PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

105

Codebraid Preview for VS Code: Pandoc Markdown
Preview with Jupyter Kernels

Geoffrey M. Poore**

Abstract—Codebraid Preview is a VS Code extension that provides a live
preview of Pandoc Markdown documents with optional support for executing
embedded code. Unlike typical Markdown previews, all Pandoc features are fully
supported because Pandoc itself generates the preview. The Markdown source
and the preview are fully integrated with features like bidirectional scroll sync.
The preview supports LaTeX math via KaTeX. Code blocks and inline code can
be executed with Codebraid, using either its built-in execution system or Jupyter
kernels. For executed code, any combination of the code and its output can be
displayed in the preview as well as the final document. Code execution is non-
blocking, so the preview always remains live and up-to-date even while code is
still running.

Index Terms—reproducibility, dynamic report generation, literate programming,
Python, Pandoc, Markdown, Project Jupyter

Introduction

Pandoc [JM22] is increasingly a foundational tool for creating sci-
entific and technical documents. It provides Pandoc’s Markdown
and other Markdown variants that add critical features absent in
basic Markdown, such as citations, footnotes, mathematics, and
tables. At the same time, Pandoc simplifies document creation
by providing conversion from Markdown (and other formats) to
formats like LaTeX, HTML, Microsoft Word, and PowerPoint.
Pandoc is especially useful for documents with embedded code
that is executed during the build process. RStudio’s RMarkdown
[RSt20] and more recently Quarto [RSt22] leverage Pandoc to
convert Markdown documents to other formats, with code exe-
cution provided by knitr [YX15]. JupyterLab [GP21] centers the
writing experience around an interactive, browser-based notebook
instead of a Markdown document, but still relies on Pandoc for
export to formats other than HTML [Jup22]. There are also ways
to interact with a Jupyter Notebook as a Markdown document,
such as Jupytext [MWtJT20] and Pandoc’s own native Jupyter
support.

Writing with Pandoc’s Markdown or a similar Markdown
variant has advantages when multiple output formats are required,
since Pandoc provides the conversion capabilities. Pandoc Mark-
down variants can also serve as a simpler syntax when creating
HTML, LaTeX, or similar documents. They allow HTML and
LaTeX to be intermixed with Markdown syntax. They also support

x Corresponding author: gpoore @uu.edu
£ Union University

Copyright © 2022 Geoffrey M. Poore. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

including raw chunks of text in other formats such as reStructured-
Text. When executable code is involved, the RMarkdown-style
approach of Markdown with embedded code can sometimes be
more convenient than a browser-based Jupyter notebook since the
writing process involves more direct interaction with the complete
document source.

While using a Pandoc Markdown variant as a source format
brings many advantages, the actual writing process itself can
be less than ideal, especially when executable code is involved.
Pandoc Markdown variants are so powerful precisely because they
provide so many extensions to Markdown, but this also means
that they can only be fully rendered by Pandoc itself. When text
editors such as VS Code provide a built-in Markdown preview,
typically only a small subset of Pandoc features is supported,
so the representation of the document output will be inaccurate.
Some editors provide a visual Markdown editing mode, in which
a partially rendered version of the document is displayed in the
editor and menus or keyboard shortcuts may replace the direct
entry of Markdown syntax. These generally suffer from the same
issue. This is only exacerbated when the document embeds code
that is executed during the build process, since that goes even
further beyond basic Markdown.

An alternative is to use Pandoc itself to generate HTML or
PDF output, and then display this as a preview. Depending on the
text editor used, the HTML or PDF might be displayed within the
text editor in a panel beside the document source, or in a separate
browser window or PDF viewer. For example, Quarto offers both
possibilities, depending on whether RStudio, VS Code, or another
editor is used.! While this approach resolves the inaccuracy issues
of a basic Markdown preview, it also gives up features such as
scroll sync that tightly integrate the Markdown source with the
preview. In the case of executable code, there is the additional
issue of a time delay in rendering the preview. Pandoc itself can
typically convert even a relatively long document in under one
second. However, when code is executed as part of the document
build process, preview update is blocked until code execution
completes.

