
PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 147

A New Python API for Webots Robotics Simulations

Justin C. Fisher‡∗

F

Abstract—Webots is a popular open-source package for 3D robotics simula-
tions. It can also be used as a 3D interactive environment for other physics-
based modeling, virtual reality, teaching or games. Webots has provided a sim-
ple API allowing Python programs to control robots and/or the simulated world,
but this API is inefficient and does not provide many "pythonic" conveniences.
A new Python API for Webots is presented that is more efficient and provides a
more intuitive, easily usable, and "pythonic" interface.

Index Terms—Webots, Python, Robotics, Robot Operating System (ROS),
Open Dynamics Engine (ODE), 3D Physics Simulation

1. Introduction

Webots is a popular open-source package for 3D robotics sim-
ulations [Mic01], [Webots]. It can also be used as a 3D in-
teractive environment for other physics-based modeling, virtual
reality, teaching or games. Webots uses the Open Dynamics
Engine [ODE], which allows physical simulations of Newtonian
bodies, collisions, joints, springs, friction, and fluid dynamics.
Webots provides the means to simulate a wide variety of robot
components, including motors, actuators, wheels, treads, grippers,
light sensors, ultrasound sensors, pressure sensors, range finders,
radar, lidar, and cameras (with many of these sensors drawing
their inputs from GPU processing of the simulation). A typical
simulation will involve one or more robots, each with somewhere
between 3 and 30 moving parts (though more would be possible),
each running its own controller program to process information
taken in by its sensors to determine what control signals to send to
its devices. A simulated world typically involves a ground surface
(which may be a sloping polygon mesh) and dozens of walls,
obstacles, and/or other objects, which may be stationary or moving
in the physics simulation.

Webots has historically provided a simple Python API, allow-
ing Python programs to control individual robots or the simulated
world. This Python API is a thin wrapper over a C++ API, which
itself is a wrapper over Webots’ core C API. These nested layers
of API-wrapping are inefficient. Furthermore, this API is not very
"pythonic" and did not provide many of the conveniences that
help to make development in Python be fast, intuitive, and easy
to learn. This paper presents a new Python API [NewAPI01] that
more efficiently interfaces directly with the Webots C API and
provides a more intuitive, easily usable, and "pythonic" interface
for controlling Webots robots and simulations.

* Corresponding author: fisher@smu.edu
‡ Southern Methodist University, Department of Philosophy

Copyright © 2022 Justin C. Fisher. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

In qualitative terms, the old API feels like one is awkwardly
using Python to call C and C++ functions, whereas the new API
feels much simpler, much easier, and like it is fully intended for
Python. Here is a representative (but far from comprehensive) list
of examples:

• Unlike the old API, the new API contains helpful Python
type annotations and docstrings.

• Webots employs many vectors, e.g., for 3D positions, 4D
rotations, and RGB colors. The old API typically treats
these as lists or integers (24-bit colors). In the new API
these are Vector objects, with conveniently addressable
components (e.g. vector.x or color.red), conve-
nient helper methods like vector.magnitude and
vector.unit_vector, and overloaded vector arith-
metic operations, akin to (and interoperable with) NumPy
arrays.

• The new API also provides easy interfacing between
high-resolution Webots sensors (like cameras and Lidar)
and Numpy arrays, to make it much more convenient to
use Webots with popular Python packages like Numpy
[NumPy], [Har01], Scipy [Scipy], [Vir01], PIL/PILLOW
[PIL] or OpenCV [OpenCV], [Brad01]. For example,
converting a Webots camera image to a NumPy array is
now as simple as camera.array and this now allows
the array to share memory with the camera, making this
extremely fast regardless of image size.

• The old API often requires that all function parameters be
given explicitly in every call, whereas the new API gives
many parameters commonly used default values, allowing
them often to be omitted, and keyword arguments to be
used where needed.

• Most attributes are now accessible (and alterable, when ap-
plicable) by pythonic properties like motor.velocity.

• Many devices now have Python methods like __bool__
overloaded in intuitive ways. E.g., you can now use if
bumper to detect if a bumper has been pressed, rather
than the old if bumper.getValue().

• Pythonic container-like interfaces are now provided.
You may now use for target in radar to iterate
through the various targets a radar device has detected or
for packet in receiver to iterate through com-
munication packets that a receiver device has received
(and it now automatically handles a wide variety of Python
objects, not just strings).

