PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

83

Bayesian Estimation and Forecasting of Time Series
in statsmodels

Chad Fulton**

Abstract—Statsmodels, a Python library for statistical and econometric
analysis, has traditionally focused on frequentist inference, including in its mod-
els for time series data. This paper introduces the powerful features for Bayesian
inference of time series models that exist in stat smodels, with applications
to model fitting, forecasting, time series decomposition, data simulation, and
impulse response functions.

Index Terms—time series, forecasting, bayesian inference, Markov chain Monte
Carlo, statsmodels

Introduction

Statsmodels [SP10] is a well-established Python library for
statistical and econometric analysis, with support for a wide range
of important model classes, including linear regression, ANOVA,
generalized linear models (GLM), generalized additive models
(GAM), mixed effects models, and time series models, among
many others. In most cases, model fitting proceeds by using
frequentist inference, such as maximum likelihood estimation
(MLE). In this paper, we focus on the class of time series
models [MPS11], support for which has grown substantially in
statsmodels over the last decade. After introducing several
of the most important new model classes — which are by default
fitted using MLE — and their features — which include forecasting,
time series decomposition and seasonal adjustment, data simula-
tion, and impulse response analysis — we describe the powerful
functions that enable users to apply Bayesian methods to a wide
range of time series models.

Support for Bayesian inference in Python outside of
statsmodels has also grown tremendously, particularly in
the realm of probabilistic programming, and includes powerful
libraries such as PyMC3 [SWF16], PyStan [CGH'17], and
TensorFlow Probability [DLT"17]. Meanwhile, Arviz
[KCHM19] provides many excellent tools for associated diagnos-
tics and vizualisations. The aim of these libraries is to provide
support for Bayesian analysis of a large class of models, and
they make available both advanced techniques, including auto-
tuning algorithms, and flexible model specification. By contrast,
here we focus on simpler techniques. However, while the libraries
above do include some support for time series models, this has
not been their primary focus. As a result, introducing Bayesian

x Corresponding author: chad.t.fulton@frb.gov
Federal Reserve Board of Governors

Copyright © 2022 Chad Fulton. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

inference for the well-developed stable of time series models
in statsmodels, and providing access to the rich associated
feature set already mentioned, presents a complementary option
to these more general-purpose libraries.!

Time series analysis in statsmodels

A time series is a sequence of observations ordered in time, and
time series data appear commonly in statistics, economics, finance,
climate science, control systems, and signal processing, among
many other fields. One distinguishing characteristic of many time
series is that observations that are close in time tend to be more
correlated, a feature known as autocorrelation. While successful
analyses of time series data must account for this, statistical
models can harness it to decompose a time series into trend,
seasonal, and cyclical components, produce forecasts of future
data, and study the propagation of shocks over time.

We now briefly review the models for time series data that are
available in st at smodels and describe their features.”

Exponential smoothing models

Exponential smoothing models are constructed by combining
one or more simple equations that each describe some aspect
of the evolution of univariate time series data. While originally
somewhat ad hoc, these models can be defined in terms of a
proper statistical model (for example, see [HKOSO0S8]). They have
enjoyed considerable popularity in forecasting (for example, see
the implementation in R described by [HA18]). A prototypical
example that allows for trending data and a seasonal component
— often known as the additive "Holt-Winters’ method" — can be
written as

L =0a—s—m)+(1—a)(li—1 +b—1)

by =Bl —li—1)+(1—B)bi—

i =YV =1 —=bi1) +(1=7)s-m
where [, is the level of the series, b, is the trend, s, is the
seasonal component of period m, and «, 3,y are parameters of
the model. When augmented with an error term with some given

probability distribution (usually Gaussian), likelihood-based infer-
ence can be used to estimate the parameters. In statsmodels,

1. In addition, it is possible to combine the sampling algorithms of PyMC3
with the time series models of statsmodels, although we will not discuss
this approach in detail here. See, for example, https://www.statsmodels.org/v0.
13.0/examples/notebooks/generated/statespace_sarimax_pymc3.html.

