PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

179

Design of a Scientific Data Analysis Support Platform

Nathan Martindale®*, Jason Hite*, Scott Stewart*, Mark Adams*

Abstract—Software data analytic workflows are a critical aspect of modern
scientific research and play a crucial role in testing scientific hypotheses. A
typical scientific data analysis life cycle in a research project must include
several steps that may not be fundamental to testing the hypothesis, but are
essential for reproducibility. This includes tasks that have analogs to software
engineering practices such as versioning code, sharing code among research
team members, maintaining a structured codebase, and tracking associated
resources such as software environments. Tasks unique to scientific research
include designing, implementing, and modifying code that tests a hypothesis.
This work refers to this code as an experiment, which is defined as a software
analog to physical experiments.

A software experiment manager should support tracking and reproducing
individual experiment runs, organizing and presenting results, and storing and
reloading intermediate data on long-running computations. A software experi-
ment manager with these features would reduce the time a researcher spends
on tedious busywork and would enable more effective collaboration. This work
discusses the necessary design features in more depth, some of the existing
software packages that support this workflow, and a custom developed open-
source solution to address these needs.

Index Terms—reproducible research, experiment life cycle, data analysis sup-
port

Introduction

Modern science increasingly uses software as a tool for conducting
research and scientific data analyses. The growing number of
libraries and frameworks facilitating this work has greatly low-
ered the barrier to usage, allowing more researchers to benefit
from this paradigm. However, as a result of the dependence on
software, there is a need for more thorough integration of sound
software engineering practices with the scientific process. The
fragility of complex environments containing heavily intercon-
nected packages coupled with a lack of provenance of the artifacts
generated throughout the development of an experiment increases
the potential for long-term problems, undetected bugs, and failure
to reproduce previous analyses.

« Corresponding author: martindalena@ornl.gov
Oak Ridge National Laboratory

Copyright © 2022 Oak Ridge National Laboratory. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Notice: This manuscript has been authored by UT-Battelle, LLC, under
contract DE-AC05-000R22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article for pub-
lication, acknowledges that the US government retains a nonexclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for US government purposes. DOE
will provide public access to these results of federally sponsored research in ac-
cordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

Fundamentally, science revolves around the ability for others
to repeat and reproduce prior published works, and this has
become a difficult task with many computation-based studies.
Often, scientists outside of a computer science field may not have
training in software engineering best practices, or they may simply
disregard them because the focus of a researcher is on scientific
publications rather than the analysis software itself. Lack of docu-
mentation and provenance of research artifacts and frequent failure
to publish repositories for data and source code has led to a crisis
in reproducibility in artificial intelligence (AI) and other fields that
rely heavily on computation [SBB13], [DMR"09], [Hut18]. One
study showed that quantifiably few machine learning (ML) papers
document specifics in how they ran their experiments [GGA18].
This gap between established practices from the software engi-
neering field and how computational research is conducted has
been studied for some time, and the problems that can stem from
it are discussed at length in [Sto18].

To mitigate these issues, computation-based research requires
better infrastructure and tooling [Penll] as well as applying
relevant software engineering principles [Sto18], [Dub05] to allow
data scientists to ensure their work is effective, correct, and
reproducible. In this paper we focus on the ability to manage re-
producible workflows for scientific experiments and data analyses.
We discuss the features that software to support this might require,
compare some of the existing tools that address them, and finally
present the open-source tool Curifactory which incorporates the
proposed design elements.

Related Work

Reproducibility of Al experiments has been separated into three
different degrees [GK18]: Experiment reproduciblity, or repeata-
bility, refers to using the same code implementation with the
same data to obtain the same results. Data reproducibility, or
replicability, is when a different implementation with the same
data outputs the same results. Finally, method reproducibility
describes when a different implementation with different data is
able to achieve consistent results. These degrees are discussed
in [GGA18], comparing the implications and trade-offs on the
amount of work for the original researcher versus an external
researcher, and the degree of generality afforded by a reproduced
implementation. A repeatable experiment places the greatest bur-
den on the original researcher, requiring the full codebase and
experiment to be sufficiently documented and published so that
a peer is able to correctly repeat it. At the other end of the
spectrum, method reproducibility demands the greatest burden
on the external researcher, as they must implement and run the
experiment from scratch. For the remainder of this paper, we refer

mailto:martindalena@ornl.gov

180

to "reproducibility” as experiment reproducibility (repeatability).
Tooling that is able to assist with documentation and organization
of a published experiment reduces the amount of work for the
original researcher and still allows for the lowest level of burden
to external researchers to verify and extend previous work.

In an effort to encourage better reproducibility based on
datasets, the Findable, Accessible, Interoperable, and Reusable
(FAIR) data principles [WDA " 16] were established. These prin-
ciples recommend that data should have unique and persistent
identifiers, use common standards, and provide rich metadata
description and provenance, allowing both humans and machines
to effectively parse them. These principles have been extended
more broadly to software [LGK™20], computational workflows
[GCS™20], and to entire data pipelines [MLC"21].

Various works have surveyed software engineering practices
and identified practices that provide value in scientific computing
contexts, including various forms of unit and regression testing,
proper source control usage, formal verification, bug tracking,
and agile development methods [Sto18], [Dub05]. In particular,
[Sto18] described many concepts from agile development as being
well suited to an experimental context, where the current knowl-
edge and goals may be fairly dynamic throughout the project. They
noted that although many of these techniques could be directly
applied, some required adaptation to make sense in the scientific
software domain.