This paper introduces Codebraid Preview, a VS Code exten-
sion that provides a live preview of Pandoc Markdown documents
with optional support for executing embedded code. Codebraid
Preview provides a Pandoc-based preview while avoiding most
of the traditional drawbacks of this approach. The next section

1. The RStudio editor is unique in also offering a Pandoc-based visual
editing mode, starting with version 1.4 from January 2021 (https://www.
rstudio.com/blog/announcing-rstudio- 1-4/).

mailto:gpoore@uu.edu
https://www.rstudio.com/blog/announcing-rstudio-1-4/
https://www.rstudio.com/blog/announcing-rstudio-1-4/

106

provides an overview of features. This is followed by sections
focusing on scroll sync, LaTeX support, and code execution as
examples of solutions and remaining challenges in creating a
better Pandoc writing experience.

Overview of Codebraid Preview

Codebraid Preview can be installed through the VS Code ex-
tension manager. Development is at https://github.com/gpoore/
codebraid-preview-vscode. Pandoc must be installed separately
(https://pandoc.org/). For code execution capabilities, Codebraid
must also be installed (https://github.com/gpoore/codebraid).

The preview panel can be opened using the VS Code command
palette, or by clicking the Codebraid Preview button that is visible
when a Markdown document is open. The preview panel takes the
document in its current state, converts it into HTML using Pandoc,
and displays the result using a webview. An example is shown in
Figure 1. Since the preview is generated by Pandoc, all Pandoc
features are fully supported.

By default, the preview updates automatically whenever the
Markdown source is changed. There is a short user-configurable
minimum update interval. For shorter documents, sub-second
updates are typical.

The preview uses the same styling CSS as VS Code’s built-
in Markdown preview, so it automatically adjusts to the VS Code
color theme. For example, changing between light and dark themes
changes the background and text colors in the preview.

Codebraid Preview leverages recent Pandoc advances to pro-
vide bidirectional scroll sync between the Markdown source
and the preview for all CommonMark-based Markdown variants
that Pandoc supports (commonmark, gfm, commonmark_x).
By default, Codebraid Preview treats Markdown documents as
commonmark_x, which is CommonMark with Pandoc exten-
sions for features like math, footnotes, and special list types. The
preview still works for other Markdown variants, but scroll sync is
disabled. By default, scroll sync is fully bidirectional, so scrolling
either the source or the preview will cause the other to scroll to
the corresponding location. Scroll sync can instead be configured
to be only from source to preview or only from preview to source.
As far as [am aware, this is the first time that scroll sync has been
implemented in a Pandoc-based preview.

The same underlying features that make scroll sync possible
are also used to provide other preview capabilities. Double-
clicking in the preview moves the cursor in the editor to the
corresponding line of the Markdown source.

Since many Markdown variants support LaTeX math, the
preview includes math support via KaTeX [EA22].

Codebraid Preview can simply be used for writing plain Pan-
doc documents. Optional execution of embedded code is possible
with Codebraid [GMP19], using its built-in code execution system
or Jupyter kernels. When Jupyter kernels are used, it is possible
to obtain the same output that would be present in a Jupyter
notebook, including rich output such as plots and mathematics. It
is also possible to specify a custom display so that only a selected
combination of code, stdout, stderr, and rich output is shown while
the rest are hidden. Code execution is decoupled from the preview
process, so the Markdown source can be edited and the preview
can update even while code is running in the background. As far as
I am aware, no previous software for executing code in Markdown
has supported building a document with partial code output before
execution has completed.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

There is also support for document export with Pandoc, using
the VS Code command palette or the export-with-Pandoc button.

Scroll sync

Tight source-preview integration requires a source map, or a
mapping from characters in the source to characters in the output.
Due to Pandoc’s parsing algorithms, tracking source location
during parsing is not possible in the general case.’

Pandoc 2.11.3 was released in December 2020. It added
a sourcepos extension for CommonMark and formats
based on it, including GitHub-Flavored Markdown (GFM) and
commonmark_x (CommonMark plus extensions similar to Pan-
doc’s Markdown). The CommonMark parser uses a different
parsing algorithm from the Pandoc’s Markdown parser, and this
algorithm permits tracking source location. For the first time, it
was possible to construct a source map for a Pandoc input format.