2. In addition to statistical models, stat smodels also provides a number
of tools for exploratory data analysis, diagnostics, and hypothesis testing
related to time series data; see https://www.statsmodels.org/stable/tsa.html.

mailto:chad.t.fulton@frb.gov
https://www.statsmodels.org/v0.13.0/examples/notebooks/generated/statespace_sarimax_pymc3.html
https://www.statsmodels.org/v0.13.0/examples/notebooks/generated/statespace_sarimax_pymc3.html
https://www.statsmodels.org/stable/tsa.html

84

additive exponential smoothing models can be constructed using
the statespace .ExponentialSmoothing class.’ The fol-
lowing code shows how to apply the additive Holt-Winters model
above to model quarterly data on consumer prices:

import statsmodels.api as sm

Load data

mdata = sm.datasets.macrodata.load() .data

Compute annualized consumer price inflation

y = np.log(mdata['cpi']).diff().iloc[1l:] = 400

Construct the Holt-Winters model
model_hw = sm.tsa.statespace.ExponentialSmoothing (
y, trend=True, seasonal=12)

Structural time series models

Structural time series models, introduced by [Har90] and also
sometimes known as unobserved components models, similarly
decompose a univariate time series into trend, seasonal, cyclical,
and irregular components:

wW=Wt+Yrtat+&

where LI, is the trend, 7 is the seasonal component, ¢; is the cycli-
cal component, and & ~ N(0, 62) is the error term. However, this
equation can be augmented in many ways, for example to include
explanatory variables or an autoregressive component. In addition,
there are many possible specifications for the trend, seasonal,
and cyclical components, so that a wide variety of time series
characteristics can be accommodated. In statsmodels, these
models can be constructed from the UnobservedComponents
class; a few examples are given in the following code:

"Local level" model

model_11 = sm.tsa.UnobservedComponents (y,
"Local linear trend",
model_armall = sm.tsa.UnobservedComponents (

y, 'lltrend', seasonal=4)

'llevel')
with seasonal component

These models have become popular for time series analysis and
forecasting, as they are flexible and the estimated components are
intuitive. Indeed, Google’s Causal Impact library [BGK ™ 15] uses
a Bayesian structural time series approach directly, and Facebook’s
Prophet library [TL17] uses a conceptually similar framework and
is estimated using PyStan.

Autoregressive moving-average models

Autoregressive moving-average (ARMA) models, ubiquitous in
time series applications, are well-supported in statsmodels,
including their generalizations, abbreviated as "SARIMAX", that
allow for integrated time series data, explanatory variables, and
seasonal effects.* A general version of this model, excluding
integration, can be written as

yvi=xB+&
& =016 +"'+¢p§t—p+gz+ 01 1+ +6,6 4

where & ~ N(0, 62). These are constructed in statsmodels
with the ARIMA class; the following code shows how to construct
a variety of autoregressive moving-average models for consumer
price data:

model
sm.tsa.ARIMA (y,

AR(2)
model_ar2 = order=(2, 0, 0)

3. A second class, ETSModel, can also be used for both additive and
multiplicative models, and can exhibit superior performance with maximum
likelihood estimation. However, it lacks some of the features relevant for
Bayesian inference discussed in this paper.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

ARMA (1, 1) model with
X = mdata['realint']
model_armall = sm.tsa.ARIMA (
y, order=(1, 0, 1), exog=X)
SARIMAX(p, d, q)x(P, D, Q, s)
model_sarimax = sm.tsa.ARIMA (
y, order=(p, d, q), seasonal_order=(P, D, Q, s))

explanatory variable

model

While this class of models often produces highly competitive
forecasts, it does not produce a decomposition of a time series
into, for example, trend and seasonal components.

Vector autoregressive models

While the SARIMAX models above handle univariate series,
statsmodels also has support for the multivariate generaliza-
tion to vector autoregressive (VAR) models.” These models are
written

V=V+Py1 4+ +Ppypt+ &

where y; is now considered as an m x 1 vector. As a result, the
intercept v is also an m X 1 vector, the coefficients ®; are each
m x m matrices, and the error term is & ~ N(0,,,Q), with Q an
m x m matrix. These models can be constructed in stat smodels
using the VARMAX class, as follows®

Multivariate dataset

(np.log (mdata['realgdp',
Ldiff () .iloc[1l:1])

z = 'realcons', 'cpi'l)

VAR(1) model

model_var = sm.tsa.VARMAX (z, order=(1, 0))

Dynamic factor models

statsmodels also supports a second model for multivariate
time series: the dynamic factor model (DFM). These models, often
used for dimension reduction, posit a few unobserved factors, with
autoregressive dynamics, that are used to explain the variation
in the observed dataset. In statsmodels, there are two model
classes, DynamicFactor® and DynamicFactorMQ, that can
fit versions of the DFM. Here we focus on the DynamicFactor
class, for which the model can be written

w=Afi+¢&
fl:chftfl“""‘Fq)pﬁfp‘Fnt

Here again, the observation is assumed to be m X 1, but the factors
are k x 1, where it is possible that k << m. As before, we assume
conformable coefficient matrices and Gaussian errors.

