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The myth of the normal curve and what to do about it
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Reliance on the normal curve as a tool for measurement is
almost a given. It shapes our grading systems, our measures of
intelligence, and importantly, it forms the mathematical backbone
of many of our inferential statistical tests and algorithms. Some
even call it “God’s curve” for its supposed presence in nature
[Mic89].

Scientific fields that deal in explanatory and predictive statis-
tics make particular use of the normal curve, often using it to
conveniently define thresholds beyond which a result is considered
statistically significant (e.g., t-test, F-test). Even familiar machine
learning models have, buried in their guts, an assumption of the
normal curve (e.g., LDA, gaussian naive Bayes, logistic & linear
regression).

The normal curve has had a grip on us for some time; the
aphorism by Cramer [Cra46] still rings true for many today:

“Everyone believes in the [normal] law of errors, the
experimenters because they think it is a mathematical
theorem, the mathematicians because they think it is an
experimental fact.”

Many students of statistics learn that N=40 is enough to ignore
the violation of the assumption of normality. This belief stems
from early research showing that the sampling distribution of the
mean quickly approaches normal, even when drawing from non-
normal distributions—as long as samples are sufficiently large. It
is common to demonstrate this result by sampling from uniform
and exponential distributions. Since these look nothing like the
normal curve, it was assumed that N=40 must be enough to avoid
practical issues when sampling from other types of non-normal
distributions [Wil13]. (Others reached similar conclusions with
different methodology [Gle93].)

Two practical issues have since been identified based on this
early research: (1) The distributions under study were light tailed
(they did not produce outliers), and (2) statistics other than the
sample mean were not tested and may behave differently. In
the half century following these early findings, many important
discoveries have been made—calling into question the usefulness
of the normal curve [Wil13].

The following sections uncover various pitfalls one might
encounter when assuming normality—especially as they relate to
hypothesis testing. To help researchers overcome these problems, a
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Fig. 1: Standard normal (orange) and contaminated normal (blue).
The variance of the contaminated curve is more than 10 times that
of the standard normal curve. This can cause serious issues with
statistical power when using traditional hypothesis testing methods.

new Python library for robust hypothesis testing will be introduced
along with an interactive tool for robust statistics education.

The contaminated normal

One of the most striking counterexamples of “N=40 is enough”
is shown when sampling from the so-called contaminated normal
[Tuk60][Tan82]. This distribution is also bell shaped and sym-
metrical but it has slightly heavier tails when compared to the
standard normal curve. That is, it contains outliers and is difficult
to distinguish from a normal distribution with the naked eye.
Consider the distributions in Figure 1. The variance of the normal
distribution is 1 but the variance of the contaminated normal is
10.9!

The consequence of this inflated variance is apparent when
examining statistical power. To demonstrate, Figure 2 shows two
pairs of distributions: On the left, there are two normal distribu-
tions (variance 1) and on the right there are two contaminated
distributions (variance 10.9). Both pairs of distributions have a
mean difference of 0.8. Wilcox [Wil13] showed that by taking
random samples of N=40 from each normal curve, and comparing
them with Student’s t-test, statistical power was approximately
0.94. However, when following this same procedure for the
contaminated groups, statistical power was only 0.25.

The point here is that even small apparent departures from
normality, especially in the tails, can have a large impact on
commonly used statistics. The problems continue to get worse
when examining effect sizes but these findings are not discussed
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Fig. 2: Two normal curves (left) and two contaminated normal curves
(right). Despite the obvious effect sizes (∆ = 0.8 for both pairs) as
well as the visual similarities of the distributions, power is only ~0.25
under contamination; however, power is ~0.94 under normality (using
Student’s t-test).

in this article. Interested readers should see Wilcox’s 1992 paper
[Wil92].

Perhaps one could argue that the contaminated normal dis-
tribution actually represents an extreme departure from normal-
ity and therefore should not be taken seriously; however, dis-
tributions that generate outliers are likely common in practice
[HD82][Mic89][Wil09]. A reasonable goal would then be to
choose methods that perform well under such situations and
continue to perform well under normality. In addition, serious
issues still exist even when examining light-tailed and skewed
distributions (e.g., lognormal), and statistics other than the sample
mean (e.g., T). These findings will be discussed in the following
section.

