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Abstract—pyAudioProcessing is a Python based library for processing audio
data, constructing and extracting numerical features from audio, building and
testing machine learning models, and classifying data with existing pre-trained
audio classification models or custom user-built models. MATLAB is a popular
language of choice for a vast amount of research in the audio and speech
processing domain. On the contrary, Python remains the language of choice
for a vast majority of machine learning research and functionality. This library
contains features built in Python that were originally published in MATLAB.
pyAudioProcessing allows the user to compute various features from audio files
including Gammatone Frequency Cepstral Coefficients (GFCC), Mel Frequency
Cepstral Coefficients (MFCC), spectral features, chroma features, and others
such as beat-based and cepstrum-based features from audio. One can use
these features along with one’s own classification backend or any of the pop-
ular scikit-learn classifiers that have been integrated into pyAudioProcessing.
Cleaning functions to strip unwanted portions from the audio are another offering
of the library. It further contains integrations with other audio functionalities
such as frequency and time-series visualizations and audio format conversions.
This software aims to provide machine learning engineers, data scientists,
researchers, and students with a set of baseline models to classify audio.
The library is available at https://github.com/jsingh811/pyAudioProcessing and
is under GPL-3.0 license.

Index Terms—pyAudioProcessing, audio processing, audio data, audio clas-
sification, audio feature extraction, gfcc, mfcc, spectral features, spectrogram,
chroma

Introduction

The motivation behind this software is to make available complex
audio features in Python for a variety of audio processing tasks.
Python is a popular choice for machine learning tasks. Having
solutions for computing complex audio features using Python
enables easier and unified usage of Python for building machine
learning algorithms on audio. This not only implies the need for
resources to guide solutions for audio processing, but also signifies
the need for Python guides and implementations to solve audio and
speech cleaning, transformation, and classification tasks.

Different data processing techniques work well for different
types of data. For example, in natural language processing, word
embedding is a term used for the representation of words for
text analysis, typically in the form of a real-valued numerical
vector that encodes the meaning of the word such that the words
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that are closer in the vector space are expected to be similar
in meaning [Wik22b]. Word embeddings work great for many
applications surrounding textual data [JS21]. However, passing
numbers, an audio signal, or an image through a word embeddings
generation method is not likely to return any meaningful numerical
representation that can be used to train machine learning models.
Different data types correlate with feature formation techniques
specific to their domain rather than a one-size-fits-all. These
methods for audio signals are very specific to audio and speech
signal processing, which is a domain of digital signal processing.
Digital signal processing is a field of its own and is not feasible to
master in an ad-hoc fashion. This calls for the need to have sought-
after and useful processes for audio signals to be in a ready-to-use
state by users.

There are two popular approaches for feature building in audio
classification tasks.

1. Computing spectrograms from audio signals as images and
using an image classification pipeline for the remainder.

2. Computing features from audio files directly as numerical
vectors and applying them to a classification backend.

pyAudioProcessing includes the capability of computing spec-
trograms, but focusses most functionalities around the latter for
building audio models. This tool contains implementations of
various widely used audio feature extraction techniques, and
integrates with popular scikit-learn classifiers including support
vector machine (SVM), SVM radial basis function kernel (RBF),
random forest, logistic regression, k-nearest neighbors (k-NN),
gradient boosting, and extra trees. Audio data can be cleaned,
trained, tested, and classified using pyAudioProcessing [Sin21].

Some other useful libraries for the domain of audio pro-
cessing include librosa [MRL+15], spafe [Mal20], essentia
[BWG+13], pyAudioAnalysis [Gia15], and paid services from
service providers such as Google1.