Codebraid Preview defaults to commonmark_x as an input
format, since it provides the most features of all CommonMark-
based formats. Features continue to be added to commonmark_x
and it is gradually nearing feature parity with Pandoc’s Mark-
down. Citations are perhaps the most important feature currently
missing.’

Codebraid Preview provides full bidirectional scroll sync be-
tween source and preview for all CommonMark-based formats,
using data provided by sourcepos. In the output HTML, the
first image or inline text element created by each Markdown
source line is given an id attribute corresponding to the source
line number. When the source is scrolled to a given line range,
the preview scrolls to the corresponding HTML elements using
these id attributes. When the preview is scrolled, the visible
HTML elements are detected via the Intersection Observer APL*
Then their id attributes are used to determine the corresponding
Markdown line range, and the source scrolls to those lines.

Scroll sync is slightly more complicated when working with
output that is generated by executed code. For example, if a code
block is executed and creates several plots in the preview, there
isn’t necessarily a way to trace each individual plot back to a
particular line of code in the Markdown source. In such cases, the
line range of the executed code is mapped proportionally to the
vertical space occupied by its output.

Pandoc supports multi-file documents. It can be given a list
of files to combine into a single output document. Codebraid
Preview provides scroll sync for multi-file documents. For ex-
ample, suppose a document is divided into two files in the same
directory, chapter_1.md and chapter_2.md. Treating these
as a single document involves creating a YAML configuration file
_codebraid_preview.yaml that lists the files:

input-files:
— chapter_1.md
— chapter_2.md

Now launching a preview from either chapter_1.md or
chapter_2.md will display a preview that combines both
files. When the preview is scrolled, the editor scrolls to the
corresponding source location, automatically switching between

2. See for example https://github.com/jgm/pandoc/issues/4565.

3. The Pandoc Roadmap at https://github.com/jgm/pandoc/wiki/Roadmap
summarizes current commonmark_x capabilities.

4. For technical details, https://www.w3.org/TR/intersection-observer/. For

an overview, https://developer.mozilla.org/en-US/docs/Web/API/Intersection_
Observer_API.

https://github.com/gpoore/codebraid-preview-vscode
https://github.com/gpoore/codebraid-preview-vscode
https://pandoc.org/
https://github.com/gpoore/codebraid
https://github.com/jgm/pandoc/releases/tag/2.11.3
https://github.com/jgm/pandoc/issues/4565
https://github.com/jgm/pandoc/wiki/Roadmap
https://www.w3.org/TR/intersection-observer/
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API

CODEBRAID PREVIEW FOR VS CODE: PANDOC MARKDOWN PREVIEW WITH JUPYTER KERNELS 107

%] File Edit Selection View Go Run Terminal Help

¥ jupytermd X

¥ jupytermd > .
30 If there are errors or warnings, they are shown as well. Copying this code
31 into a Jupyter notebook yields the same output.

32

33 " {.python .cb-nb}

34 plt.plotix, np.sin(x)/x, label=r'$\sin(x)/x$'}

35 plt.plotix, np.cos(np.sin(x)), label=r'$\cos(\sin(x))$")

36 plt.xticks(x_tick_values, x_tick_labels)

37 plt.legend(prop={‘size': 12})

38 plt.grid()

39

40

41

42 ## [SymPyl(https://www.sympy.org/)

44 SymPy equatiens are displayed as well. This example runs in a separate
45 session from the plots above. Multiple Jupyter kernels can be used within a
46 single document, and multiple independent sessions are possible per kernel.

