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Global optimization software library for research and
education

Nadia Udler**

Abstract—Machine learning models are often represented by functions given
by computer programs. Optimization of such functions is a challenging task
because traditional derivative based optimization methods with guaranteed
convergence properties cannot be used.. This software allows to create new
optimization methods with desired properties, based on basic modules. These
basic modules are designed in accordance with approach for constructing global
optimization methods based on potential theory [KAP]. These methods do not
use derivatives of objective function and as a result work with nondifferentiable
functions (or functions given by computer programs, or black box functions), but
have guaranteed convergence. The software helps to understand principles of
learning algorithms. This software may be used by researchers to design their
own variations or hybrids of known heuristic optimization methods. It may be
used by students to understand how known heuristic optimization methods work
and how certain parameters affect the behavior of the method.

Index Terms—global optimization, black-box functions, algorithmically defined
functions, potential functions

Introduction

Optimization lies at the heart of machine learning and data
science. One of the most relevant problems in machine learning is
automatic selection of the algorithm depending on the objective.
This is necessary in many applications such as robotics, simulating
biological or chemical processes, trading strategies optimization,
to name a few [KHNT]. We developed a library of optimization
methods as a first step for self-adapting algorithms. Optimization
methods in this library work with all objectives including very
onerous ones, such as black box functions and functions given by
computer code, and the convergences of methods is guaranteed.
This library allows to create customized derivative free learning
algorithms with desired properties by combining building blocks
from this library or other Python libraries.

The library is intended primarily for educational purposes
and its focus is on transparency of the methods rather than on
efficiency of implementation.

The library can be used by researches to design optimization
methods with desired properties by varying parameters of the
general algorithm.

As an example, consider variant of simulated annealing (SA)
proposed in [FGSB] where different values of parameters ( Boltz-
man distribution parameters, step size, etc.) are used depending of
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the distance to optimal point. In this paper the basic SA algorithm
is used as a starting point. We can offer more basic module as a
starting point ( and by specifying distribution as ’exponential’ get
the variant of SA) thus achieving more flexible design opportuni-
ties for custom optimization algorithm. Note that convergence of
the newly created hybrid algorithm does not need to be verified
when using minpy basic modules, whereas previously mentioned
SA-based hybrid has to be verified separately ( see [GLUQ])

Testing functions are included in the library. They represent
broad range of use cases covering above mentioned difficult
functions. In this paper we describe the approach underlying these
optimization methods. The distinctive feature of these methods
is that they are not heuristic in nature. The algorithms are de-
rived based on potential theory [KAP], and their convergence is
guaranteed by their derivation method [KPP]. Recently potential
theory was applied to prove convergence of well known heuristic
methods, for example see [BIS] for convergence of PSO, and to
re prove convergence of well known gradient based methods, in
particular, first order methods - see [NBAG] for convergence of
gradient descent and [ZALO] for mirror descent. For potential
functions approach for stochastic first order optimization methods
see [ATFB].

Outline of the approach

The approach works for non-smooth or algorithmically defined
functions. For detailed description of the approach see [KAP],
[KP]. In this approach the original optimization problem is re-
placed with a randomized problem, allowing the use of Monte-
Carlo methods for calculating integrals. This is especially impor-
tant if the objective function is given by its values (no analytical
formula) and derivatives are not known. The original problem
is restated in the framework of gradient (sub gradient) methods,
employing the standard theory (convergence theorems for gradient
(sub gradient) methods), whereas no derivatives of the objective
function are needed. At the same time, the method obtained is
a method of nonlocal search unlike other gradient methods. It
will be shown, that instead of measuring the gradient of the
objective function we can measure the gradient of the potential
function at each iteration step , and the value of the gradient
can be obtained using values of objective function only, in the
framework of Monte Carlo methods for calculating integrals.
Furthermore, this value does not have to be precise, because
it is recalculated at each iteration step. It will also be shown
that well-known zero-order optimization methods ( methods that
do not use derivatives of objective function but its values only)
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are generalized into their adaptive extensions. The generalization
of zero-order methods (that are heuristic in nature) is obtained
using standardized methodology, namely, gradient (sub gradient)
framework. We consider the unconstrained optimization problem

fx1,x2,..%,) —>)161;in (1)

n

By randomizing we get
F(X) = E[f(X)] > min 2)
XER,

where X is a random vector from R", {X} is a set of such random
vectors, and E[-] is the expectation operator.

Problem 2 is equivalent to problem 1 in the sense that any
realization of the random vector X*, where X* is a solution to 2,
that has a nonzero probability, will be a solution to problem 1 (see
[KAP] for proof).

Note that 2 is the stochastic optimization problem of the
functional F(X) .

To study the gradient nature of the solution algorithms for
problem 2, a variation of objective functional F(X) will be consid-
ered.

The suggested approach makes it possible to obtain opti-
mization methods in systematic way, similar to the methodology
adopted in smooth optimization. Derivation includes random-
ization of the original optimization problem, finding directional
derivative for the randomized problem and choosing moving
direction Y based on the condition that directional derivative in
the direction of Y is being less or equal to 0.