• The old API requires supervisor controllers to use a
wide variety of separate functions to traverse and in-
teract with the simulation’s scene tree, including dif-

mailto:fisher@smu.edu


148 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

ferent functions for different VRML datatypes (like
SFVec3f or MFInt32). The new API automatically
handles these datatypes and translates intuitive Python
syntax (like dot-notation and square-bracket indexing)
to the Webots equivalents. E.g., you can now move
a particular crate 1 meter in the x direction using
a command like world.CRATES[3].translation
+= [1,0,0]. Under the old API, this would require
numerous function calls (calling getNodeFromDef to
find the CRATES node, getMFNode to find the child
with index 3, getSFField to find its translation field,
and getSFVec3f to retrieve that field’s value, then some
list manipulation to alter the x-component of that value,
and finally a call to setSFVec3f to set the new value).

As another example illustrating how much easier the new
API is to use, here are two lines from Webots’ sample
supervisor_draw_trail, as it would appear in the old
Python API.
f = supervisor.getField(supervisor.getRoot(),

"children")
f.importMFNodeFromString(-1, trail_plan)

And here is how that looks written using the new API:
world.children.append(trail_plan)

The new API is mostly backwards-compatible with the old Python
Webots API, and provides an option to display deprecation warn-
ings with helpful advice for changing to the new API.

The new Python API is planned for inclusion in an upcoming
Webots release, to replace the old one. In the meantime, an early-
access version is available, distributed under Apache 2.0 licence,
the same permissibe open-source license that Webots is distributed
under.

In what follows, the history and motivation for this new API
is discussed, including its use in teaching an interdisciplinary
undergraduate Cognitive Science course called Minds, Brains and
Robotics. Some of the design decisions for the new API are
discussed, which will not only aid in understanding it, but also
have broader relevance to parallel dilemmas that face many other
software developers. And some metrics are given to quantify how
the new API has improved over the old.

2. History and Motivation.

Much of this new API was developed by the author in the
course of teaching an interdisciplinary Southern Methodist Uni-
versity undergraduate Cognitive Science course entitled Minds,
Brains and Robotics (PHIL 3316). Before the Covid pandemic,
this course had involved lab activities where students build and
program physical robots. The pandemic forced these activities
to become virtual. Fortunately, Webots simulations actually have
many advantages over physical robots, including not requiring
any specialized hardware (beyond a decent personal computer),
making much more interesting uses of altitude rather than having
the robots confined to a safely flat surface, allowing robots
to engage in dangerous or destructive activities that would be
risky or expensive with physical hardware, allowing a much
broader array of sensors including high-resolution cameras, and
enabling full-fledged neural network and computational vision
simulations. For example, an early activity in this class involves
building Braitenburg-style vehicles [Bra01] that use light sensors
and cameras to detect a lamp carried by a hovering drone, as

well as ultrasound and touch sensors to detect obstables. Using
these sensors, the robots navigate towards the lamp in a cluttered
playground sandbox that includes sloping sand, an exterior wall,
and various obstacles including a puddle of water and platforms
from which robots may fall.

This interdisciplinary class draws students with diverse back-
grounds, and programming skills. Accomodating those with fewer
skills required simplifying many of the complexities of the old
Webots API. It also required setting up tools to use Webots
"supervisor" powers to help manipulate the simulated world, e.g.
to provide students easier customization options for their robots.
The old Webots API makes the use of such supervisor powers
tedious and difficult, even for experienced coders, so this prac-
tically required developing new tools to streamline the process.
These factors led to the development of an interface that would be
much easier for novice students to adapt to, and that would make it
much easier for an experienced programmer to make much use of
supervisor powers to manipulate the simulated world. Discussion
of this with the core Webots development team then led to the
decision to incorporate these improvements into Webots, where
they can be of benefit to a much broader community.

3. Design Decisions.

This section discusses some design decisions that arose in develop-
ing this API, and discusses the factors that drove these decisions.
This may help give the reader a better understanding of this API,
and also of relevant considerations that would arise in many other
development scenarios.

3.1. Shifting from functions to properties.

The old Python API for Webots consists largely
of methods like motor.getVelocity() and
motor.setVelocity(new_velocity). In the new API
these have quite uniformly been changed to Python properties, so
these purposes are now accomplished with motor.velocity
and motor.velocity = new_velocity.