The use of pyAudioProcessing in the community inspires the
need and growth of this software. It is referenced in a text book
titled Artificial Intelligence with Python Cookbook published by
Packt Publishing in October 2020 [Auf20]. Additionally, pyAu-
dioProcessing is a part of specific admissions requirement for a
funded PhD project at University of Portsmouth2. It is further
referenced in this thesis paper titled "Master Thesis AI Method-
ologies for Processing Acoustic Signals AI Usage for Processing
Acoustic Signals" [Din21], in recent research on audio processing
for assessing attention levels in Attention Deficit Hyperactivity

1. https://developers.google.com/learn/pathways/get-started-audio-
classification

https://github.com/jsingh811/pyAudioProcessing
mailto:singhjyotika811@gmail.com
https://developers.google.com/learn/pathways/get-started-audio-classification
https://developers.google.com/learn/pathways/get-started-audio-classification


PYAUDIOPROCESSING: AUDIO PROCESSING, FEATURE EXTRACTION, AND MACHINE LEARNING MODELING 153

Disorder (ADHD) students [BGSR21], and more. There are thus
far 16000+ downloads via pip for pyAudioProcessing with 1000+
downloads in the last month [PeP22]. As several different audio
features need development, new issues are created on GitHub
and contributions to the code by the open-source community are
welcome to grow the tool faster.

Core Functionalities

pyAudioProcessing aims to provide an end-to-end processing so-
lution for converting between audio file formats, visualizing time
and frequency domain representations, cleaning with silence and
low-activity segments removal from audio, building features from
raw audio samples, and training a machine learning model that
can then be used to classify unseen raw audio samples (e.g., into
categories such as music, speech, etc.). This library allows the user
to extract features such as Mel Frequency Cepstral Coefficients
(MFCC) [CD14], Gammatone Frequency Cepstral Coefficients
(GFCC) [JDHP17], spectral features, chroma features and other
beat-based and cepstrum based features from audio to use with
one’s own classification backend or scikit-learn classifiers that
have been built into pyAudioProcessing. The classifier implemen-
tation examples that are a part of this software aim to give the
users a sample solution to audio classification problems and help
build the foundation to tackle new and unseen problems.

pyAudioProcessing provides seven core functionalities com-
prising different stages of audio signal processing.

1. Converting audio files to .wav format to give the users
the ability to work with different types of audio to increase
compatibility with code and processes that work best with .wav
audio type.

2. Audio visualization in time-series and frequency represen-
tation, including spectrograms.

3. Segmenting and removing low-activity segments from audio
files for removing unwanted audio segments that are less likely to
represent meaningful information.

4. Building numerical features from audio that can be used
to train machine learning models. The set of features supported
evolves with time as research informs new and improved algo-
rithms.

5. Ability to export the features built with this library to use
with any custom machine learning backend of the user’s choosing.

6. Capability that allows users to train scikit-learn classifiers
using features of their choosing directly from raw data. pyAudio-
Processing

a). runs automatic hyper-parameter tuning
b). returns to the user the training model metrics

along with cross-validation confusion matrix (a cross-
validation confusion matrix is an evaluation matrix from
where we can estimate the performance of the model
broken down by each class/category) for model evalua-
tion

c). allows the user to test the created classifier with
the same features used for training

7. Includes pre-trained models to provide users with baseline
audio classifiers.

2. https://www.port.ac.uk/study/postgraduate-research/research-degrees/
phd/explore-our-projects/detection-of-emotional-states-from-speech-and-text

Class Metric
Accuracy Precision F1

music 97.60% 98.79% 98.19%
speech 98.80% 97.63% 98.21%

TABLE 1: Per-class evaluation metrics for audio type (speech vs
music) classification pre-trained model.

Class Metric
Accuracy Precision F1

music 94.60% 96.93% 95.75%
speech 97.00% 97.79% 97.39%
birds 100.00% 96.89% 98.42%

TABLE 2: Per-class evaluation metrics for audio type (speech vs
music vs bird sound) classification pre-trained model.

Methods and Results

Pre-trained models

pyAudioProcessing offers pre-trained audio classification models
for the Python community to aid in quick baseline establishment.
This is an evolving feature as new datasets and classification
problems gain prominence in the field.

Some of the pre-trained models include the following.
1. Audio type classifier to determine speech versus music:

Trained a Support Vector Machine (SVM) classifier for classifying
audio into two possible classes - music, speech. This classifier
was trained using Mel Frequency Cepstral Coefficients (MFCC),
spectral features, and chroma features. This model was trained on
manually created and curated samples for speech and music. The
per-class evaluation metrics are shown in Table 1.