Student’s t-distribution

Another common statistic is the T value obtained from Student’s
t-test. As will be demonstrated, T is more sensitive to violations of
normality than the sample mean (which has already been shown
to not be robust). This is despite the fact that the t-distribution is
also bell shaped, light tailed, and symmetrical—a close relative of
the normal curve.

The assumption is that T follows a t-distribution (and with
large samples it approaches normality). We can test this assump-
tion by generating random samples from a lognormal distribution.
Specifically, 5000 datasets of sample size 20 were randomly drawn
from a lognormal distribution using SciPy’s lognorm.rvs
function. For each dataset, T was calculated and the resulting t-
distribution was plotted. Figure 3 shows that the assumption that
T follows a t-distribution does not hold.

With N=20, the assumption is that with a probability of 0.95,
T will be between -2.09 and 2.09. However, when sampling from
a lognormal distribution in the manner just described, there is
actually a 0.95 probability that T will be between approximately
-4.2 and 1.4 (i.e., the middle 95% of the actual t-distribution is
much wider than the assumed t-distribution). Based on this result
we can conclude that sampling from skewed distributions (e.g.,
lognormal) leads to increased Type I Error when using Student’s
t-test [Wil98].

“Surely the hallowed bell-shaped curve has cracked
from top to bottom. Perhaps, like the Liberty Bell, it
should be enshrined somewhere as a memorial to more
heroic days — Earnest Ernest, Philadelphia Inquirer. 10
November 1974. [FG81]”

Fig. 3: Actual t-distribution (orange) and assumed t-distribution
(blue). When simulating a t-distribution based on a lognormal curve,
T does not follow the assumed shape. This can cause poor probability
coverage and increased Type I Error when using traditional hypothe-
sis testing approaches.

Modern robust methods

When it comes to hypothesis testing, one intuitive way of dealing
with the issues described above would be to (1) replace the
sample mean (and standard deviation) with a robust alternative
and (2) use a non-parametric resampling technique to estimate the
sampling distribution (rather than assuming a theoretical shape)1.
Two such candidates are the 20% trimmed mean and the percentile
bootstrap test, both of which have been shown to have practical
value when dealing with issues of outliers and non-normality
[CvNS18][Wil13].

The trimmed mean

The trimmed mean is nothing more than sorting values, removing
a proportion from each tail, and computing the mean on the
remaining values. Formally,

• Let X1...Xn be a random sample and X(1) ≤ X(2)... ≤ X(n)
be the observations in ascending order

• The proportion to trim is γ(0≤ γ ≤ .5)
• Let g = bγnc. That is, the proportion to trim multiplied by

n, rounded down to the nearest integer

Then, in symbols, the trimmed mean can be expressed as
follows:

X̄t =
X(g+1)+ ...+X(n−g)

n−2g

If the proportion to trim is 0.2, more than twenty percent of
the values would have to be altered to make the trimmed mean
arbitrarily large or small. The sample mean, on the other hand,
can be made to go to ±∞ (arbitrarily large or small) by changing
a single value. The trimmed mean is more robust than the sample
mean in all measures of robustness that have been studied [Wil13].
In particular the 20% trimmed mean has been shown to have
practical value as it avoids issues associated with the median (not
discussed here) and still protects against outliers.

1. Another option is to use a parametric test that assumes a different
underlying model.
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The percentile bootstrap test

In most traditional parametric tests, there is an assumption that
the sampling distribution has a particular shape (normal, f-
distribution, t-distribution, etc). We can use these distributions
to test the null hypothesis; however, as discussed, the theoretical
distributions are not always approximated well when violations of
assumptions occur. Non-parametric resampling techniques such
as bootstrapping and permutation tests build empirical sampling
distributions, and from these, one can robustly derive p-values and
CIs. One example is the percentile bootstrap test [Efr92][TE93].