Reduction of wordiness and punctuation helps to make pro-
grams easier to read and to understand, and it reduces the cognitive
load on coders. However, there are also drawbacks.

One drawback is that properties can give the mistaken impres-
sion that some attributes are computationally cheap to get or set. In
cases where this impression would be misleading, more traditional
method calls were retained and/or the comparative expense of the
operation was clearly documented.

Two other drawbacks are related. One is that inviting ordinary
users to assign properties to API objects might lead them to assign
other attributes that could cause problems. Since Python lacks
true privacy protections, it has always faced this sort of worry, but
this worry becomes even worse when users start to feel familiar
moving beyond just using defined methods to interact with an
object.

Relatedly, Python debugging provides direct feedback in
cases where a user misspells motor.setFoo(v) but not when
someone mispells ’motor.foo = v‘. If a user inadvertently types
motor.setFool(v) they will get an AttributeError
noting that motor lacks a setFool attribute. But if a user
inadvertently types motor.fool = v, then Python will silently
create a new .fool attribute for motor and the user will often
have no idea what has gone wrong.

These two drawbacks both involve users setting an attribute
they shouldn’t: either an attribute that has another purpose, or one



A NEW PYTHON API FOR WEBOTS ROBOTICS SIMULATIONS 149

that doesn’t. Defenses against the first include "hiding" important
attributes behind a leading "_", or protecting them with a Python
property, which can also help provide useful doc-strings. Unfor-
tunately it’s much harder to protect against misspellings in this
piece-meal fashion.

This led to the decision to have robot devices like motors
and cameras employ a blanket __setattr__ that will generate
warnings if non-property attributes of devices are set from outside
the module. So the user who inadvertently types motor.fool
= v will immediately be warned of their mistake. This does incur
a performance cost, but that cost is often worthwhile when it saves
development time and frustration. For cases when performance is
crucial, and/or a user wants to live dangerously and meddle inside
API objects, this layer of protection can be deactivated.

An alternative approach, suggested by Matthew Feickert,
would have been to use __slots__ rather than an ordinary
__dict__ to store device attributes, which would also have the
effect of raising an error if users attempt to modify unexpected
attributes. Not having a __dict__ can make it harder to do
some things like cached properties and multiple inheritance. But
in cases where such issues don’t arise or can be worked around,
readers facing similar challenges may find __slots__ to be a
preferable solution.

3.2 Backwards Compatibility.

The new API offers many new ways of doing things, many
of which would seem "better" by most metrics, with the main
drawback being just that they differ from old ways. The possibility
of making a clean break from the old API was considered, but that
would stop old code from working, alienate veteran users, and
risk causing a schism akin to the deep one that arose between
Python 2 and Python 3 communities when Python 3 opted against
backwards compatibility.

Another option would have been to refrain from adding a
"new-and-better" feature to avoid introducing redundancies or
backward incompatibilities. But that has obvious drawbacks too.

Instead, a compromise was typically adopted: to provide both
the "new-and-better" way and the "worse-old" way. This redun-
dancy was eased by shifting from getFoo / setFoo methods
to properties, and from CamelCase to pythonic snake_case,
which reduced the number of name collisions between old and
new. Employing the "worse-old" way leads to a deprecation
warning that includes helpful advice regarding shifting to the
"new-and-better" way of doing things. This may help users to
transition more gradually to the new ways, or they can shut these
warnings off to help preserve good will, and hopefully avoid a
schism.

3.3 Separating robot and world.

In Webots there is a distinction between "ordinary robots" whose
capabilities are generally limited to using the robot’s own devices,
and "supervisor robots" who share those capabilities, but also have
virtual omniscience and omnipotence over most aspects of the
simulated world. In the old API, supervisor controller programs
import a Supervisor subclass of Robot, but typically still
call this unusually powerful robot robot, which has led to many
confusions.

In the new API these two sorts of powers are strictly separated.
Importing robot provides an object that can be used to control
the devices in the robot itself. Importing world provides an
object that can be used to observe and enact changes anywhere

in the simulated world (presuming that the controller has such
permissions, of course). In many use cases, supervisor robots don’t
actually have bodies and devices of their own, and just use their
supervisor powers incorporeally, so all they will need is world.
In the case where a robot’s controller wants to exert both forms
of control, it can import both robot to control its own body, and
world to control the rest of the world.