Similar to this paper, two other works [DGST09], [WWG21]
discuss sets of design aspects and features that a workflow
manager would need. Deelman et al. describe the life cycle of
a workflow as composition, mapping, execution, and provenance
capture [DGSTO09]. A workflow manager must then support each
of these aspects. Composition is how the workflow is constructed,
such as through a graphical interface or with a text configuration
file. Mapping and execution are determining the resources to be
used for a workflow and then utilizing those resources to run it,
including distributing to cloud compute and external representa-
tional state transfer (REST) services. This also refers to scheduling
subworkflows/tasks to reuse intermediate artifacts as available.
Provenance, which is crucial for enabling repeatability, is how all
artifacts, library versions, and other relevant metadata are tracked
during the execution of a workflow.

Wratten, Wilm, and Goke surveyed many bioinformatics pi-
pline and workflow management tools, listing the challenges that
tooling should address: data provenance, portability, scalability,
and re-entrancy [WWG21]. Provenance is defined the same way
as in [DGSTO09], and further states the need for generating
reports that include the tracking information and metadata for
the associated experiment run. Portability—allowing set up and
execution of an experiment in a different environment—can be
a challenge because of the dependency requirements of a given
system and the ease with which the environment can be specified
and reinitialized on a different machine or operating system.
Scalability is important especially when large scale data, many
compute-heavy steps, or both are involved throughout the work-
flow. Scalability in a manager involves allowing execution on a
high-performance computing (HPC) system or with some form of
parallel compute. Finally they mention re-entrancy, or the ability
to resume execution of a compute step from where it last stopped,
preventing unnecessary recomputation of prior steps.

One area of the literature that needs further discussion is
the design of automated provenance tracking systems. Existing
workflow management tools generally require source code mod-

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

ifications to take full advantage of all features. This can entail
a significant learning curve and places additional burden on
the researcher. To address this, some sources propose automatic
documentation of experiments and code through static source code
analysis [NFP20], [Red19].

Beyond the preexisting body of knowledge about software
engineering principles, other works [SNTHI13], [KHS09] de-
scribe recommended rules and practices to follow when conduct-
ing computation-based research. These include avoiding manual
data manipulation in favor of scripted changes, keeping detailed
records of how results are produced (manual provenance), tracking
the versions of libraries and programs used, and tracking random
seeds. Many of these ideas can be assisted or encapsulated through
appropriate infrastructure decisions, which is the premise on
which this work bases its software reviews.

Although this paper focuses on the scientific workflow, a
growing related field tackles many of the same issues from
an industry standpoint: machine learning operations (MLOps)
[Goy20]. MLOps, an ML-oriented version of DevOps, is con-
cerned with supporting an entire data science life cycle, from data
acquisition to deployment of a production model. Many of the
same challenges are present, reproducibility and provenance are
crucial in both production and research workflows [RMRO21].
Infrastructure, tools, and practices developed for MLOps may also
hold value in the scientific community.

A taxonomy for ML tools that we reference throughout this
work is from [QCL21], which describes a characterization of tools
consisting of three primary categories: general, analysis support,
and reproducibility support, each of which is further subdivided
into aspects to describe a tool. For example, these subaspects
include data visualization, web dashboard capabilities, experiment
logging, and the interaction modes the tool supports, such as a
command line interface (CLI) or application programming inter-
face (API).

Design Features

We combine the two sets of capabilities from [DGSTO09] and
[WWG21] with the taxonomy from [QCL21] to propose a set
of six design features that are important for an experiment
manager. These include orchestration, parameterization, caching,
reproducibility, reporting, and scalability. The crossover between
these proposed feature sets are shown in Table 1. We expand on
each of these in more depth in the subsections below.

Orchestration

Orchestration of an experiment refers to the mechanisms used
to chain and compose a sequence of smaller logical steps into
an overarching pipeline. This provides a higher-level view of an
experiment and helps abstract away some of the implementation
details. Operation of most workflow managers is based on a
directed acyclic graph (DAG), which specifies the stages/steps as
nodes and the edges connecting them as their respective inputs and
outputs. The intent with orchestration is to encourage designing
distinct, reusable steps that can easily be composed in different
ways to support testing different hypotheses or overarching ex-
periment runs. This allows greater focus on the design of the
experiments than the implementation of the underlying functions
that the experiments consist of. As discussed in the taxonomy
[QCL21], pipeline creation can consist of a combination of scripts,
configuration files, or a visual tool. This aspect falls within the
composition capability discussed in [DGST09].

DESIGN OF A SCIENTIFIC DATA ANALYSIS SUPPORT PLATFORM

181

This work [DGSTO09] [WWG21] Taxonomy [QCL21]

Orchestration Composition — Reproducibility/pipeline creation
Parameterization =~ — — —

Caching — Re-entrancy —

Reproducibility Provenance Provenance, portability ~ Reproducibility

Reporting — — Analysis/visualization, web dashboard
Scalability Mapping, execution Scalability Analysis/computational resources

TABLE 1: Comparing design features listed in various works.

Parameterization

Parameterization specifies how a compute pipeline is customized
for a particular run by passing in configuration values to change
aspects of the experiment. The ability to customize analysis code
is crucial to conducting a compute-based experiment, providing a
mechanism to manipulate a variable under test to verify or reject
a hypothesis.