48 ""{.python .cb-nb session=sympy name=sympyl jupyter_kernel=python3}
49 from sympy import *

50 init_printing(use_latex='mathjax', latex_mode='equation')

X = Symbol('x")

eqn = Exk{—x**2}

int_egn = Integral(egn, (x, -oo, 00))

int_eqn

Jdaonrddd

" "{.python .cb-nb session=sympy name=sympy2}
int_eqn.doit()

=4

60

61 A Jupyter kernel can provide multiple formats for representing an object.

62 SymPy typically provides a LaTeX representation, a plain-text representation,
63 and a PNG representation. By default, Codebraid chooses display formats in
64 this order of precedence: LaTeX, Markdown, PNG, JPG, plain. (This can be
65 customized; see rich_output’ in the documentation for details.) So Codebraid
66 displays the SymPy math in LaTex form. For this to render as nicely as

67 possible in the browser, Pandoc should be run with one of the flags for

68 rendering math in HTML, such as "--mathjax’ . For this document, Pandoc was
69 used with "--webtex to convert LaTeX inte PNG during the document build

70 process.

‘ch-paste’ works with rich output like plets and LaTeX, just like it normally
does with code, stdout, and stderr.

"' {.cb-paste copy=sympyl+synpy2 show=rich_output example=true}

jupyter.md - Visual Studio Code

@O -

D@ ®B - o x

Codebraid Previe:

If there are errors or wamings, they are shown as well. Copying this code into a Jupyter notebook yields the same
output.

plt.plot(x, np.sin(x)/x, label=r'$\sin(x)/x$')
plt.plot(x, np.cos(np.sin(x)), label=r'$\cos(\sin(x))$")
plt.xticks(x_tick_values, x_tick_labels)
plt.legend(prop={'size': 12})

plt.grid()

10
- \
06

— sinfx)ix
02 costsin(x))

o 2 " 3n2 2n

SymPy
SymPy equations are displayed as well. This example runs in a separate session from the plots above. Multiple
Jupyter kernels can be used within a single document, and multiple independent sessions are possible per kernel

from sympy import *
init_printing(use_latex='mathjax’, latex_mode='equation')

x = Symbol('x")

eqn = Ex*(-x**2)

int_egn = Integral(egn, (x, -oo0, oo))
int_eqn

fn < dx (1

int_egn.doit()

[> Codebraid [3¢388 Scroll - Pandoc

Fig. 1: Screenshot of a Markdown document with Codebraid Preview in VS Code. This document uses Codebraid to execute code with Jupyter
kernels, so all plots and math visible in the preview are generated during document build.

chapter_1.md and chapter_2.md depending on the part of
the preview that is visible.

The preview still works when the input format is set to a non-
CommonMark format, but in that case scroll sync is disabled. If
Pandoc adds sourcepos support for additional input formats in
the future, scroll sync will work automatically once Codebraid
Preview adds those formats to the supported list. It is possible
to attempt to reconstruct a source map by performing a parallel
string search on Pandoc output and the original source. This can
be error-prone due to text manipulation during format conversion,
but in the future it may be possible to construct a good enough
source map to extend basic scroll sync support to additional input
formats.

LaTeX support

Support for mathematics is one of the key features provided by
many Markdown variants in Pandoc, including commonmark_ x.
Math support in the preview panel is supplied by KaTeX [EA22],
which is a JavaScript library for rendering LaTeX math in the
browser.

One of the disadvantages of using Pandoc to create the preview
is that every update of the preview is a complete update. This
makes the preview more sensitive to HTML rendering time. In
contrast, in a Jupyter notebook, it is common to write Markdown
in multiple cells which are rendered separately and independently.

MathJax [Mat22] provides a broader range of LaTeX support
than KaTeX, and is used in software such as JupyterLab and
Quarto. While MathJax performance has improved significantly
since the release of version 3.0 in 2019, KaTeX can still have a
speed advantage, so it is currently the default due to the importance

of HTML rendering. In the future, optional MathJax support may
be needed to provide broader math support. For some applications,
it may also be worth considering caching pre-rendered or image
versions of equations to improve performance.

Code execution

Optional support for executing code embedded in Markdown
documents is provided by Codebraid [GMP19]. Codebraid uses
Pandoc to convert a document into an abstract syntax tree (AST),
then extracts any inline or block code marked with Codebraid
attributes from the AST, executes the code, and finally formats the
code output so that Pandoc can use it to create the final output
document. Code execution is performed with Codebraid’s own
built-in system or with Jupyter kernels. For example, the code
block

{.python .cb-run}
print ("Hello *world!x")

would result in
Hello world!

after processing by Codebraid and finally Pandoc. The . cb-run
is a Codebraid attribute that marks the code block for execution
and specifies the default display of code output. Further examples
of Codebraid usage are visible in Figure 1.