The percentile bootstrap test can be thought of as an al-
gorithm that uses the data at hand to estimate the underlying
sampling distribution of a statistic (pulling yourself up by your
own bootstraps, as the saying goes). This approach is in contrast
to traditional methods that assume the sampling distribution takes
a particular shape). The percentile boostrap test works well with
small sample sizes, under normality, under non-normality, and it
easily extends to multi-group tests (ANOVA) and measures of
association (correlation, regression). For a two-sample case, the
steps to compute the percentile bootstrap test can be described as
follows:

1) Randomly resample with replacement n values from
group one

2) Randomly resample with replacement n values from
group two

3) Compute X̄1− X̄2 based on you new sample (the mean
difference)

4) Store the difference & repeat steps 1-3 many times (say,
1000)

5) Consider the middle 95% of all differences (the confi-
dence interval)

6) If the confidence interval contains zero, there is no
statistical difference, otherwise, you can reject the null
hypothesis (there is a statistical difference)

Implementing and teaching modern robust methods

Despite over a half a century of convincing findings, and thousands
of papers, robust statistical methods are still not widely adopted
in applied research [EHM08][Wil98]. This may be due to various
false beliefs. For example,

• Classical methods are robust to violations of assumptions
• Correcting non-normal distributions by transforming the

data will solve all issues
• Traditional non-parametric tests are suitable replacements

for parametric tests that violate assumptions

Perhaps the most obvious reason for the lack of adoption of
modern methods is a lack of easy-to-use software and training re-
sources. In the following sections, two resources will be presented:
one for implementing robust methods and one for teaching them.

Robust statistics for Python

Hypothesize is a robust null hypothesis significance testing
(NHST) library for Python [CW20]. It is based on Wilcox’s WRS
package for R which contains hundreds of functions for computing
robust measures of central tendency and hypothesis testing. At
the time of this writing, the WRS library in R contains many
more functions than Hypothesize and its value to researchers
who use inferential statistics cannot be understated. WRS is

best experienced in tandem with Wilcox’s book “Introduction to
Robust Estimation and Hypothesis Testing”.

Hypothesize brings many of these functions into the open-
source Python library ecosystem with the goal of lowering the
barrier to modern robust methods—even for those who have
not had extensive training in statistics or coding. With modern
browser-based notebook environments (e.g., Deepnote), learning
to use Hypothesize can be relatively straightforward. In fact, every
statistical test listed in the docs is associated with a hosted note-
book, pre-filled with sample data and code. But certainly, simply
pip install Hypothesize to use Hypothesize in any en-
vironment that supports Python. See van Noordt and Willoughby
[vNW21] and van Noordt et al. [vNDTE22] for examples of
Hypothesize being used in applied research.

The API for Hypothesize is organized by single- and two-
factor tests, as well as measures of association. Input data for
the groups, conditions, and measures are given in the form of a
Pandas DataFrame [pdt20][WM10]. By way of example, one can
compare two independent groups (e.g., placebo versus treatment)
using the 20% trimmed mean and the percentile bootstrap test, as
follows (note that Hypothesize uses the naming conventions found
in WRS):

from hypothesize.utilities import trim_mean
from hypothesize.compare_groups_with_single_factor \

import pb2gen

results = pb2gen(df.placebo, df.treatment, trim_mean)

As shown below, the results are returned as a Python dictionary
containing the p-value, confidence intervals, and other important
details.

{
'ci': [-0.22625614592148624, 0.06961754796950131],
'est_1': 0.43968438076483285,
'est_2': 0.5290985245430996,
'est_dif': -0.08941414377826673,
'n1': 50,
'n2': 50,
'p_value': 0.27,
'variance': 0.005787027326924963
}

For measuring associations, several options exist in Hypothesize.
One example is the Winsorized correlation which is a robust
alternative to Pearson’s R. For example,

from hypothesize.measuring_associations import wincor

results = wincor(df.height, df.weight, tr=.2)

returns the Winsorized correlation coefficient and other relevant
statistics:

{
'cor': 0.08515087411576182,
'nval': 50,
'sig': 0.558539575073185,
'wcov': 0.004207827245660796
}