The following code shows how to construct a DFM in
statsmodels
DFM with 2 factors that evolve as
model_dfm = sm.tsa.DynamicFactor (

z, k_factors=2, factor_order=3)

a VAR (3)

Linear Gaussian state space models

each of the model classes introduced
statespace.ExponentialSmoothing,
ARIMA, VARMAX,

In statsmodels,
above (
UnobservedComponents,

4. Note that in statsmodels, models with explanatory variables are in
the form of "regression with SARIMA errors".

S. statsmodels also supports vector moving-average (VMA) models
using the same model class as described here for the VAR case, but, for brevity,
we do not explicitly discuss them here.

6. A second class, VAR, can also be used to fit VAR models, using least
squares. However, it lacks some of the features relevant for Bayesian inference
discussed in this paper.

BAYESIAN ESTIMATION AND FORECASTING OF TIME SERIES IN STATSMODELS

Model

“loglike Results

“uf

r

“forecast”

“impulse_response “states.smoothed " “simulate”

85

*filter®, ‘smootM‘simulation_smoother‘

SimulationSmoother “simulate”

“simulated_state®

‘ log likelihood ‘ ‘ forecast of y ‘ ‘ impulse response function

estimate of state vector

simulated time series ‘ draw from posterior

Fig. 1: Selected functionality of state space models in statsmodels.

DynamicFactor, and DynamicFactorMQ) are implemented
as part of a broader class of models, referred to as linear Gaussian
state space models (hereafter for brevity, simply "state space
models" or SSM). This class of models can be written as

& NN(O,H[)
T’t NN(Oth)

where o; represents an unobserved vector containing the "state"
of the dynamic system. In general, the model is multivariate, with
yr and & m x 1 vector, oy k x 1, and 1, r times 1.

Powerful tools exist for state space models to estimate the
values of the unobserved state vector, compute the value of
the likelihood function for frequentist inference, and perform
posterior sampling for Bayesian inference. These tools include the
celebrated Kalman filter and smoother and a simulation smoother,
all of which are important for conducting Bayesian inference for
these models.” The implementation in statsmodels largely
follows the treatment in [DK12], and is described in more detail
in [Full5].

In addition to these key tools, state space models also admit
general implementations of useful features such as forecasting,
data simulation, time series decomposition, and impulse response
analysis. As a consequence, each of these features extends to each
of the time series models described above. Figure 1 presents a
diagram showing how to produce these features, and the code
below briefly introduces a subset of them.

vi=di +7Z,04 + &
%1 =c +Tio+Rmy

Construct the Model
model_11 = sm.tsa.UnobservedComponents (y,

'llevel')

Construct a simulation smoother

sim_11 = model_1ll.simulation_smoother ()

and
respectively)

meter values (variance of error
variance of level innovation,

params = [4, 0.75]

Par

Compute the log-likelihood of these parameters
11f = model_11l.loglike (params)

“smooth’ the Kalman filter and smoother
with a given set of parameters
Results object

results_11 = model_1l1l.smooth (params)

applies

and returns a

Produce forecasts for the next 4 periods

7. Statsmodels currently contains two implementations of simulation
smoothers for the linear Gaussian state space model. The default is the "mean
correction” simulation smoother of [DKO02]. The precision-based simulation
smoother of [CJ09] can alternatively be used by specifying method="cfa'
when creating the simulation smoother object.

fcast = results_1l1.forecast (4)

Produce a draw from the posterior distribution
of the state vector

sim_1l1l.simulate ()

draw = sim_1ll.simulated_state

Nearly identical code could be used for any of the model classes
introduced above, since they are all implemented as part of the
same state space model framework. In the next section, we show
how these features can be used to perform Bayesian inference with
these models.