Conventionally, parameterization is done either through spec-
ifying parameters in a CLI call or by passing configuration files
in a format like JSON or YAML. As discussed in [DGST09],
parameterization sometimes consists of more complicated needs,
such as conducting parameter sweeps or grid searches. There are
libraries dedicated to managing parameter searches like this, such
as hyperopt [BYC13] used in [RMRO21].

Although not provided as a design capability in the other
works, we claim the mechanisms provided for parameterization
are important, as these mechanisms are the primary way to con-
figure, modify, and vary experiment execution without explicitly
changing the code itself or modifying hard-coded values. This
means that a recorded parameter set can better "describe" an
experiment run, increasing provenance and making it easier for
another researcher to understand what pieces of an experiment
can be readily changed and explored.

Some support is provided for this in [DGST09], stating that
the necessity of running many slight variations on workflows
sometimes leads to the creation of ad hoc scripts to generate the
variants, which leads to increased complexity in the organization
of the codebase. Improved mechanisms to parameterize the same
workflow for many variants helps to manage this complexity.

Caching

Refining experiment code and finding bugs is often a lengthy
iterative process, and removing the friction of constantly rerunning
all intermediate steps every time an experiment iS wrong can
improve efficiency. Caching values between each step of an
experiment allows execution to resume at a certain spot in the
pipeline, rather than starting from scratch every time. This is
defined as re-entrancy in [WWG21].

In addition to increasing the speed of rerunning experiments
and running new experiments that combine old results for analysis,
caching is useful to help find and debug mistakes throughout
an experiment. Cached outputs from each step allow manual
interrogation outside of the experiment. For example, if a cleaning
step was implemented incorrectly and a user noticed an invalid
value in an output data table, they could use a notebook to load
and manipulate the intermediate artifact tables for that data to
determine what stage introduced the error and what code should
be used to correctly fix it.

Reproducibility

Mechanisms for reproducibility are one of the most important fea-
tures for a successful data analysis support platform. Reproducibil-
ity is challenging because of the complexity of constantly evolving
codebases, complicated and changing dependency graphs, and
inconsistent hardware and environments. Reproducibility entails
two subcomponents: provenance and portability. This falls under
the provenance aspect from [DGST09], both data provenance and
portability from [WWG21], and the entire reproducibility support
section of the taxonomy [QCL21].

Data provenance is about tracking the history, configuration,
and steps taken to produce an intermediate or final data artifact.
In ML this would include the cleaning/munging steps used and
the intermediate tables created in the process, but provenance can
apply more broadly to any type of artifact an experiment may
produce, such as ML models themselves, or "model provenance"
[SH18]. Applying provenance beyond just data is critical, as
models may be sensitive to the specific sets of training data and
conditions used to produce them [Hutl8]. This means that every-
thing required to directly and exactly reproduce a given artifact
is recorded, such as the manipulations applied to its predecessors
and all hyperparameters used within those manipulations.

Portability refers to the ability to take an experiment and
execute it outside of the initial computing environment it was
created in [WWG21]. This can be a challenge if all software
dependency versions are not strictly defined, or when some de-
pendencies may not be available in all environments. Minimally,
allowing portability requires keeping explicit track of all packages
and the versions used. A 2017 study [OBA17] found that even
this minimal step is rarely taken. Another mechanism to support
portability is the use of containerization, such as with Docker or
Podman [SH18].

Reporting

Reporting is an important step for analyzing the results of an
experiment, through visualizations, summaries, comparisons of
results, or combinations thereof. As a design capability, reporting
refers to the mechanisms available for the system to export or
retrieve these results for human analysis. Although data visu-
alization and analysis can be done manually by the scientist,
tools to assist with making these steps easier and to keep results
organized are valuable from a project management standpoint.
Mechanisms for this might include a web interface for exploring
individual or multiple runs. Under the taxonomy [QCL21], this
falls primarily within analysis support, such as data visualization
or a web dashboard.

182

Scalability

Many data analytic problems require large amounts of space
and compute resources, often beyond what can be handled on
an individual machine. To efficiently support running a large
experiment, mechanisms for scaling execution are important and
could include anything from supporting parallel computation on
an experiment or stage level, to allowing the execution of jobs on
remote machines or within an HPC context. This falls within both
mapping and execution from [DGST09], the scalability aspect
from [WWG21], and the computational resources category within
the taxonomy [QCL21].

Existing Tools

A wide range of pipeline and workflow tools have been devel-
oped to support many of these design features, and some of the
more common examples include DVC [KPP22] and MLFlow
[MLf22]. We briefly survey and analyze a small sample of these
tools to demonstrate the diversity of ideas and their applicability in
different situations. Table 2 compares the support of each design
feature by each tool.

Dbvc

DVC [KPP'22] is a Git-like version control tool for datasets.
Orchestration is done by specifying stages, or runnable script
commands, either in YAML or directly on the CLI. A stage is
specified with output file paths and input file paths as dependen-
cies, allowing an implicit pipeline or DAG to form, representing all
the processing steps. Parameterization is done by defining within a
YAML file what the possible parameters are, along with the default
values. When running the DAG, parameters can be customized on
the CLI. Since inputs and outputs are file paths, caching and re-
entrancy come for free, and DVC will intelligently determine if
certain stages do not need to be re-computed.