Mixing a live preview with executable code provides potential
usability and security challenges. By default, code only runs when
the user selects execution in the VS Code command palette or
clicks the Codebraid execute button. When the preview automati-
cally updates as a result of Markdown source changes, it only uses

108

cached code output. Stale cached output is detected by hashing
executed code, and then marked in the preview to alert the user.

The standard approach to executing code within Markdown
documents blocks the document build process until all code has
finished running. Code is extracted from the Markdown source and
executed. Then the output is combined with the original source and
passed on to Pandoc or another Markdown application for final
conversion. This is the approach taken by RMarkdown, Quarto,
and similar software, as well as by Codebraid until recently. This
design works well for building a document a single time, but
blocking until all code has executed is not ideal in the context
of a document preview.

Codebraid now offers a new mode of code execution that al-
lows a document to be rebuilt continuously during code execution,
with each build including all code output available at that time.
This process involves the following steps:

1) The user selects code execution. Codebraid Preview
passes the document to Codebraid. Codebraid begins
code execution.

2) As soon as any code output is available, Codebraid
immediately streams this back to Codebraid Preview. The
output is in a format compatible with the YAML metadata
block at the start of Pandoc Markdown documents. The
output includes a hash of the code that was executed, so
that code changes can be detected later.

3) If the document is modified while code is running or if
code output is received, Codebraid Preview rebuilds the
preview. It creates a copy of the document with all current
Codebraid output inserted into the YAML metadata block
at the start of the document. This modified document is
then passed to Pandoc. Pandoc runs with a Lua filter” that
modifies the document AST before final conversion. The
filter removes all code marked with Codebraid attributes
from the AST, and replaces it with the corresponding
code output stored in the AST metadata. If code has
been modified since execution began, this is detected
with the hash of the code, and an HTML class is added
to the output that will mark it visually as stale output.
Code that does not yet have output is replaced by a
visible placeholder to indicate that code is still running.
When the Lua filter finishes AST modifications, Pandoc
completes the document build, and the preview updates.

4) Aslong as code is executing, the previous process repeats
whenever the preview needs to be rebuilt.

5) Once code execution completes, the most recent output is
reused for all subsequent preview updates until the next
time the user chooses to execute code. Any code changes
continue to be detected by hashing the code during the
build process, so that the output can be marked visually
as stale in the preview.

The overall result of this process is twofold. First, building
a document involving executed code is nearly as fast as building
a plain Pandoc document. The additional output metadata plus
the filter are the only extra elements involved in the document
build, and Pandoc Lua filters have excellent performance. Second,
the output for each code chunk appears in the preview almost
immediately after the chunk finishes execution.

5. For an overview of Lua filters, see https://pandoc.org/lua-filters.html.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

While this build process is significantly more interactive than
what has been possible previously, it also suggests additional
avenues for future exploration. Codebraid’s built-in code execution
system is designed to execute a predefined sequence of code
chunks and then exit. Jupyter kernels are currently used in the
same manner to avoid any potential issues with out-of-order
execution. However, Jupyter kernels can receive and execute code
indefinitely, which is how they commonly function in Jupyter note-
books. Instead of starting a new Jupyter kernel at the beginning of
each code execution cycle, it would be possible to keep the kernel
from the previous execution cycle and only pass modified code
chunks to it. This would allow the same out-of-order execution
issues that are possible in a Jupyter notebook. Yet that would
make possible much more rapid code output, particularly in cases
where large datasets must be loaded or significant preprocessing
is required.

Conclusion

Codebraid Preview represents a significant advance in tools for
writing with Pandoc. For the first time, it is possible to preview
a Pandoc Markdown document using Pandoc itself while having
features like scroll sync between the Markdown source and the
preview. When embedded code needs to be executed, it is possible
to see code output in the preview and to continue editing the
document during code execution, instead of having to wait until
code finishes running.