This distinction helps to make things more intuitively clear.
It also frees world from having all the properties and methods
that robot has, which in turn reduces the risk of name-collisions
as world takes on the role of serving as the root of the proxy
scene tree. In the new API, world.children refers to the
children field of the root of the scene tree which contains (al-
most) all of the simulated world, world.WorldInfo refers to
one of these children, a WorldInfo node, and world.ROBOT2
dynamically returns a node within the world whose Webots
DEF-name is "ROBOT2". These uses of world would have
been much less intuitive if users thought of world as being
a special sort of robot, rather than as being their handle on
controlling the simulated world. Other sorts of supervisor func-
tionality also are very intuitively associated with world, like
world.save(filename) to save the state of the simulated
world, or world.mode = 'PAUSE'.

Having world.attributes dynamically fetch nodes and
fields from the scene tree did come with some drawbacks. There
is a risk of name-collisions, though these are rare since Webots
field-names are known in advance, and nodes are typically sought
by ALL-CAPS DEF-names, which won’t collide with world
’s lower-case and MixedCase attributes. Linters like MyPy and
PyCharm also cannot anticipate such dynamic references, which
is unfortunate, but does not stop such dynamic references from
being extremely useful.

4. Readability Metrics

A main advantage of the new API is that it allows Webots
controllers to be written in a manner that is easier for coders to
read, write, and understand. Qualitatively, this difference becomes
quite apparent upon a cursory inspection of examples like the one
given in section 1. As another representative example, here are
three lines from Webots’ included supervisor_draw_trail
sample as they would appear in the old Python API:

trail_node = world.getFromDef("TRAIL")
point_field = trail_node.getField("coord")\

.getSFNode()\

.getField("point")
index_field = trail_node.getField("coordIndex")

And here is their equivalent in the new API:

point_field = world.TRAIL.coord.point
index_field = world.TRAIL.coordIndex

Brief inspection should reveal that the latter code is much easier
to read, write and understand, not just because it is shorter, but
also because its punctuation is limited to standard Python syntax
for traversing attributes of objects, because it reduces the need
to introduce new variables like trail_node for things that
it already makes easy to reference (via world.TRAIL, which
the new API automatically caches for fast repeat reference), and
because it invisibly handles selecting appropriate C-API functions
like getField and getSFNode, saving the user from needing
to learn and remember all these functions (of which there are
many).



150 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Metric New API Old API

Lines of Code (with blanks, comments) 43 49
Source Lines of Code (without those) 29 35
Logical Lines of Code (single commands) 27 38
Cyclomatic Complexity 5 (A) 8 (B)

TABLE 1
Length and Complexity Metrics. Raw measures for

supervisor_draw_trail as it would be written with the new Python API
for Webots or the old Python API for Webots. The "lines of codes" measures
differ with respect to how they count blank lines, comments, and lines that

combine multiple commands. Cyclomatic complexity measures the number of
potential branching points in the code.

This intuitive impression is confirmed by automated metrics
for code readability. The measures in what follows consider the
full supervisor_draw_trail sample controller (from which
the above snippet was drawn), since this is the Webots sample
controller that makes the most sustained use of supervisor func-
tionality to perform a fairly plausible supervisor task (maintaining
the position of a streamer that trails behind the robot). Webots
provides this sample controller in C [SDTC], but it was re-
implemented using both the Old Python API and the New Python
API [Metrics], maintaining straightforward correspondence be-
tween the two, with the only differences being directly due to
the differences in the API’s.

Some raw measures for the two controllers are shown in
Table 1. These were gathered using the Radon code-analysis
tools [Radon]. (These metrics, as well as those below, may be
reproduced by (1) installing Radon [Radon], (2) downloading
the source files to compare and the script for computing Metrics
[Metrics], (3) ensuring that the path at the top of the script refers
to the local location of the source files to be compared, and
(4) running this script.) Multiple metrics are reported because
theorists disagree about which are most relevant in assessing
code readability, because some of these play a role in computing
other metrics discussed below, and because this may help to allay
potential worries that a few favorable metrics might have been
cherry-picked. This paper provides some explanation of these
metrics and of their potential significance, while remaining neutral
regarding which, if any, of these metrics is best.