Bayesian inference via Markov chain Monte Carlo

We begin by giving a cursory overview of the key elements
of Bayesian inference required for our purposes here.’® In brief,
the Bayesian approach stems from Bayes’ theorem, in which
the posterior distribution for an object of interest is derived as
proportional to the combination of a prior distribution and the
likelihood function

P(A|B) o p(B|A) x p(A)
—— N——
posterior likelihood prior

Here, we will be interested in the posterior distribution of the pa-
rameters of our model and of the unobserved states, conditional on
the chosen model specification and the observed time series data.
While in most cases the form of the posterior cannot be derived an-
alytically, simulation-based methods such as Markov chain Monte
Carlo (MCMC) can be used to draw samples that approximate
the posterior distribution nonetheless. While PyMC3, PyStan,
and TensorFlow Probability emphasize Hamiltonian Monte Carlo
(HMC) and no-U-turn sampling (NUTS) MCMC methods, we
focus on the simpler random walk Metropolis-Hastings (MH) and
Gibbs sampling (GS) methods. These are standard MCMC meth-
ods that have enjoyed great success in time series applications and
which are simple to implement, given the state space framework
already available in stat smodels. In addition, the ArviZ library
is designed to work with MCMC output from any source, and we
can easily adapt it to our use.

With either Metropolis-Hastings or Gibbs sampling, our pro-
cedure will produce a sequence of sample values (of parameters
and / or the unobserved state vector) that approximate draws from
the posterior distribution arbitrarily well, as the number of length

86

of the chain of samples becomes very large.

Random walk Metropolis-Hastings

In random walk Metropolis-Hastings (MH), we begin with an arbi-
trary point as the initial sample, and then iteratively construct new
samples in the chain as follows. At each iteration, (a) construct a
proposal by perturbing the previous sample by a Gaussian random
variable, and then (b) accept the proposal with some probability.
If a proposal is accepted, it becomes the next sample in the chain,
while if it is rejected then the previous sample value is carried over.
Here, we show how to implement Metropolis-Hastings estimation
of the variance parameter in a simple model, which only requires
the use of the log-likelihood computation introduced above.

import arviz as az
from scipy import stats

Construct the model
model_rw = sm.tsa.UnobservedComponents(y, 'rwalk')

Specify the prior distribution. With this
can be freely chosen by the user

prior = stats.uniform(0.0001, 100)

MH,

Specify the Gaussian perturbation distribution
perturb = stats.norm(scale=0.1)

Storage
niter = 100000
samples_rw = np.zeros (niter + 1)

Initialization

samples_rw([0] = y.diff () .var()

11f model_rw.loglike (samples_rw[0])
prior_11f = prior.logpdf (samples_rw([0])

Iterations

for i in range(l, niter + 1):
Compute the proposal
proposal = samples_rw[i 1]

value
+ perturb.rvs ()

Compute the acceptance probability
proposal_1l1f = model_rw.loglike (proposal)
proposal_prior_11f = prior.logpdf (proposal)
accept_prob = np.exp(

proposal_11f 11f

+ prior_11f - proposal_prior_11f)

Accept or reject the value
if accept_prob > stats.uniform.rvs():
samples_rw([i] = proposal

11f = proposal_11f
prior_11f = proposal_prior_11f
else:

samples_rw[i] = samples_rw[i - 1]

Convert for use with ArviZ and plot posterior

samples_rw = az.convert_to_inference_data(
samples_rw)

Eliminate the first 10000 samples as burn-in;

thin by factor of 10 to reduce autocorrelation

az.plot_posterior (samples_rw.posterior.sel (
{'draw': np.s_[10000::101}), kind='bin',
point_estimate="median')

The approximate posterior distribution, constructed from the sam-
ple chain, is shown in Figure 2.

8. While a detailed description of these issues is out of the scope of this
paper, there are many superb references on this topic. We refer the interested
reader to [WH99], which provides a book-length treatment of Bayesian
inference for state space models, and [KN99], which provides many examples
and applications.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)
parameters
sigma2.level

median=3.1

94% HDI

2.7 3.4

250 275 3.00 3.25 3,50 3.75 4.00

Fig. 2: Approximate posterior distribution of variance parameter,
random walk model, Metropolis-Hastings; U.S. Industrial Production.

parameters
sigmaz2.level
= = N
[=] n [=]

o
w

2 3 4 5
parameters
sigmaz.irregular

Fig. 3: Approximate posterior joint distribution of variance parame-
ters, local level model, Gibbs sampling; CPI inflation.