A case study using real-world data

It is helpful to demonstrate that robust methods in Hypothesize
(and in other libraries) can make a practical difference when
dealing with real-world data. In a study by Miller on sexual
attitudes, 1327 men and 2282 women were asked how many sexual

https://dornsife.usc.edu/labs/rwilcox/software
https://dornsife.usc.edu/labs/rwilcox/software
https://deepnote.com/
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partners they desired over the next 30 years (the data are available
from Rand R. Wilcox’s site). When comparing these groups using
Student’s t-test, we get the following results:

{
'ci': [-1491.09, 4823.24],
't_value': 1.035308,
'p_value': 0.300727
}

That is, we fail to reject the null hypothesis at the α = 0.05 level
using Student’s test for independent groups. However, if we switch
to a robust analogue of the t-test, one that utilizes bootstrapping
and trimmed means, we can indeed reject the null hypothesis.
Here are the corresponding results from Hypothesize’s yuenbt
test (based on [Yue74]):

from hypothesize.compare_groups_with_single_factor \
import yuenbt

results = yuenbt(df.males, df.females,
tr=.2, alpha=.05)

{
'ci': [1.41, 2.11],
'test_stat': 9.85,
'p_value': 0.0
}

The point here is that robust statistics can make a practi-
cal difference with real-world data (even when N is consid-
ered large). Many other examples of robust statistics making a
practical difference with real-world data have been documented
[HD82][Wil09][Wil01].

It is important to note that robust methods may also fail to
reject when a traditional test rejects (remember that traditional
tests can suffer from increased Type I Error). It is also possible
that both approaches yield the same or similar conclusions. The
exact pattern of results depends largely on the characteristics of the
underlying population distribution. To be able to reason about how
robust statistics behave when compared to traditional methods the
robust statistics simulator has been created and is described in the
next section.

Robust statistics simulator

Having a library of robust statistical functions is not enough to
make modern methods commonplace in applied research. Ed-
ucators and practitioners still need intuitive training tools that
demonstrate the core issues surrounding classical methods and
how robust analogues compare.

As mentioned, computational notebooks that run in the cloud
offer a unique solution to learning beyond that of static textbooks
and documentation. Learning can be interactive and exploratory
since narration, visualization, widgets (e.g., buttons, slider bars),
and code can all be experienced in a ready-to-go compute envi-
ronment—with no overhead related to local environment setup.

As a compendium to Hypothesize, and a resource for un-
derstanding and teaching robust statistics in general, the robust
statistics simulator repository has been developed. It is a notebook-
based collection of interactive demonstrations aimed at clearly and
visually explaining the conditions under which classic methods
fail relative to robust methods. A hosted notebook with the
rendered visualizations of the simulations can be accessed here.
and seen in Figure 4. Since the simulations run in the browser and
require very little understanding of code, students and teachers can
easily onboard to the study of robust statistics.

Fig. 4: An example of the robust stats simulator in Deepnote’s hosted
notebook environment. A minimalist UI can lower the barrier-to-entry
to robust statistics concepts.

The robust statistics simulator allows users to interact with the
following parameters:

• Distribution shape
• Level of contamination
• Sample size
• Skew and heaviness of tails

Each of these characteristics can be adjusted independently in
order to compare classic approaches to their robust alternatives.
The two measures that are used to evaluate the performance of
classic and robust methods are the standard error and Type I Error.

Standard error is a measure of how much an estimator varies
across random samples from our population. We want to choose
estimators that have a low standard error. Type I Error is also
known as False Positive Rate. We want to choose methods that
keep Type I Error close to the nominal rate (usually 0.05). The
robust statistics simulator can guide these decisions by providing
empirical evidence as to why particular estimators and statistical
tests have been chosen.

Conclusion

This paper gives an overview of the issues associated with the
normal curve. The concern with traditional methods, in terms of
robustness to violations of normality, have been known for over
a half century and modern alternatives have been recommended;
however, for various reasons that have been discussed, modern
robust methods have not yet become commonplace in applied
research settings.

One reason is the lack of easy-to-use software and teaching
resources for robust statistics. To help fill this gap, Hypothesize, a
peer-reviewed and open-source Python library was developed. In
addition, to help clearly demonstrate and visualize the advantages
of robust methods, the robust statistics simulator was created.
Using these tools, practitioners can begin to integrate robust
statistical methods into their inferential testing repertoire.
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