Automatic parallelization with jit", https://numba.pydata.org/
numba-doc/latest/user/parallel.html, 2021.

[PRK] "Parallel Research Kernels repository", https://github.com/ParRes/
Kernels

[PyP21] "PYPL PopularitY of Programming Language", https://pypl.github.
io/PYPL.html, collected May, 2021.

[VdW14] R. van der Wijngaart and T. Mattson, "The Parallel Research Ker-
nels: A tool for architecture and programming system investigation"
IEEE High Performance Extreme Computing, 2014.

https://numba.pydata.org/numba-doc/dev/reference/pysupported.html
https://numba.pydata.org/numba-doc/dev/reference/pysupported.html
https://numba.pydata.org/numba-doc/latest/user/parallel.html
https://numba.pydata.org/numba-doc/latest/user/parallel.html
https://github.com/ParRes/Kernels
https://github.com/ParRes/Kernels
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html

	Introduction
	PyOMP: Python and OpenMP
	The SPMD Pattern
	Loop Level Parallelism
	Tasks and Divide and Conquer
	Numba and the implementation of PyOMP
	Converting PyOMP with clauses to Numba IR
	Converting PyOMP Numba IR to LLVM
	Results
	Discussion
	References