A saved experiment or state is frozen into each commit, so
all parameters and artifacts are available at any point. No explicit
tracking of the environment (e.g., software versions and hardware
info) is present, but this could be manually included by tracking it
in a separate file. Reporting can be done by specifying per-stage
metrics to track in the YAML configuration. The CLI includes a
way to generate HTML files on the fly to render requested plots.
There is also an external "Iterative Studio" project, which provides
a live web dashboard to view continually updating HTML reports
from DVC. For scalability, parallel runs can be achieved by
queuing an experiment multiple times in the CLI.

MLFlow

MLFlow [MLf22] is a framework for managing the entire life
cycle of an ML project, with an emphasis on scalability and de-
ployment. It has no specific mechanisms for orchestration, instead
allowing the user to intersperse MLFlow API calls in an existing
codebase. Runnable scripts can be provided as entry points into
a configuration YAML, along with the parameters that can be
provided to it. Parameters are changed through the CLI. Although
MLFlow has extensive capabilities for tracking artifacts, there are
no automatic re-entrancy methods. Reproducibility is a strong fea-
ture, and provenance and portability are well supported. The track-
ing module provides provenance by recording metadata such as the
Git commit, parameters, metrics, and any user-specified artifacts
in the code. Portability is done by allowing the environment for
an entry point to be specified as a Conda environment or Docker

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

container. MLFlow then ensures that the environment is set up and
active before running. The CLI even allows directly specifying a
GitHub link to an mlflow-enabled project to download, set up, and
then run the associated experiment. For reporting, the MLFlow
tracking UI lets the user view and compare various runs and their
associated artifacts through a web dashboard. For scalability, both
distributed storage for saving/loading artifacts as well as execution
of runs on distributed clusters is supported.

Sacred

Sacred [GKC'17] is a Python library and CLI tool to help
organize and reproduce experiments. Orchestration is managed
through the use of Python decorators, a "main" for experiment
entry point functions and "capture" for parameterizable functions,
where function arguments are automatically populated from the
active configuration when called. Parameterization is done directly
in Python through applying a config decorator to a function that
assigns variables. Configurations can also be written to or read
from JSON and YAML files, so parameters must be simple types.
Different observers can be specified to automatically track much
of the metadata, environment information, and current parameters,
and within the code the user can specify additional artifacts and
resources to track during the run. Each run will store the requested
outputs, although there is no re-entrant use of these cached values.
Portability is supported through the ability to print the versions of
libraries needed to run a particular experiment. Reporting can be
done through a specific type of observer, and the user can provide
custom templated reports that are generated at the end of each run.

Kedro

Kedro [ABC*22] is another Python library/CLI tool for managing
reproducible and modular experiments. Orchestration is particu-
larly well done with "node" and "pipeline" abstractions, a node
referring to a single compute step with defined inputs and outputs,
and a pipeline implemented as an ordered list of nodes. Pipelines
can be composed and joined to create an overarching workflow.
Possible parameters are defined in a YAML file and either set
in other parameter files or configured on the CLI. Similar to
MLFlow, while tracking outputs are cached, there’s no automatic
mechanism for re-entrancy. Provenance is achieved by storing
user-specified metrics and tracked datasets for each run, and it
has a few different mechanisms for portability. This includes the
ability to export an entire project into a Docker container. A
separate Kedro-Viz tool provides a web dashboard to show a map
of experiments, as well as showing each tracked experiment run
and allowing comparison of metrics and outputs between them.
Projects can be deployed into several different cloud providers,
such as Databricks and Dask clusters, allowing for several options
for scalability.

Curifactory

Curifactory [MHSA22] is a Python API and CLI tool for organiz-
ing, tracking, reproducing, and exporting computational research
experiments and data analysis workflows. It is intended primarily
for smaller teams conducting research, rather than production-
level or large-scale ML projects. Curifactory is available on
GitHub! with an open-source BSD-3-Clause license. Below, we
describe the mechanisms within Curifactory to support each of the
six capabilities, and compare it with the tools discussed above.

1. https://github.com/ORNL/curifactory

https://github.com/ORNL/curifactory

DESIGN OF A SCIENTIFIC DATA ANALYSIS SUPPORT PLATFORM 183
Orchestration Parameterization Caching Provenance Portability Reporting Scalability
DvC + + ++ + + + +
MLFlow + * ++ ++ ++ ++
Sacred + ++ * ++ + +
Kedro + + * + ++ ++ ++
Curifactory + ++ ++ ++ ++ + +

TABLE 2: Supported design features in each tool. Note, + indicates that a feature is supported, ++ indicates very strong support, and *
indicates tooling that supports caching artifacts as a provenance tool but does not provide a mechanism for automatically reloading cached

values as a form of re-entrancy.

@stage
@stage analyze_data()

get_data()

@stage
preprocess_data()

@stage
train_model() @stage

compare_models()

Experiment

def run():
train_model(preprocess_data(get data())))

get_data() —>» preprocess_data() —>» train_model()

Fig. 1: Stages are composed into an experiment.

Orchestration

Curifactory provides several abstractions, the lowest level of which
is a stage. A stage is a function that takes a defined set of input
variable names, a defined set of output variable names, and an
optional set of caching strategies for the outputs. Stages are similar
to Kedro’s nodes but implemented with @stage () decorators on
the target function rather than passing the target function to a
node () call. One level up from a stage is an experiment: an
experiment describes the orchestration of these stages as shown in
Figure 1, functionally chaining them together without needing to
explicitly manage what variables are passed between the stages.