Because of randomization, the expression for directional
derivative doesn’t contain the differential characteristics of the
original function. We obtain the condition for selecting the di-
rection of search Y in terms of its characteristics - conditional
expectation. Conditional expectation is a vector function (or
vector field) and can be decomposed (following the theorem of
decomposition of the vector field) into the sum of the gradient
of scalar function P and a function with zero divergence. P is
called a potential function. As a result the original problem is
reduced to optimization of the potential function, furthermore, the
potential function is specific for each iteration step. Next, we arrive
at partial differential equation that connects P and the original
function. To define computational algorithms it is necessary to
specify the dynamics of the random vectors. For example, the
dynamics can be expressed in a form of densities. For certain class
of distributions, for example normal distribution, the dynamics can
be written in terms of expectation and covariance matrix. It is also
possible to express the dynamics in mixed characteristics.

Expression for directional derivative
Derivative of objective functional F(X) in the direction of the
random vector Y at the point X 0 (Gateaux derivative) is:
SyF(X%) = LF(XO +€Y)eo = LF(X)dxe—o =
ix [ FX)pe (x)e=0

where density function of the random vector X¢ = X% 4+ g¥
may be expressed in terms of joint density function pyo y (x,y) of
XY and Y as follows:

P (x) = /R Pae(x—€y,y)dy 3)

The following relation (property of divergence) will be needed
later

d
el (x—£y,y) = (=Vipse (x,¥),y) = —dive(pee (x,y)y)  (4)
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where ( , ) defines dot product.
Assuming differentiability of the integrals (for example, by
selecting the appropriate pye (x,y) and using 3, 4 we get

P
SF(X) =[5 [ [ Fpsee—enydadyles =

= [ Jrn £ (%) o Pae (x— €3, y)dxdyle—0 = [fgn f (X) (45 [rn Pae (x—
€y,y)dy)dx]e—o =

= Jpr PO pn [ e (v =
= Jon £ () (Jgn [divy(pae (x,¥)y)]dy)dx =

€y,y)]e—ody)dx =

= |, S@din /R (pae (x,y)y)dyldx

Using formula for conditional distribution py /xo_.(v) = p;g;g)y)) ;

where pye (x) = [pn Py (x,u)du

we get & F(X) = — [pu f(x)dive[pse (x) [gn Py 50— (y)ydy)dx

Denote J(x) = fpi YPy jx0_,(y)dy = E[Y /X = x]

Taking into account normalization condition for density we
arrive at the following expression for directional derivative:

SyF(X%) = —/

R"

(f(x) = O)dive[po (x)¥(x)]dx

where C is arbitrary chosen constant

Considering solution to 8y F(X°) — miny allows to obtain
gradient-like algorithms for optimization that use only objective
function values ( do not use derivatives of objective function)

Potential function as a solution to Poisson’s equation

Decomposing vector field po(x)¥y(x) into potential field V¢y(x)
and divergence-free component Wy (x):

P,0(X)¥(x) = Vo (x) + Wo(x)

we arrive at Poisson’s equation for potential function:

Ago(x) = —L[f(x) = Clpu(x)

where L is a constant

Solution to Poisson’s equation approaching 0 at infinity may
be written in the following form

Po(x) = | E(x6)[f(§)—Clpu(§)dE

R

where E(x, &) is a fundamental solution to Laplace’s equation.
Then for potential component Agy(x) we have

A@y(x) = —LE[AE (x,u)(f(x) = C)]

To conclude, the representation for gradient-like direction is
obtained. This direction maximizes directional derivative of the
objective functional F(X). Therefore, this representation can be
used for computing the gradient of the objective function f(x)
using only its values. Gradient direction of the objective function
f(x) is determined by the gradient of the potential function ¢@y(x),
which, in turn, is determined by Poisson’s equation.
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Practical considerations

The dynamics of the expectation of objective function may be
written in the space of random vectors as follows:

Xn+1=Xn+ o1 v

where N - iteration number, Y¥*! - random vector that defines
direction of move at ( N+1)th iteration, oy -step size on (N+1)th
iteration. Y¥*! must be feasible at each iteration, i.e. the objective
functional should decrease: F(X¥*!) < (XV). Applying expection
to (12) and presenting E Yy asconditional expectation E E[Y /X]
we get:

Xy i1 = E[Xy]+ oy 1 ExnE[YN /XN

Replacing mathematical expectations E[Xy| and Yy41] with their
estimates E" ' and 5(X") we get:

EVT =BV + ay i Exn [p(XY)]
Note that expression for 3(XV) was obtained in the previos section
up to certain parameters. By setting parameters to certain values
we can obtain stochastic extensions of well known heuristics such
as Nelder and Mead algorithm or Covariance Matrix Adaptation
Evolution Strategy. In minpy library we use several common build-
ing blocks to create different algorithms. Customized algorithms
may be defined by combining these common blocks and varying
their parameters.

Main building blocks include computing center of mass of the
sample points and finding newtonian potential.