Gibbs sampling

Gibbs sampling (GS) is a special case of Metropolis-Hastings
(MH) that is applicable when it is possible to produce draws
directly from the conditional distributions of every variable, even
though it is still not possible to derive the general form of the joint
posterior. While this approach can be superior to random walk
MH when it is applicable, the ability to derive the conditional
distributions typically requires the use of a "conjugate" prior —i.e.,
a prior from some specific family of distributions. For example,
above we specified a uniform distribution as the prior when
sampling via MH, but that is not possible with Gibbs sampling.
Here, we show how to implement Gibbs sampling estimation of
the variance parameter, now making use of an inverse Gamma
prior, and the simulation smoother introduced above.

Construct the model and simulation smoother

model_11 = sm.tsa.UnobservedComponents(y, 'llevel')
sim_11 model_11l.simulation_smoother ()
Specify the prior distributions. With GS, we must

choose an inverse Ga

priors

prior for each variance
[stats.invgamma (0.01, scale=0.01)] * 2

Storage

niter = 100000

samples_11 = np.zeros((niter + 1, 2))
Initialization

samples_11[0] = [y.diff().var(), le-5]

Iterations

BAYESIAN ESTIMATION AND FORECASTING OF TIME SERIES IN STATSMODELS

for i in range(l, niter + 1):
(a) Update the model parameters
model_11.update (samples_11[i - 1]
(b) Draw from the conditional posterior of
the state vector

sim_l1l.simulate ()

sample_state = sim_ll.simulated_state.T

(c) Compute / draw from conditional posterior
of the parameters:

...observation error variance

resid = y - sample_state[:, 0]

post_shape = len(resid) / 2 + 0.01

post_scale = np.sum(residx*2) / 2 + 0.01

0] = stats.invgamma (
scale=post_scale) .rvs ()

samples_111[1,
post_shape,
...level error variance
resid = sample_state[1l:]
post_shape = len(resid) / 2 + 0.01
post_scale = np.sum(resid**2) / 2 + 0.01
samples_11[i, 1] = stats.invgamma (
post_shape, scale=post_scale) .rvs()

- sample_state[:-1]

Convert for use with ArviZ and plot posterior

samples_11 = az.convert_to_inference_data (
{'"parameters': samples_l1[None, ...]},
coords={'"'parameter': model_l1l.param_names},
dims={'parameters': ['parameter']})

az.plot_pair (samples_11.posterior.sel (
{'draw': np.s_[10000::101}), kind='hexbin');

The approximate posterior distribution, constructed from the sam-

ple chain, is shown in Figure 3.

lllustrative examples

For clarity and brevity, the examples in the previous section gave
results for simple cases. However, these basic methods carry
through to each of the models introduced earlier, including in cases
with multivariate data and hundreds of parameters. Moreover, the
Metropolis-Hastings approach can be combined with the Gibbs
sampling approach, so that if the end user wishes to use Gibbs
sampling for some parameters, they are not restricted to choose
only conjugate priors for all parameters.

In addition to sampling the posterior distributions of the
parameters, this method allows sampling other objects of inter-
est, including forecasts of observed variables, impulse response
functions, and the unobserved state vector. This last possibility
is especially useful in cases such as the structural time series
model, in which the unobserved states correspond to interpretable
elements such as the trend and seasonal components. We provide
several illustrative examples of the various types of analysis that
are possible.

Forecasting and Time Series Decomposition

In our first example, we apply the Gibbs sampling approach to
a structural time series model in order to forecast U.S. Industrial
Production and to produce a decomposition of the series into level,
trend, and seasonal components. The model is

Vi=W+Y+& observation equation

=B+ 1+& level
B=B-1+& trend
Y=Y+ seasonal

Here, we set the seasonal periodicity to s=12, since Industrial
Production is a monthly variable. We can construct this model
in Statsmodels as’

87

—— Industrial production
- Forecast 115

2009 2011 2013 2015 2017 2019 2021 2023

Fig. 4: Data and forecast with 80% credible interval; U.S. Industrial
Production.