@stage (inputs=None, outputs=["data"])
def load_data (record) :

+ 7

every stage has currently active record
passed to it, which contains the "state", or
all previous output values associated with

defined in the

#

@stage (inputs=["data"], outputs=["model",
def train_model (record, data):
#

"stats"])

@stage (inputs=["model"], outputs=["results"])
def test_model (record, model) :
#

def run (argsets, manager):
"""An example experiment definition.

The primary intent of an experiment is to run

each set of arguments through the desired

stages, 1in order to compare results at the end

mn

for argset in argsets:
A record 1is

associated

Stages take and ret

ine state"
et of arguments.

n a record,

the

withn

2 U ly handling pushi

record s e.
record = Record(manager, argsets)
test_model (train_model (load_data (record)))

Parameterization

Parameterization in Curifactory is done directly in Python scripts.
The user defines a dataclass with the parameters they need
throughout their various stages in order to customize the exper-
iment, and they can then define parameter files that each return
one or more instances of this arguments class. All stages in an
experiment are automatically given access to the current argument
set in use while an experiment is running.

While configuration can also be done directly in Python in
Sacred, Curifactory makes a different trade-off: A parameter file
or get_params () function in Curifactory returns an array of
one or more argument sets, and arguments can directly include
complex Python objects. Unlike Sacred, this means Curifactory
cannot directly translate back and forth from static configuration
files, but in exchange allows for grid searches to be defined directly
and easily in a single parameter file, as well as allowing argument
sets to be composed or even inherit from other argument set
instances. Importantly, Curifactory can still encode representations
of arguments into JSON for provenance, but this is a one direc-
tional transformation.

This approach allows a great deal of flexibility, and is valuable
in experiments where a large range of parameters need to be
tested or there is significant repetition among parameter sets.
For example, in an experiment testing different effects of model
training hyperparameters, there may be several parameter files
meant to vary only the arguments needed for model training while
using the same base set of data cleaning arguments. Composing
these parameter sets from a common imported set means that any
subsequent changes to the data cleaning arguments only need to

184

be modified in one place, rather than each individual parameter
file.

@dataclass
class MyArgs (curifactory.ExperimentArgs) :
"""Define the possible arguments needed in the

. won
stages.

random_seed: int = 42
train_test_ratio: float = 0.8
layers: tuple = (100,
activation: str = "relu"

def get_params() :
"""Define a
many arguments instances for testing.
args = []
layer_sizes = [10, 20, 50,
for size in layer_sizes:

args.append (MyArgs (name=f"network_{size
layers=(size,)))

return args

simple grid search: return

mnn

100]

n
’

Caching

Curifactory supports per-stage caching, similar to memoization,
through a set of easy-to-use caching strategies. When a stage
executes, it uses the specified cache mechanism to store the stage
outputs to disk, with a filename based on the experiment, stage,
and a hash of the arguments. When the experiment is re-executed,
if it finds an existing output on disk based on this name, it short-
circuits the stage computation and simply reloads the previously
cached files, allowing a form of re-entrancy. Adding this caching
ability to a stage is done through simply providing the list of
caching strategies to the stage decorator, one for each output:

@stage (
inputs=["data"],
outputs=["training_set", "testing_set"],

cachers=[PandasCSVCacher] 2
) :
def split_data(record, data):

stage definition

Reproducibility

As mentioned before, reproducibility consists of tracking prove-
nance and metadata of artifacts as well as providing a means to set
up and repeat an experiment in a different compute environment.
To handle provenance, Curifactory automatically records metadata
for every experiment run executed, including a logfile of the
console output, current Git commit hash, argument sets used and
the rendered versions of those arguments, and the CLI command
used to start the run. The final reports from each run also include a
graphical representation of the stage DAG, and shows each output
artifact and what its cache file location is.

Curifactory has two mechanisms to fully track and export an
experiment run. The first is to execute a "full store" run, which
creates a single exported folder containing all metadata mentioned
above, along with a copy of every cache file created, the output
run report (mentioned below), as well as a Python requirements.txt
and Conda environment dump, containing a list of all packages in
the environment and their respective versions. This run folder can
then be distributed. Reproducing from the folder consists of setting
up an environment based on the Conda/Python dependencies as
needed, and running the experiment command using the exported
folder as the cache directory.

The second mechanism is a command to create a Docker con-
tainer that includes the environment, entire codebase, and artifact
cache for a specific experiment run. Curifactory comes with a

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Report: hewsgroups - 92

Experiment name: newsgroups

Experiment run number: 92

Run timestamp: ©2/25/2022 16:24:29

Reference: newsgroups_92_2022-82-25-T162429
Hostname: LAP12475@

Run status: COMPLETE

Git commit: aB83b4del33891a155371c9c8fd620ee78772e7f
Params files: ['ng-activations', 'newsgroups']

* ng-activations
o act-logistic - 8d73643bee8fcd3ac8671118b5799c¢f7
o act-tanh - cb5b3883c357a7e87817a8%4d8081a6ca
o act-relu - bdc9c@d3bdbfed8c9613cdaed770Tddf
* newsgroups
o 1 - c5fb8f528785c27c3c5a8bad41b8d0209
= 10 - f8d243d06ac713cad0996%eabcl70125
o 20 - 85f8a5360c54ddbf55d2ee54831Fb77d
o 58 - 4b5cb9%ad264e3556d4c8e40f2ab886e7
o 100 - e69%ae3b87902cf20f373539fb7416bk4

Run string:

experiment newsgroups -p ng-activations -p newsgroups

Fig. 2: Metadata block at the top of a report.

default Dockerfile for this purpose, and running the experiment
with the Docker flag creates an image that exposes a Jupyter
notebook to repeat the run and keep the artifacts in memory, as
well as a file server pointing to the appropriate cache for manual
exploration and inspection. Directly reproducing the experiment
can be done either through the exposed notebook or by running
the Curifactory experiment command inside of the image.