The "lines of code" measures reflect that the new API makes
it easier to do more things with less code. The measures differ
in how they count blank lines, comments, multi-line statements,
and multi-statement lines like if p: q(). Line counts can be
misleading, especially when the code with fewer lines has longer
lines, though upcoming measures will show that that is not the
case here.

Cyclomatic Complexity counts the number of potential
branching points that appear within the code, like if, while and
for. [McC01] Cyclomatic Complexity is strongly correlated with
other plausible measures of code readability involving indentation
structure [Hin01]. The new API’s score is lower/"better" due to its
automatically converting vector-like values to the format needed
for importing new nodes into the Webots simulation, and due to
its automatic caching allowing a simpler loop to remove unwanted
nodes. By Radon’s reckoning this difference in complexity already
gives the old API a "B" grade, as compared to the new API’s "A".
These complexity measures would surely rise in more complex
controllers employed in larger simulations, but they would rise less

Halstead Metric New API Old API

Vocabulary = (n1)operators+(n2)operands 18 54
Length = (N1)operator + (N2)operand instances 38 99
Volume = Length * log2(Vocabulary) 158 570
Difficulty = (n1 * N2) / (2 * n2) 4.62 4.77
Effort = Difficulty * Volume 731 2715
Time = Effort / 18 41 151
Bugs = Volume / 3000 0.05 0.19

TABLE 2
Halstead Metrics. Halstead metrics for supervisor_draw_trail as it

would be written with the new and old Python API’s for Webots. Lower numbers
are commonly construed as being better.

quickly under the new API, since it provides many simpler ways
of doing things, and need never do any worse since it provides
backwards-compatible options.

Another collection of classic measures of code readability
was developed by Halstead. [Hal01] These measures (especially
volume) have been shown to correlate with human assessments
of code readability [Bus01], [Pos01]. These measures generally
penalize a program for using a "vocabulary" involving more
operators and operands. Table 2 shows these metrics, as computed
by Radon. (Again all measures are reported, while remaining
neutral about which are most significant.) The new API scores
significantly lower/"better" on these metrics, due in large part
to its automatically selecting among many different C-API calls
without these needing to appear in the user’s code. E.g. hav-
ing motor.velocity as a unified property involves fewer
unique names than having users write both setVelocity() and
getVelocity(), and often forming a third local velocity
variable. And having world.children[-1] access the last
child that field in the simulation saves having to count getField,
and getMFNode in the vocabulary, and often also saves forming
additional local variables for nodes or fields gotten in this way.
Both of these factors also help the new API to greatly reduce
parentheses counts.

Lastly, the Maintainability Index and variants thereof are
intended to measure of how easy to support and change source
code is. [Oman01] Variants of the Maintainability Index are
commonly used, including in Microsoft Visual Studio. These
measures combine Halstead Volume, Source Lines of Code, and
Cyclomatic Complexity, all mentioned above, and two variants
(SEI and Radon) also provide credit for percentage of comment
lines. (Both samples compared here include 5 comment lines, but
these compose a higher percentage of the new API’s shorter code).
Different versions of this measure weight and curve these factors
somewhat differently, but since the new API outperforms the old
on each factor, all versions agree that it gets the higher/"better"
score, as shown in Table 3. (These measures were computed based
on the input components as counted by Radon.)

There are potential concerns about each of these measures
of code readability, and one can easily imagine playing a form
of "code golf" to optimize some of these scores without actually
improving readability (though it would be difficult to do this for all
scores at once). Fortunately, most plausible measures of readabil-
ity have been observed to be strongly correllated across ordinary
cases, [Pos01] so the clear and unanimous agreement between
these measures is a strong confirmation that the new API is indeed



A NEW PYTHON API FOR WEBOTS ROBOTICS SIMULATIONS 151

Maintainability Index version New API Old API

Original [Oman01] 89 79
Software Engineering Institute 78 62
Microsoft Visual Studio 52 46
Radon 82 75

TABLE 3
Maintainability Index Metrics. Maintainability Index metrics for

supervisor_draw_trail as it would be written with the new and old
versions of the Python API for Webots, according to different versions of the

Maintainability Index. Higher numbers are commonly construed as being better.

more readable. Other plausible measures of readability would take
into account factors like whether the operands are ordinary English
words, [Sca01] or how deeply nested (or indented) the code ends
up being, [Hin01] both of which would also favor the new API.
So the mathematics confirm what was likely obvious from visual
comparison of code samples above, that the new API is indeed
more "readable" than the old.