—— Estimated level 100
80
60
1984 1989 1994 1999 2004 2009 2014 2019
—— Estimated trend 0.4
/_,\/\,_,\ o~ o2
0.0
N/
-0.2
1984 1989 1994 1999 2004 2009 2014 2019
—#— Estimated seasonal effect 2
J(/\X;,Al{’\\\.\\\l\\ '
7'/‘ 3 ©°
v
-1
-2
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig. 5: Estimated level, trend, and seasonal components, with 80%
credible interval; U.S. Industrial Production.

sm.tsa.UnobservedComponents (
seasonal=12)

model =

y, 'lltrend',

To produce the time-series decomposition into level, trend, and
seasonal components, we will use samples from the posterior of
the state vector (W, f,¥) for each time period ¢. These are im-
mediately available when using the Gibbs sampling approach; in
the earlier example, the draw at each iteration was assigned to the
variable sample_state. To produce forecasts, we need to draw from
the posterior predictive distribution for horizons h = 1,2,...H.
This can be easily accomplished by using the simulate method
introduced earlier. To be concrete, we can accomplish these tasks
by modifying section (b) of our Gibbs sampler iterations as
follows:

9. This model is often referred to as a "local linear trend" model (with
additionally a seasonal component); lltrend is an abbreviation of this name.

88 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)
Billions of Chained 2012 Dollars
1600
___ 1500
—— Real Sales: Manufacturing and Trade Industries ~ 1400
——— Model fit
—=~ Prediction 1300
T T
Jan Jul an Jul an Jul Jan
2019 2020 2021 2022
________ - — 0
—— Point-wise impact . _3qq
T T
Jan Jul an Jul an Jul Jan
2019 2020 2021 2022
1000
-——- 0
—— Cumulative impact
T T -1000
Jan Jul an Jul an Jul Jan
2019 2020 2021 2022
Date
Fig. 6: "Causal impact” of COVID-19 on U.S. Sales in Manufacturing and Trade Industries.
(b') Draw from the conditional posterior of on U.S. Sales in Manufacturing and Trade Industries.'!
the state vector
model.update (params[i - 11])
sim.simulate() i o Extensions
save the draw for use later in time series

decomposition
states[i] = sim.simulated_state.T

Draw from tkF distribution

using the
n_fcast = 48
fcast[i] = model.simulate (

params[i - 1], n_fcast,

initial_state=states[i, -1]) .to_frame ()

These forecasts and the decomposition into level, trend, and sea-
sonal components are summarized in Figures 4 and 5, which show
the median values along with 80% credible intervals. Notably, the
intervals shown incorporate for both the uncertainty arising from
the stochastic terms in the model as well as the need to estimate
the models’ parameters.'”

Casual impacts

A closely related procedure described in [BGK'15] uses a
Bayesian structural time series model to estimate the "causal
impact" of some event on some observed variable. This approach
stops estimation of the model just before the date of an event
and produces a forecast by drawing from the posterior predictive
density, using the procedure described just above. It then uses the
difference between the actual path of the data and the forecast to
estimate impact of the event.

An example of this approach is shown in Figure 6, in which we
use this method to illustrate the effect of the COVID-19 pandemic

10. The popular Prophet library, [TL17], similarly uses an additive model
combined with Bayesian sampling methods to produce forecasts and decom-
positions, although its underlying model is a GAM rather than a state space
model.

There are many extensions to the time series models presented
here that are made possible when using Bayesian inference.
First, it is easy to create custom state space models within the
statsmodels framework. As one example, the statsmodels
documentation describes how to create a model that extends the
typical VAR described above with time-varying parameters.'”
These custom state space models automatically inherit all the
functionality described above, so that Bayesian inference can be
conducted in exactly the same way.

Second, because the general state space model available in
statsmodels and introduced above allows for time-varying
system matrices, it is possible using Gibbs sampling methods
to introduce support for automatic outlier handling, stochastic
volatility, and regime switching models, even though these are
largely infeasible in st at smodels when using frequentist meth-
ods such as maximum likelihood estimation.'?

Conclusion

This paper introduces the suite of time series models available in
statsmodels and shows how Bayesian inference using Markov
chain Monte Carlo methods can be applied to estimate their
parameters and produce analyses of interest, including time series
decompositions and forecasts.