Key takeaways, example algorithm, and code organization

Many industry professionals and researchers utilize mathematical
optimization packages to search for better solutions of their
problems. Examples of such problem include minimization of
free energy in physical system [FW], robot gait optimization
from robotics [PHS], designing materials for 3D printing [ZM],
[TMAACBA], wine production [CTC], [CWC], optimizing chem-
ical reactions [VNJT]. These problems may involve "black box
optimization", where the structure of the objective function is
unknown and is revealed through a small sequence of expen-
sive trials. Software implementations for these methods become
more user friendly. As a rule, however, certain modeling skills
are needed to formulate real world problem in a way suitable
for applying software package. Moreover, selecting optimization
method appropriate for the model is a challenging task. Our
educational software helps users of such optimization packages
and may be considered as a companion to them. The focus
of our software is on transparency of the methods rather than
on efficiency. A principal benefit of our software is the unified
approach for constructing algorithms whereby any other algorithm
is obtained from the generalized algorithm by changing certain
parameters. Well known heuristic algorithms such as Nelder and
Mead (NM) algorithm may be obtained using this generalized
approach, as well as new algorithms. Although some derivative-
free optimization packages (matlab global optimization toolbox,
Tensorflow Probability optimizers, Excel Evolutionary Solver,
scikit-learn Stochastic Gradient Descent class, scipy.optimize.shgo
method) put a lot of effort in transparency and educational value,
they don’t have the same level of flexibility and generality as our
system. An example of educational-only optimization software is
[SAS]. It is limited to teach Particle Swarm Optimization.
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The code is organized in such a way that it allows to pair the
algorithm with objective function. The new algorithm may be im-
plmented as method of class Minimize. Newly created algorithm
can be paired with test objectivve function supplied with a library
or with externally supplied objective function (implemented in
separate python module). New algorithms can be made more or
less universal, that is, may have different number of parameters
that user can specify. For example, it is possible to create Nelder
and Mead algorithm (NM) using basic modules, and this would
be an example of the most specific algorithm. It is also possible
to create Stochastic Extention of NM (more generic than classic
NM, similar to Simplicial Homology Global Optimisation [ESF]
method) and with certain settings of adjustable parameters it may
work identical to classic NM. Library repository may be found
here: https://github.com/nadiakap/MinPy_edu

The following algorithms demonstrate steps similar to steps of
Nelder and Mead algorithm (NM) but select only those points with
objective function values smaller or equal to mean level of objec-
tive funtion. Such an improvement to NM assures its convergence
[KPP]. Unlike NM, they are derived from the generic approach.
First variant (NM-stochastic) resembles NM but corrects some
of its drawbacks, and second variant (NM-nonlocal) has some
similarity to random search as well as to NM and helps to resolve
some other issues of classical NM algorithm.

Steps of NM-stochastic:

1) Initialize the search by generating K > n separate real-
izations of ug, i=1,.K of the random vector Uy, and set
mo = g Lioly

2) Onstepj=1,2,..

a.Compute the mean level ¢;_; = %Zf; f (“3—1)
b.Calculate new set of vertices:
. . mj,1 — ui;]
i i J
w,=mj+e(fu ) —cjm1) ————
J J 1 J
! ! [l — sy [

c.Setm;= £ YEoul
d.Adjust the step size €y so that f(m;) < f(mj_1). If
approximate €;_; cannot be obtained within the specified number
of trails, then set my = m;_
e.Use sample standard deviation as termination criterion:
1 K

= (g LU e

Note that classic simplex search methods do not use values of
objective function to calculate reflection/expantion/contraction co-
efficients. Those coefficients are the same for all vertices, whereas
in NM-stochastic the distance each vertex will travel depends
on the difference between objective function value and average
value across all vertices (f (u’j) — ¢j). NM-stochastic shares the
following drawbacks with classic simplex methods: a. simlex may
collapse into a nearly degenerate figure, and usually proposed
remedy is to restart the simlex every once in a while, b. only initial
vertices are randomly generated, and the path of all subsequent
vertices is deterministic. Next variant of the algorithm (NM-
nonlocal) maintains the randomness of vertices on each step, while
adjusting the distribution of Uy to mimic the pattern of the modi-
fied vertices. The corrected algorithm has much higher exploration
power than the first algorithm (similar to the exploration power of
random search algorithms), and has exploitation power of direct -
search algorithms.
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Steps of NM - nonlocal
1) Choose a starting point xg and set mg = xg.

2. On step j = 1, 2, ... Obtain K separate realizations of uf,
i=1,..K of the random vector U;
a.Compute f (”jq)a j=1,2,..K, and the sample mean level

1 &
1= L f)

i=1
b.Generate the new estimate of the mean:

i

i

[|mj—1 —u||"

1 K . mj_1—u
m;=mj_q +SJ'E Z[(f(ulj) —Cj)

i=1

Adjust the step size €;_; so that f(m;) < f(mj_1). If approximate

€;_1 cannot be obtained within the specified number of trails, then
set my =m;j—|

c.Use sample standard deviation as termination criterion
1 K
Dj= (>
=g,

i=1

(F(u) = e)))"?
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