2. Audio type classifier to determine speech versus music ver-
sus bird sounds: Trained Support Vector Machine (SVM) classifier
for classifying audio into three possible classes - music, speech,
birds. This classifier was trained using Mel Frequency Cepstral
Coefficients (MFCC), spectral features, and chroma features. The
per-class evaluation metrics are shown in Table 2.

3. Music genre classifier using the GTZAN [TEC01]: Trained
on SVM classifier using Gammatone Frequency Cepstral Coef-
ficients (GFCC), Mel Frequency Cepstral Coefficients (MFCC),
spectral features, and chroma features to classify music into 10
genre classes - blues, classical, country, disco, hiphop, jazz, metal,
pop, reggae, rock. The per-class evaluation metrics are shown in
Table 3.

These models aim to present capability of audio feature gen-
eration algorithms in extracting meaningful numeric patterns from
the audio data. One can train their own classifiers using similar
features and different machine learning backend for researching
and exploring improvements.

Audio features

There are multiple types of features one can extract from audio.
Information about getting started with audio processing is well
described in [Sin19]. pyAudioProcessing allows users to compute
GFCC, MFCC, other cepstral features, spectral features, temporal
features, chroma features, and more. Details on how to extract
these features are present in the project documentation on GitHub.

https://www.port.ac.uk/study/postgraduate-research/research-degrees/phd/explore-our-projects/detection-of-emotional-states-from-speech-and-text
https://www.port.ac.uk/study/postgraduate-research/research-degrees/phd/explore-our-projects/detection-of-emotional-states-from-speech-and-text
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Class Metric
Accuracy Precision F1

pop 72.36% 78.63% 75.36%
met 87.31% 85.52% 86.41%
dis 62.84% 59.45% 61.10%
blu 83.02% 72.96% 77.66%
reg 79.82% 69.72% 74.43%
cla 90.61% 86.38% 88.44%
rock 53.10% 51.50% 52.29%
hip 60.94% 77.22% 68.12%
cou 58.34% 62.53% 60.36%
jazz 78.10% 85.17% 81.48%

TABLE 3: Per-class evaluation metrics for music genre classification pre-trained model.

Generally, features useful in different audio prediction tasks (es-
pecially speech) include Linear Prediction Coefficients (LPC) and
Linear Prediction Cepstral Coefficients (LPCC), Bark Frequency
Cepstral Coefficients (BFCC), Power Normalized Cepstral Coef-
ficients (PNCC), and spectral features like spectral flux, entropy,
roll off, centroid, spread, and energy entropy.

While MFCC features find use in most commonly encountered
audio processing tasks such as audio type classification, speech
classification, GFCC features have been found to have application
in speaker identification or speaker diarization (the process of
partitioning an input audio stream into homogeneous segments
according to the human speaker identity [Wik22a]). Applications,
comparisons and uses can be found in [ZW13], [pat21], and
[pat22].

pyAudioProcessing library includes computation of these fea-
tures for audio segments of a single audio, followed by computing
mean and standard deviation of all the signal segments.

Mel Frequency Cepstral Coefficients (MFCC):

The mel scale relates perceived frequency, or pitch, of a pure
tone to its actual measured frequency. Humans are much better
at discerning small changes in pitch at low frequencies compared
to high frequencies. Incorporating this scale makes our features
match more closely what humans hear. The mel-frequency scale is
approximately linear for frequencies below 1 kHz and logarithmic
for frequencies above 1 kHz, as shown in Figure 1. This is
motivated by the fact that the human auditory system becomes
less frequency-selective as frequency increases above 1 kHz.