11. In this example, we used a local linear trend model with no seasonal
component.

12. For details, see https://www.statsmodels.org/devel/examples/notebooks/
generated/statespace_tvpvar_mcmc_cfa.html.

13. See, for example, [SW16] for an application of these techniques that
handles outliers, [KSC98] for stochastic volatility, and [KN98] for an applica-
tion to dynamic factor models with regime switching.

https://www.statsmodels.org/devel/examples/notebooks/generated/statespace_tvpvar_mcmc_cfa.html
https://www.statsmodels.org/devel/examples/notebooks/generated/statespace_tvpvar_mcmc_cfa.html

BAYESIAN ESTIMATION AND FORECASTING OF TIME SERIES IN STATSMODELS

REFERENCES

[BGK*15]

[CGH'17]

[CJO9]

[DKO2]

[DK12]

[DLT*17]

[Full5]
[HA18]
[Har90]

[HKOS08]

[KCHM19]

[KNO98]

[KN99]

[KSC98]

[MPS11]

[SP10]

[SW16]

Kay H. Brodersen, Fabian Gallusser, Jim Koehler, Nicolas Remy,
and Steven L. Scott. Inferring causal impact using Bayesian
structural time-series models. Annals of Applied Statistics, 9:247—
274, 2015. doi:10.1214/14-aoas788.

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel
Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,
Jigiang Guo, Peter Li, and Allen Riddell. Stan : A
Probabilistic Programming Language. Journal of Statisti-
cal Software, 76(1), January 2017. Institution: Columbia
Univ., New York, NY (United States); Harvard Univ., Cam-
bridge, MA (United States). URL: https://www.osti.gov/pages/
biblio/1430202-stan-probabilistic-programming-language, doi :
10.18637/3ss.v076.101.

Joshua C.C. Chan and Ivan Jeliazkov. Efficient simulation and in-
tegrated likelihood estimation in state space models. International
Journal of Mathematical Modelling and Numerical Optimisation,
1(1-2):101-120, January 2009. Publisher: Inderscience Publish-
ers. URL: https://www.inderscienceonline.com/doi/abs/10.1504/
IIMMNO.2009.030009.

J. Durbin and S. J. Koopman. A simple and efficient simula-
tion smoother for state space time series analysis. Biometrika,
89(3):603-616, August 2002. URL.: http://biomet.oxfordjournals.
org/content/89/3/603, doi:10.1093/biomet/89.3.603.
James Durbin and Siem Jan Koopman. Time Series Analysis by
State Space Methods: Second Edition. Oxford University Press,
May 2012.

Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo,
Srinivas Vasudevan, Dave Moore, Brian Patton, Alex Alemi,
Matt Hoffman, and Rif A. Saurous. TensorFlow Distributions.
Technical Report arXiv:1711.10604, arXiv, November 2017.
arXiv:1711.10604 [cs, stat] type: article. URL: http://arxiv.org/
abs/1711.10604, doi:10.48550/arXiv.1711.10604.
Chad Fulton. Estimating time series models by state space
methods in python: Statsmodels. 2015.

Rob J Hyndman and George Athanasopoulos.
principles and practice. OTexts, 2018.

Andrew C. Harvey. Forecasting, Structural Time Series Models
and the Kalman Filter. Cambridge University Press, 1990.

Rob Hyndman, Anne B. Koehler, J. Keith Ord, and Ralph D.
Snyder. Forecasting with Exponential Smoothing: The State
Space Approach. Springer Science & Business Media, June 2008.
Google-Books-ID: GSyzox8Lu9YC.

Ravin Kumar, Colin Carroll, Ari Hartikainen, and Osvaldo Mar-
tin. ArviZ a unified library for exploratory analysis of Bayesian
models in Python. Journal of Open Source Software, 4(33):1143,
2019. Publisher: The Open Journal. URL: https://doi.org/10.
21105/joss.01143, doi:10.21105/joss.01143.

Chang-Jin Kim and Charles R. Nelson. Business Cycle Turning
Points, A New Coincident Index, and Tests of Duration Depen-
dence Based on a Dynamic Factor Model With Regime Switch-
ing. The Review of Economics and Statistics, 80(2):188-201,
May 1998. Publisher: MIT Press. URL: https://doi.org/10.1162/
003465398557447, doi:10.1162/003465398557447.
Chang-Jin Kim and Charles R. Nelson. State-Space Models with
Regime Switching: Classical and Gibbs-Sampling Approaches
with Applications. MIT Press Books, The MIT Press, 1999. URL:
http://ideas.repec.org/b/mtp/titles/0262112388.html.

Sangjoon Kim, Neil Shephard, and Siddhartha Chib. Stochastic
Volatility: Likelihood Inference and Comparison with ARCH
Models. The Review of Economic Studies, 65(3):361-393, July
1998. 01855. URL: http://restud.oxfordjournals.org/content/65/
3/361,doi:10.1111/1467-937X.00050.