Reporting

While Curifactory does not run a live web dashboard like MLFlow,
DVC’s Iterative Studio, and Kedro-viz, every experiment run
outputs an HTML experiment report and updates a top-level index
HTML page linking to the new report, which can be browsed
from a file manager or statically served if running from an
external compute resource. Although simplistic, this reduces the
dependencies and infrastructure needed to achieve a basic level
of reporting, and produces stand-alone folders for consumption
outside of the original environment if needed.

Every report from Curifactory includes all relevant metadata
mentioned above, including the machine host name, experiment
sequential run number, Git commit hash, parameters, and com-
mand line string. Stage code can add user-defined objects to output
in each report, such as tables, figures, and so on. Curifactory comes
with a default set of helpers for several basic types of output
visualizations, including basic line plots, entire Matplotlib figures,
and dataframes.

The output report also contains a graphical representation of
the DAG for the experiment, rendered using Graphviz, and shows
the artifacts produced by each stage and the file path where they
are cached. An example of some of the components of this report
are rendered in figures 2, 3, 4, and 5.

DESIGN OF A SCIENTIFIC DATA ANALYSIS SUPPORT PLATFORM

Reportables

« (Aggregate)_test_models 0

* (Aggregate)_test models 1

(Aggregate)_test_models_0 (Aggregate)_test_models_1

{
"act-loj

c": 0.05095296296296295,

©.07511111111111111,

©.07511111111111111,
£96296296296296,

0.051737037037037,

0.05651851851851852,

"5e": 0.07362962962962963,

"100": 0.67345145143145145

3075 —— act-logistic
act-tanh
3,050 — act-relu
—)
— 10
— 20
50
— 100

3.025

back to reportables

3.000

2,975

2.950

2,925

2.900

0 25 50 7 100 125 150 175 200

back to reportables

Fig. 3: User-defined objects to report ("reportables").

Process/Stages Map
back to top

record 0 record 1 record 2
arge 1 args: 10 args 20

‘ ‘training_data H testing_data ‘
train_model

‘ ‘training_data H testing_data |

train_model

train_model

‘model ‘model

test_models

Fig. 4: Graphviz rendering of experiment DAG. Each large colored
area represents a single record associated with a specific argset. White
ellipses are stages, and the blocks in between them are the input and
output artifacts.

Scalability

Curifactory has no integrated method of executing portions of jobs
on external compute resources like Kedro and MLFlow, but it does
allow local multi-process parallelization of parameter sets. When
an experiment run would entail executing a series of stages for
each argument set in series, Curifactory can divide the collection
of argument sets into one subcollection per process, and runs the
experiment in parallel on each subcollection. By taking advantage
of the caching mechanism, when all parallel runs complete, the
experiment reruns in a single process to aggregate all of the
precached values into a single report.

Stage Data Detail

back to top

record 0
args: 1

[iniai s 10 e |
[) (050 e e 3 10) (50500 e e 2 |
e T | (B SRS B S b Jowd s g e]

[=i |
[L RClaniie) NLFClriaddos 1
| e Ty]

Fig. 5: Graphviz rendering of each record in more depth, showing
cache file paths and artifact data types.

185

Conclusion

The complexity in modern software, environments, and data ana-
lytic approaches threaten the reproducibility and effectiveness of
computation-based studies. This has been compounded by the lack
of standardization in infrastructure tools and software engineering
principles applied within scientific research domains. While many
novel tools and systems are in development to address these
shortcomings, several design critieria must be met, including the
ability to easily compose and orchestrate experiments, parameter-
ize them to manipulate variables under test, cache intermediate
artifacts, record provenance of all artifacts and allow the software
to port to other systems, produce output visualizations and reports
for analysis, and scale execution to the resource requirements
of the experiment. We developed Curifactory to address these
criteria specifically for small research teams running Python based
experiments.

Acknowledgements

The authors would like to acknowledge the US Department of
Energy, National Nuclear Security Administration’s Office of De-
fense Nuclear Nonproliferation Research and Development (NA-
22) for supporting this work.

REFERENCES

[ABC+22] Sajid Alam, Lorena Bélan, Gabriel Comym, Yetunde Dada, Ivan
Danov, Lim Hoang, Rashida Kanchwala, Jiri Klein, Antony
Milne, Joel Schwarzmann, Merel Theisen, and Susanna Wong.
Kedro. https://kedro.org/, March 2022.

James Bergstra, Daniel Yamins, and David Cox. Making a Sci-
ence of Model Search: Hyperparameter Optimization in Hundreds
of Dimensions for Vision Architectures. In Proceedings of the
30th International Conference on Machine Learning, pages 115—
123. PMLR, February 2013.

Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor.
Workflows and e-Science: An overview of workflow system
features and capabilities. Future Generation Computer Systems,
25:524-540, May 2009. doi:10.1016/7.future.2008.
06.012.

David L. Donoho, Arian Maleki, Inam Ur Rahman, Morteza
Shahram, and Victoria Stodden. Reproducible Research in Com-
putational Harmonic Analysis. Computing in Science Engineer-
ing, 11(1):8-18, January 2009. doi:10.1109/MCSE.2009.
15.

PF. Dubois. Maintaining correctness in scientific programs.
Computing in Science Engineering, 7(3):80-85, May 2005. doi:
10.1109/MCSE.2005.54.

Carole Goble, Sarah Cohen-Boulakia, Stian Soiland-Reyes,
Daniel Garijo, Yolanda Gil, Michael R. Crusoe, Kristian Peters,
and Daniel Schober. FAIR Computational Workflows. Data
Intelligence, 2(1-2):108-121, January 2020. doi:10.1162/
dint_a_00033.

Odd Erik Gundersen, Yolanda Gil, and David W. Aha. On Repro-
ducible AI: Towards Reproducible Research, Open Science, and
Digital Scholarship in AI Publications. Al Magazine, 39(3):56—
68, September 2018. doi:10.1609/aimag.v3913.2816.
Odd Erik Gundersen and Sigbjgrn Kjensmo. State of the Art:
Reproducibility in Artificial Intelligence. Proceedings of the
AAAI Conference on Artificial Intelligence, 32(1), April 2018.
doi:10.1609/aaai.v32i1.11503.

Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and
Jirgen Schmidhuber. The Sacred Infrastructure for Computa-
tional Research. In Proceedings of the 16th Python in Sci-
ence Conference, pages 49-56, Austin, Texas, 2017. SciPy.
doi:10.25080/shinma-7£f4c6e7-008.

A. Goyal. Machine learning operations, 2020.

Matthew Hutson. Artificial intelligence faces reproducibility
crisis. Science, 359(6377):725-726, February 2018. doi:
10.1126/science.359.6377.725.

[BYC13]

[DGSTO09]

[DMR'09]

[Dub05]

[GCS™20]

[GGA18]

[GK18]

[GKC*17]

[Goy20]
[Hut18]

https://kedro.org/
http://dx.doi.org/10.1016/j.future.2008.06.012
http://dx.doi.org/10.1016/j.future.2008.06.012
http://dx.doi.org/10.1109/MCSE.2009.15
http://dx.doi.org/10.1109/MCSE.2009.15
http://dx.doi.org/10.1109/MCSE.2005.54
http://dx.doi.org/10.1109/MCSE.2005.54
http://dx.doi.org/10.1162/dint_a_00033
http://dx.doi.org/10.1162/dint_a_00033
http://dx.doi.org/10.1609/aimag.v39i3.2816
http://dx.doi.org/10.1609/aaai.v32i1.11503
http://dx.doi.org/10.25080/shinma-7f4c6e7-008
http://dx.doi.org/10.1126/science.359.6377.725
http://dx.doi.org/10.1126/science.359.6377.725

186

[KHS09]

[KPP*22]

[LGK™T20]

[MHSA22]

[MLC*21]

[MLf22]

[NFP*20]

[OBA17]

[Penl1]

[QCL21]

[Red19]

[RMRO21]

[SBB13]

[SH18]

[SNTH13]

Diane Kelly, Daniel Hook, and Rebecca Sanders. Five Rec-
ommended Practices for Computational Scientists Who Write
Software. Computing in Science Engineering, 11(5):48-53,
September 2009. doi:10.1109/MCSE.2009.139.

Ruslan Kuprieiev, Saugat Pachhai, Dmitry Petrov, Pawet
Redzynski, Casper da Costa-Luis, Peter Rowlands, Alexander
Schepanovski, Ivan Shcheklein, Batuhan Taskaya, Jorge Orpinel,
Gao, Fabio Santos, David de la Iglesia Castro, Aman Sharma,
Zhanibek, Dani Hodovic, Nikita Kodenko, Andrew Grigorev,
Earl, Nabanita Dash, George Vyshnya, maykulkarni, Max Hora,
Vera, Sanidhya Mangal, Wojciech Baranowski, Clemens Wolff,
and Kurian Benoy. DVC: Data Version Control - Git for Data
& Models. Zenodo, April 2022. doi:10.5281/zenodo.
6417224.

Anna-Lena Lamprecht, Leyla Garcia, Mateusz Kuzak, Car-
los Martinez, Ricardo Arcila, Eva Martin Del Pico, Victoria
Dominguez Del Angel, Stephanie van de Sandt, Jon Ison,
Paula Andrea Martinez, Peter McQuilton, Alfonso Valencia,
Jennifer Harrow, Fotis Psomopoulos, Josep LI Gelpi, Neil
Chue Hong, Carole Goble, and Salvador Capella-Gutierrez. To-
wards FAIR principles for research software. Data Science,
3(1):37-59, January 2020. doi:10.3233/DS-190026.
Nathan Martindale, Jason Hite, Scott L. Stewart, and Mark
Adams. Curifactory. https://github.com/ORNL/curifactory,
March 2022.