The signal is divided into segments and a spectrum is com-
puted. Passing a spectrum through the mel filter bank, followed by
taking the log magnitude and a discrete cosine transform (DCT)
produces the mel cepstrum. DCT extracts the signal’s main infor-
mation and peaks. For this very property, DCT is also widely used
in applications such as JPEG and MPEG compressions. The peaks
after DCT contain the gist of the audio information. Typically,
the first 13-20 coefficients extracted from the mel cepstrum are
called the MFCCs. These hold very useful information about audio
and are often used to train machine learning models. The process
of developing these coefficients can be seen in the form of an
illustration in Figure 1. MFCC for a sample speech audio can be
seen in Figure 2.

Gammatone Frequency Cepstral Coefficients (GFCC):

Another filter inspired by human hearing is the gammatone
filter bank. The gammatone filter bank shape looks similar to the
mel filter bank, expect the peaks are smoother than the triangular
shape of the mel filters. gammatone filters are conceived to be a
good approximation to the human auditory filters and are used as
a front-end simulation of the cochlea. Since a human ear is the
perfect receiver and distinguisher of speakers in the presence of
noise or no noise, construction of gammatone filters that mimic
auditory filters became desirable. Thus, it has many applications
in speech processing because it aims to replicate how we hear.

GFCCs are formed by passing the spectrum through a gam-
matone filter bank, followed by loudness compression and DCT,
as seen in Figure 3. The first (approximately) 22 features are
called GFCCs. GFCCs have a number of applications in speech
processing, such as speaker identification. GFCC for a sample
speech audio can be seen in Figure 4.

Temporal features:

Temporal features from audio are extracted from the signal
information in its time domain representations. Examples include
signal energy, entropy, zero crossing rate, etc. Some sample mean
temporal features can be seen in Figure 5.

Spectral features:

Spectral features on the other hand derive information con-
tained in the frequency domain representation of an audio signal.
The signal can be converted from time domain to frequency
domain using the Fourier transform. Useful features from the
signal spectrum include fundamental frequency, spectral entropy,
spectral spread, spectral flux, spectral centroid, spectral roll-off,
etc. Some sample mean spectral features can be seen in Figure
6.

Chroma features:

Chroma features are highly popular for music audio data. In
Western music, the term chroma feature or chromagram closely re-
lates to the twelve different pitch classes. Chroma-based features,
which are also referred to as "pitch class profiles", are a powerful
tool for analyzing music whose pitches can be meaningfully
categorized (often into twelve categories : A, A#, B, C, C#, D,
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Fig. 1: MFCC from audio spectrum.

Fig. 2: MFCC from a sample speech audio.

D#, E, F, F#, G, G# ) and whose tuning approximates to the equal-
tempered scale [con22]. A prime characteristic of chroma features
is that they capture the harmonic and melodic attributes of audio,
while being robust to changes in timbre and instrumentation. Some
sample mean chroma features can be seen in Figure 7.

Audio data cleaning/de-noising

Often times an audio sample has multiple segments present in the
same signal that do not contain anything but silence or a slight
degree of background noise compared to the rest of the audio.
For most applications, those low activity segments make up the
irrelevant information of the signal.

The audio clip shown in Figure 8 is a human saying the word
"london" and represents the audio plotted in the time domain, with
signal amplitude as y-axis and sample number as x-axis. The areas
where the signal looks closer to zero/low in amplitude are areas
where speech is absent and represents the pauses the speaker took
while saying the word "london".

Figure 9 shows the spectrogram of the same audio signal. A
spectrogram contains time on the x-axis and frequency of the y-
axis. A spectrogram is a visual representation of the spectrum of
frequencies of a signal as it varies with time. When applied to
an audio signal, spectrograms are sometimes called sonographs,
voiceprints, or voicegrams. When the data are represented in a 3D
plot they may be called waterfalls. As [Wik21] mentions, spectro-
grams are used extensively in the fields of music, linguistics, sonar,
radar, speech processing, seismology, and others. Spectrograms
of audio can be used to identify spoken words phonetically, and
to analyze the various calls of animals. A spectrogram can be
generated by an optical spectrometer, a bank of band-pass filters,
by Fourier transform or by a wavelet transform. A spectrogram is

Features boston acc london acc

mfcc 0.765 0.412
clean+mfcc 0.823 0.471

TABLE 4: Performance comparison on test data between MFCC
feature trained model with and without cleaning.

usually depicted as a heat map, i.e., as an image with the intensity
shown by varying the color or brightness.