Codebraid Preview or future previewers that follow this ap-
proach may be perfectly adequate for shorter and even some longer
documents, but at some point a combination of document length,
document complexity, and mathematical content will strain what is
possible and ultimately decrease preview update frequency. Every
update of the preview involves converting the entire document
with Pandoc and then rendering the resulting HTML.

On the parsing side, Pandoc’s move toward CommonMark-
based Markdown variants may eventually lead to enough stan-
dardization that other implementations with the same syntax and
features are possible. This in turn might enable entirely new
approaches. An ideal scenario would be a Pandoc-compatible
JavaScript-based parser that can parse multiple Markdown strings
while treating them as having a shared document state for things
like labels, references, and numbering. For example, this could
allow Pandoc Markdown within a Jupyter notebook, with all
Markdown content sharing a single document state, maybe with
each Markdown cell being automatically updated based on Mark-
down changes elsewhere.

Perhaps more practically, on the preview display side, there
may be ways to optimize how the HTML generated by Pandoc is
loaded in the preview. A related consideration might be alternative
preview formats. There is a significant tradition of tight source-
preview integration in LaTeX (for example, [Lau08]). In principle,
Pandoc’s sourcepos extension should make possible Mark-
down to PDF synchronization, using LaTeX as an intermediary.

REFERENCES

[EA22] Emily Eisenberg and Sophie Alpert. KaTeX: The fastest math
typesetting library for the web, 2022. URL: https://katex.org/.
Geoffrey M. Poore. Codebraid: Live Code in Pandoc Mark-
down. In Chris Calloway, David Lippa, Dillon Niederhut, and
David Shupe, editors, Proceedings of the 18th Python in Science
Conference, pages 54 — 61, 2019. doi:10.25080/Majora-
7ddc1dd1-008.

[GMP19]

https://pandoc.org/lua-filters.html
https://katex.org/
http://dx.doi.org/10.25080/Majora-7ddc1dd1-008
http://dx.doi.org/10.25080/Majora-7ddc1dd1-008

CODEBRAID PREVIEW FOR VS CODE: PANDOC MARKDOWN PREVIEW WITH JUPYTER KERNELS

[GP21]

[IM22]

[Jup22]

[Lau08]
[Mat22]

[MWtJT20]

[RSt20]

[RSt22]
[YX15]

Brian E. Granger and Fernando Pérez. Jupyter: Thinking and
storytelling with code and data. Computing in Science &
Engineering, 23(2):7-14,2021. doi:10.1109/MCSE.2021.
3059263.

John MacFarlane. Pandoc: a universal document converter, 2006—
2022. URL: https://pandoc.org/.

Jupyter Development Team. nbconvert: Convert Notebooks to
other formats, 2015-2022. URL: https://nbconvert.readthedocs.
io.

Jeréme Laurens. Direct and reverse synchronization with Sync-
TEX. TUGBoat, 29(3):365-371, 2008.

MathJax. MathJax: Beautiful and accessible math in all browsers,
2009-2022. URL: https://www.mathjax.org/.

Marc Wouts and the Jupytext Team. Jupyter notebooks as
Markdown documents, Julia, Python or R scripts, 2018-2020.
URL: https://jupytext.readthedocs.io/.

RStudio Inc. R Markdown, 2016-2020. URL: https://rmarkdown.
rstudio.com/.

RStudio Inc. Welcome to Quarto, 2022. URL: https://quarto.org/.
Yihui Xie. Dynamic Documents with R and knitr. Chapman &
Hall/CRC Press, 2015.

109

http://dx.doi.org/10.1109/MCSE.2021.3059263
http://dx.doi.org/10.1109/MCSE.2021.3059263
https://pandoc.org/
https://nbconvert.readthedocs.io
https://nbconvert.readthedocs.io
https://www.mathjax.org/
https://jupytext.readthedocs.io/
https://rmarkdown.rstudio.com/
https://rmarkdown.rstudio.com/
https://quarto.org/

	Introduction
	Overview of Codebraid Preview
	Scroll sync
	LaTeX support
	Code execution
	Conclusion
	References