Wes McKinney, Josef Perktold, and Skipper Seabold. Time Series
Analysis in Python with statsmodels. In Stéfan van der Walt
and Jarrod Millman, editors, Proceedings of the 10th Python in
Science Conference, pages 107 — 113, 2011. doi1:10.25080/
Majora-ebaa42b7-012.

Skipper Seabold and Josef Perktold. Statsmodels: Econometric
and Statistical Modeling with Python. In Stéfan van der Walt and
Jarrod Millman, editors, Proceedings of the 9th Python in Science
Conference, pages 92 — 96, 2010. doi:10.25080/Majora-
92b£f1922-011.

James H. Stock and Mark W. Watson. Core Inflation and Trend
Inflation. Review of Economics and Statistics, 98(4):770-784,
March 2016. 00000. URL: http://dx.doi.org/10.1162/REST _a_
00608, doi:10.1162/REST_a_00608.

Forecasting:

[SWF16]

[TL17]

[WH99]

89

John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck.
Probabilistic programming in Python using PyMC3. PeerJ
Computer Science, 2:¢55, April 2016. Publisher: PeerJ Inc.
URL.: https://peerj.com/articles/cs-55, doi:10.7717/peerj—
cs.55.

Sean J. Taylor and Benjamin Letham. Forecasting at scale.
Technical Report €3190v2, Peer] Inc., September 2017. ISSN:
2167-9843. URL: https://peerj.com/preprints/3190, doi:10.
7287/peerj.preprints.3190v2.

Mike West and Jeff Harrison. Bayesian Forecasting and Dynamic
Models. Springer, New York, 2nd edition edition, March 1999.
00000.

http://dx.doi.org/10.1214/14-aoas788
https://www.osti.gov/pages/biblio/1430202-stan-probabilistic-programming-language
https://www.osti.gov/pages/biblio/1430202-stan-probabilistic-programming-language
http://dx.doi.org/10.18637/jss.v076.i01
http://dx.doi.org/10.18637/jss.v076.i01
https://www.inderscienceonline.com/doi/abs/10.1504/IJMMNO.2009.03009
https://www.inderscienceonline.com/doi/abs/10.1504/IJMMNO.2009.03009
http://biomet.oxfordjournals.org/content/89/3/603
http://biomet.oxfordjournals.org/content/89/3/603
http://dx.doi.org/10.1093/biomet/89.3.603
http://arxiv.org/abs/1711.10604
http://arxiv.org/abs/1711.10604
http://dx.doi.org/10.48550/arXiv.1711.10604
https://doi.org/10.21105/joss.01143
https://doi.org/10.21105/joss.01143
http://dx.doi.org/10.21105/joss.01143
https://doi.org/10.1162/003465398557447
https://doi.org/10.1162/003465398557447
http://dx.doi.org/10.1162/003465398557447
http://ideas.repec.org/b/mtp/titles/0262112388.html
http://restud.oxfordjournals.org/content/65/3/361
http://restud.oxfordjournals.org/content/65/3/361
http://dx.doi.org/10.1111/1467-937X.00050
http://dx.doi.org/10.25080/Majora-ebaa42b7-012
http://dx.doi.org/10.25080/Majora-ebaa42b7-012
http://dx.doi.org/10.25080/Majora-92bf1922-011
http://dx.doi.org/10.25080/Majora-92bf1922-011
http://dx.doi.org/10.1162/REST_a_00608
http://dx.doi.org/10.1162/REST_a_00608
http://dx.doi.org/10.1162/REST_a_00608
https://peerj.com/articles/cs-55
http://dx.doi.org/10.7717/peerj-cs.55
http://dx.doi.org/10.7717/peerj-cs.55
https://peerj.com/preprints/3190
http://dx.doi.org/10.7287/peerj.preprints.3190v2
http://dx.doi.org/10.7287/peerj.preprints.3190v2

	Introduction
	Time series analysis in statsmodels
	Exponential smoothing models
	Structural time series models
	Autoregressive moving-average models
	Vector autoregressive models
	Dynamic factor models
	Linear Gaussian state space models

	Bayesian inference via Markov chain Monte Carlo
	Random walk Metropolis-Hastings
	Gibbs sampling

	Illustrative examples
	Forecasting and Time Series Decomposition
	Casual impacts

	Extensions
	Conclusion
	References