After applying the algorithm for signal alteration to remove
irrelevant and low activity audio segments, the resultant audio’s
time-series plot looks like Figure 10. The spectrogram looks like
Figure 11. It can be seen that the low activity areas are now
missing from the audio and the resultant audio contains more
activity filled regions. This algorithm removes silences as well
as low-activity regions from the audio.

These visualizations were produced using pyAudioProcessing
and can be produced for any audio signal using the library.

Impact of cleaning on feature formations for a classifica-
tion task:

A spoken location name classification problem was considered
for this evaluation. The dataset consisted of 23 samples for
training per class and 17 samples for testing per class. The total
number of classes is 2 - london and boston. This dataset was
manually created and can be found linked in the project readme
of pyAudioProcessing. For comparative purposes, the classifier is
kept constant at SVM, and the parameter C is chosen based on grid
search for each experiment based on best precision, recall and F1
score. Results in table 4 show the impact of applying the low-
activity region removal using pyAudioProcessing prior to training
the model using MFCC features.

It can be seen that the accuracies increased when audio sam-
ples were cleaned prior to training the model. This is especially
useful in cases where silence or low-activity regions in the audio
do not contribute to the predictions and act as noise in the signal.

Integrations

pyAudioProcessing integrates with third-party tools such as scikit-
learn, matplotlib, and pydub to offer additional functionalities.
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Fig. 3: GFCC from audio spectrum.

Fig. 4: GFCC from a sample speech audio.

Fig. 5: Temporal extractions from a sample speech audio.

Training, classification, and evaluation:

The library contains integrations with scikit-learn classifiers
for passing audio through feature extraction followed by classi-
fication directly using the raw audio samples as input. Training
results include computation of cross-validation results along with
hyperparameter tuning details.

Audio format conversion:

Some applications and integrations work best with .wav data
format. pyAudioProcessing integrates with tools that perform
format conversion and presents them as a functionality via the
library.

Fig. 6: Spectral features from a sample speech audio.

Fig. 7: Chroma features from a sample speech audio.

Audio visualization:

Spectrograms are 2-D images representing sequences of spec-
tra with time along one axis, frequency along the other, and bright-
ness or color representing the strength of a frequency component
at each time frame [Wys17]. Not only can one see whether there
is more or less energy at, for example, 2 Hz vs 10 Hz, but one
can also see how energy levels vary over time [PNS]. Some of
the convolutional neural network architectures for images can be
applied to audio signals on top of the spectrograms. This is a dif-
ferent route of building audio models by developing spectrograms
followed by image processing. Time-series, frequency-domain,
and spectrogram (both time and frequency domains) visualizations
can be retrieved using pyAudioProcessing and its integrations. See
figures 10 and 9 as examples.
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Fig. 8: Time-series representation of speech for "london".

Fig. 9: Spectrogram of speech for "london".

Conclusion

In this paper pyAudioProcessing, an open-source Python library,
is presented. The tool implements and integrates a wide range
of audio processing functionalities. Using pyAudioProcessing,
one can read and visualize audio signals, clean audio signals by
removal of irrelevant content, build and extract complex features
such as GFCC, MFCC, and other spectrum and cepstrum based
features, build classification models, and use pre-built trained
baseline models to classify different types of audio. Wrappers
along with command-line usage examples are provided in the

Fig. 10: Time-series representation of cleaned speech for "london".

Fig. 11: Spectrogram of cleaned speech for "london".

software’s readme and wiki for giving the user a guide and the
flexibility of usage. pyAudioProcessing has been used in active
research around audio processing and can be used as the basis for
further python-based research efforts.

pyAudioProcessing is updated frequently in order to apply
enhancements and new functionalities with recent research efforts
of the digital signal processing and machine learning community.
Some of the ongoing implementations include additions of cepstral
features such as LPCC, integration with deep learning backends,
and a variety of spectrogram formations that can be used for image
classification-based audio classification tasks.
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