5. Conclusions

A new Python API for Webots robotic simulations was presented.
It more efficiently interfaces directly with the Webots C API and
provides a more intuitive, easily usable, and "pythonic" interface
for controlling Webots robots and simulations. Motivations for the
API and some of its design decisions were discussed, including
decisions use python properties, to add new functionality along-
side deprecated backwards compatibility, and to separate robot and
supervisor/world functionality. Advantages of the new API were
discussed and quantified using automated code readability metrics.

More Information

An early-access version of the new API and a variety of sam-
ple programs and metric computations: https://github.com/Justin-
Fisher/new_python_api_for_webots

Lengthy discussion of the new API and its planned inclusion
in Webots: https://github.com/cyberbotics/webots/pull/3801

Webots home page, including free download of Webots: https:
//cyberbotics.com/

REFERENCES

[Brad01] Bradski, G. The OpenCV Library. Dr Dobb’s Journal of Soft-
ware Tools. 2000.

[Bra01] Braitenberg, V. Vehicles: Experiments in synthetic psychology.
Cambridge, MA: MIT Press. 1984.

[Bus01] Buse, R and W Weimer. Learning a metric for code readability.
IEEE Transactions on Software Engineering, 36(4): 546-58.
2010. doi: 10.1109/TSE.2009.70.

[Metrics] Fisher, J. Readability Metrics for a New Python API for Webots
Robotics Simulations. 2022. doi: 10.5281/zenodo.6813819.

[Hal01] Halstead, M. Elements of software science. Elsevier New York.
1977.

[Har01] Harris, C., K. Millman, S. van der Walt, et al. Array pro-
gramming with NumPy. Nature 585, 357–62. 2020. doi:
10.1038/s41586-020-2649-2.

[Hin01] Hindle, A, MW Godfrey and RC Holt. "Reading beside the
lines: Indentation as a proxy for complexity metric." Program
Comprehension. The 16th IEEE International Conference, 133-
42. 2008. doi: 10.1109/icpc.2008.13.

[McC01] McCabe, TJ. "A Complexity Measure" , 2(4): 308-320. 1976.
[Mic01] Michel, O. "Webots: Professional Mobile Robot Simulation.

Journal of Advanced Robotics Systems. 1(1): 39-42. 2004. doi:
10.5772/5618.

[NewAPI01] https://github.com/Justin-Fisher/new_python_api_for_webots
[NumPy] Numerical Python (NumPy). https://www.numpy.org
[ODE] Open Dynamics Engine. https://www.ode.org/
[Oman01] Oman, P and J Hagemeister. "Metrics for assessing a software

system’s maintainability," Proceedings Conference on Software
Maintenance, 337-44. 1992. doi: 10.1109/ICSM.1992.242525.

[OpenCV] Open Source Computer Vision Library for Python. https://
github.com/opencv/opencv-python

[PIL] Python Imaging Library. https://python-pillow.org/
[Pos01] Posnet, D, A Hindle and P Devanbu. "A simpler model of

software readability." Proceedings of the 8th working conference
on mining software repositories, 73-82. 2011.

[Radon] Radon. https://radon.readthedocs.io/en/latest/index.html
[Sca01] Scalabrino, S, M Linares-Vasquez, R Oliveto and D Poshy-

vanyk. "A Comprehensive Model for Code Readability."
Jounal of Software: Evolution and Process, 1-29. 2017. doi:
10.1002/smr.1958.

[Scipy] https://www.scipy.org
[SDTC] https://cyberbotics.com/doc/guide/samples-howto#supervisor_

draw_trail-wbt
[SDTNew] https://github.com/Justin-Fisher/new_python_api_for_webots/

blob/d180bcc7f505f8168246bee379f8067dfaf373ea/webots_
new_python_api_samples/controllers/supervisor_draw_trail_
python/supervisor_draw_trail_new_api_bare_bones.py

[SDTOld] https://github.com/Justin-Fisher/new_python_api_for_webots/
blob/d180bcc7f505f8168246bee379f8067dfaf373ea/webots_
new_python_api_samples/controllers/supervisor_draw_trail_
python/supervisor_draw_trail_old_api_bare_bones.py

[Vir01] Virtanen, P, R. Gommers, T. Oliphant, et al. SciPy 1.0: Funda-
mental Algorithms for Scientific Computing in Python. Nature
Methods, 17(3), 261-72. 2020. doi: 10.1038/s41592-019-0686-2.