Sonia Natalie Mitchell, Andrew Lahiff, Nathan Cummings,
Jonathan Hollocombe, Bram Boskamp, Dennis Reddyhoff, Ryan
Field, Kristian Zarebski, Antony Wilson, Martin Burke, Blair
Archibald, Paul Bessell, Richard Blackwell, Lisa A. Boden, Alys
Brett, Sam Brett, Ruth Dundas, Jessica Enright, Alejandra N.
Gonzalez-Beltran, Claire Harris, Ian Hinder, Christopher David
Hughes, Martin Knight, Vino Mano, Ciaran McMonagle, Do-
minic Mellor, Sibylle Mohr, Glenn Marion, Louise Matthews,
Tain J. McKendrick, Christopher Mark Pooley, Thibaud Por-
phyre, Aaron Reeves, Edward Townsend, Robert Turner, Jeremy
Walton, and Richard Reeve. FAIR Data Pipeline: Provenance-
driven data management for traceable scientific workflows.
arXiv:2110.07117 [cs, g-bio], October 2021. arXiv:2110.
07117.

MLflow: A Machine Learning Lifecycle Platform. https://mlflow.
org/, April 2022.

Mohammad Hossein Namaki, Avrilia Floratou, Fotis Psallidas,
Subru Krishnan, Ashvin Agrawal, Yinghui Wu, Yiwen Zhu,
and Markus Weimer. Vamsa: Automated Provenance Tracking
in Data Science Scripts. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 20, pages 1542—1551, New York, NY, USA,
August 2020. Association for Computing Machinery. doi:
10.1145/3394486.3403205.

Babatunde K. Olorisade, Pearl Brereton, and Peter Andras. Re-
producibility in Machine Learning-Based Studies: An Example
of Text Mining. In Reproducibility in ML Workshop, 34th In-
ternational Conference on Machine Learning, ICML 2017, June
2017.

Roger D. Peng. Reproducible Research in Computational Sci-
ence. Science, 334(6060):1226-1227, December 2011. doi:
10.1126/science.1213847.

Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. A Taxon-
omy of Tools for Reproducible Machine Learning Experiments.
In AIxIA 2021 Discussion Papers, 20th International Conference
of the Italian Association for Artificial Intelligence, pages 65-76,
2021.

Sergey Redyuk. Automated Documentation of End-to-End Ex-
periments in Data Science. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages 2076-2080,
April 2019. doi:10.1109/ICDE.2019.00243.

Philipp Ruf, Manav Madan, Christoph Reich, and Djaffar Ould-
Abdeslam. Demystifying MLOps and Presenting a Recipe for the
Selection of Open-Source Tools. Applied Sciences, 11(19):8861,
January 2021. doi1:10.3390/appl11198861.

Victoria Stodden, Jonathan Borwein, and David H. Bailey. Pub-
lishing Standards for Computational Science: “Setting the Default
to Reproducible”. Pennsylvania State University, 2013.

Peter Sugimura and Florian Hartl. Building a Reproducible
Machine Learning Pipeline. arXiv:1810.04570 [cs, stat], October
2018. arxiv:1810.04570.

Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind

[Sto18]

[WDA™16]

[WWG21]

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Hovig. Ten Simple Rules for Reproducible Computational Re-
search. PLOS Computational Biology, 9(10):e1003285, October
2013. doi:10.1371/journal.pcbi.1003285.

Tim Storer. Bridging the Chasm: A Survey of Software Engineer-
ing Practice in Scientific Programming. ACM Computing Surveys,
50(4):1-32, July 2018. doi:10.1145/3084225.

Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg,
Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg,
Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E.
Bourne, Jildau Bouwman, Anthony J. Brookes, Tim Clark, Merce
Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T.
Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair
J. G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap
Heringa, Peter A. C. ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben
Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Al-
bert Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-
Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone,
Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn,
Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik
van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wit-
tenburg, Katherine Wolstencroft, Jun Zhao, and Barend Mons.
The FAIR Guiding Principles for scientific data management
and stewardship. Scientific Data, 3(1):160018, March 2016.
doi:10.1038/sdata.2016.18.

Laura Wratten, Andreas Wilm, and Jonathan Goke. Reproducible,
scalable, and shareable analysis pipelines with bioinformatics
workflow managers. Nature Methods, 18(10):1161-1168, Oc-
tober 2021. doi1:10.1038/s41592-021-01254-9.

http://dx.doi.org/10.1109/MCSE.2009.139
http://dx.doi.org/10.5281/zenodo.6417224
http://dx.doi.org/10.5281/zenodo.6417224
http://dx.doi.org/10.3233/DS-190026
https://github.com/ORNL/curifactory
http://arxiv.org/abs/2110.07117
http://arxiv.org/abs/2110.07117
https://mlflow.org/
https://mlflow.org/
http://dx.doi.org/10.1145/3394486.3403205
http://dx.doi.org/10.1145/3394486.3403205
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1109/ICDE.2019.00243
http://dx.doi.org/10.3390/app11198861
http://arxiv.org/abs/1810.04570
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://dx.doi.org/10.1145/3084225
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.1038/s41592-021-01254-9

	Introduction
	Related Work
	Design Features
	Orchestration
	Parameterization
	Caching
	Reproducibility
	Reporting
	Scalability

	Existing Tools
	DVC
	MLFlow
	Sacred
	Kedro

	Curifactory
	Orchestration
	Parameterization
	Caching
	Reproducibility
	Reporting
	Scalability

	Conclusion
	Acknowledgements
	References