[Webots] Webots Open Source Robotic Simulator. https://cyberbotics.
com/

https://github.com/Justin-Fisher/new_python_api_for_webots
https://github.com/Justin-Fisher/new_python_api_for_webots
https://github.com/cyberbotics/webots/pull/3801
https://cyberbotics.com/
https://cyberbotics.com/
https://dx.doi.org/10.1109/TSE.2009.70
https://dx.doi.org/10.5281/zenodo.6813819
https://dx.doi.org/10.1038/s41586-020-2649-2
https://dx.doi.org/10.1038/s41586-020-2649-2
https://dx.doi.org/10.1109/icpc.2008.13
https://dx.doi.org/10.5772/5618
https://dx.doi.org/10.5772/5618
https://github.com/Justin-Fisher/new_python_api_for_webots
https://www.numpy.org
https://www.ode.org/
https://doi.org/10.1109/ICSM.1992.242525
https://github.com/opencv/opencv-python
https://github.com/opencv/opencv-python
https://python-pillow.org/
https://radon.readthedocs.io/en/latest/index.html
https://doi.org/10.1002/smr.1958
https://doi.org/10.1002/smr.1958
https://www.scipy.org
https://cyberbotics.com/doc/guide/samples-howto#supervisor_draw_trail-wbt
https://cyberbotics.com/doc/guide/samples-howto#supervisor_draw_trail-wbt
https://github.com/Justin-Fisher/new_python_api_for_webots/blob/d180bcc7f505f8168246bee379f8067dfaf373ea/webots_new_python_api_samples/controllers/supervisor_draw_trail_python/supervisor_draw_trail_new_api_bare_bones.py
https://github.com/Justin-Fisher/new_python_api_for_webots/blob/d180bcc7f505f8168246bee379f8067dfaf373ea/webots_new_python_api_samples/controllers/supervisor_draw_trail_python/supervisor_draw_trail_new_api_bare_bones.py
https://github.com/Justin-Fisher/new_python_api_for_webots/blob/d180bcc7f505f8168246bee379f8067dfaf373ea/webots_new_python_api_samples/controllers/supervisor_draw_trail_python/supervisor_draw_trail_new_api_bare_bones.py
https://github.com/Justin-Fisher/new_python_api_for_webots/blob/d180bcc7f505f8168246bee379f8067dfaf373ea/webots_new_python_api_samples/controllers/supervisor_draw_trail_python/supervisor_draw_trail_new_api_bare_bones.py
https://github.com/Justin-Fisher/new_python_api_for_webots/blob/d180bcc7f505f8168246bee379f8067dfaf373ea/webots_new_python_api_samples/controllers/supervisor_draw_trail_python/supervisor_draw_trail_old_api_bare_bones.py
https://github.com/Justin-Fisher/new_python_api_for_webots/blob/d180bcc7f505f8168246bee379f8067dfaf373ea/webots_new_python_api_samples/controllers/supervisor_draw_trail_python/supervisor_draw_trail_old_api_bare_bones.py
https://github.com/Justin-Fisher/new_python_api_for_webots/blob/d180bcc7f505f8168246bee379f8067dfaf373ea/webots_new_python_api_samples/controllers/supervisor_draw_trail_python/supervisor_draw_trail_old_api_bare_bones.py
https://github.com/Justin-Fisher/new_python_api_for_webots/blob/d180bcc7f505f8168246bee379f8067dfaf373ea/webots_new_python_api_samples/controllers/supervisor_draw_trail_python/supervisor_draw_trail_old_api_bare_bones.py
https://dx.doi.org/10.1038/s41592-019-0686-2
https://cyberbotics.com/
https://cyberbotics.com/

	1. Introduction
	2. History and Motivation.
	3. Design Decisions.
	3.1. Shifting from functions to properties.
	3.2 Backwards Compatibility.
	3.3 Separating robot and world.
	4. Readability Metrics
	5. Conclusions
	More Information

	References

