194

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

popmon: Analysis Package for Dataset Shift Detection

Simon Brugman®*, Tomas Sostak®, Pradyot Patil*, Max Baak*

Abstract—popmon is an open-source Python package to check the stability of
a tabular dataset. popmon creates histograms of features binned in time-slices,
and compares the stability of its profiles and distributions using statistical tests,
both over time and with respect to a reference dataset. It works with numerical,
ordinal and categorical features, on both pandas and Spark dataframes, and
the histograms can be higher-dimensional, e.g. it can also track correlations
between sets of features. popmon can automatically detect and alert on
changes observed over time, such as trends, shifts, peaks, outliers, anomalies,
changing correlations, etc., using monitoring business rules that are either static
or dynamic. popmon results are presented in a self-contained report.

Index Terms—dataset shift detection, population shift, covariate shift, his-
togramming, profiling

Introduction

Tracking model performance is crucial to guarantee that a model
behaves as designed and trained initially, and for determining
whether to promote a model with the same initial design but
trained on different data to production. Model performance de-
pends directly on the data used for training and the data predicted
on. Changes in the latter (e.g. certain word frequency, user demo-
graphics, etc.) can affect the performance and make predictions
unreliable.

Given that input data often change over time, it is important to
track changes in both input distributions and delivered predictions
periodically, and to act on them when they are significantly
different from past instances — e.g. to diagnose and retrain an
incorrect model in production. Predictions may be far ahead in
time, so the performance can only be verified later, for example in
one year. Taking action at that point might already be too late.

To make monitoring both more consistent and semi-automatic,
ING Bank has created a generic Python package called popmon.
popmon monitors the stability of data populations over time and
detects dataset shifts, based on techniques from statistical process
control and the dataset shift literature.

popmon employs so-called dynamic monitoring rules to flag
and alert on changes observed over time. Using a specified refer-
ence dataset, from which observed levels of variation are extracted
automatically, popmon sets allowed boundaries on the input data.
If the reference dataset changes over time, the effective ranges on
the input data can change accordingly. Dynamic monitoring rules

* Corresponding author: simon.brugman@ing.com
ING Analytics Wholesale Banking
§ Vinted

Copyright © 2022 Simon Brugman et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

opmon

Fig. 1: The popmon package logo

make it easy to detect which (combinations of) features are most
affected by changing distributions.

popmon is light-weight. For example, only one line is required
to generate a stability report.

report = popmon.df_stability_report (

daf,
time_axis="date",
time_width="1w",

time_offset="2022-1-1"
)
report.to_file("report.html")
The package is built on top of Python’s scientific computing
ecosystem (numpy, scipy [HMvdW20], [VGO20]) and sup-
ports pandas and Apache Spark dataframes [pdt20], [WMI10],
[ZXWT16]. This paper discusses how popmon monitors for
dataset changes. The popmon code is modular in design and user
configurable. The project is available as open-source software. !

Related work

Many algorithms detecting dataset shift exist that follow a similar
structure [LLD " 18], using various data structures and algorithms
at each step [DKVYO06], [QAWZ15]. However, few are readily
available to use in production. popmon offers both a framework
that generalizes pipelines needed to implement those algorithms,
and default data drift pipelines, built on histograms with statistical
comparisons and profiles (see Sec. data representation).

Other families of tools have been developed that work on
individual data points, for model explanations (e.g. SHAP [LL17],
feature attributions [SL.L20]), rule-based data monitoring (e.g.
Great Expectations, Deequ [GCSG22], [SLST18]) and outlier
detection (e.g. [RGL19], [LPO17]).

alibi-detect [KVLCT20], [VLKV'22] is somewhat
similar to popmon. This is an open-source Python library that

1. See https://github.com/ing-bank/popmon for code, documentation, tutori-
als and example stability reports.

mailto:simon.brugman@ing.com
https://github.com/ing-bank/popmon

POPMON: ANALYSIS PACKAGE FOR DATASET SHIFT DETECTION

focuses on outlier, adversarial and drift detection. It allows for
monitoring of tabular, text, images and time series data, using
both online and offline detectors. The backend is implemented
in TensorFlow and PyTorch. Much of the reporting functionality,
such as feature distributions, are restricted to the (commercial) en-
terprise version called seldon—deploy. Integrations for model
deployment are available based on Kubernetes. The infrastructure
setup thus is more complex and restrictive than for popmon,
which can run on any developer’s machine.

Contributions

The advantage of popmon’s dynamic monitoring rules over con-
ventional static ones, is that little prior knowledge is required of
the input data to set sensible limits on the desired level of stability.
This makes popmon a scalable solution over multiple datasets.

To the best of our knowledge, no other monitoring tool exists
that suits our criteria to monitor models in production for dataset
shift. In particular, no other, light-weight, open-source package is
available that performs such extensive stability tests of a pandas
or Spark dataset.

We believe the combination of wide applicability, out-of-the-
box performance, available statistical tests, and configurability
makes popmon an ideal addition to the toolbox of any data
scientist or machine learning engineer.

Approach

popmon tests the dataset stability and reports the results through
a sequence of steps (Fig. 2):

1) The data are represented by histograms of features,
binned in time-slices (Sec. data representation).

2) The data is arranged according to the selected reference
type (Sec. comparisons).

3) The stability of the profiles and distributions of those
histograms are compared using statistical tests, both with
respect to a reference and over time. It works with numer-
ical, ordinal, categorical features, and the histograms can
be higher-dimensional, e.g. it can also track correlations
between any two features (Sec. comparisons).

4) popmon can automatically flag and alert on changes
observed over time, such as trends, anomalies, changing
correlations, etc, using monitoring rules (Sec. alerting).

5) Results are reported to the user via a dedicated, self-
contained report (Sec. reporting).

Dataset shift

In the context of supervised learning, one can distinguish dataset
shift as a shift in various distributions:

1) Covariate shift: shift in the independent variables (p(x)).

2) Prior probability shift: shift in the target variable (the
class, p(y)).

3) Concept shift: shift in the relationship between the inde-
pendent and target variables (i.e. p(x|y)).

Note that there is a lot of variation in terminology used, refer-
ring to probabilities prevents this ambiguity. For more information
on dataset shift see Quinonero-Candela et al. [QCSSLO08].

popmon is primarily interested in monitoring the distributions
of features p(x) and labels p(y) for monitoring trained classifiers.
These data in deployment ideally resembles the training data.

195

Source data

=
External 3
Reference @
dataset 2 Data (nD)
(optional) »
ﬂ:{> Partition on @
time-axis

Temporal partitioning @

D1 D2 D3 D4 D5

Partitioned dataset

Data representation @

| Wl | W)W

Histograms per feature for each partition

Historical data New data

Value of interest
over time

&

Reference diétnbution

" Value of interest

over time Traffic light bounds

ref max prob diff

Fig. 2: Step-by-step overview of popmon’s pipeline as described in
section approach onward.

196

However, the package can be used more widely, for instance
by monitoring interactions between features and the label, or the
distribution of model predictions.

Temporal representation

popmon requires features to be distributed as a function of time
(bins), which can be provided in two ways:

1) Time axis. Two-dimensional (or higher) distributions are
provided, where the first dimension is time and the second
is the feature to monitor. To get time slices, the time
column needs to be specified, e.g. “date”, including the
bin width, e.g. one week (“1w”), and the offset, which is
the lower edge of one time-bin, e.g. a certain start date
(“2022-1-17).

2) Ordered data batches. A set of distributions of features
is provided, corresponding to a new batch of data. This
batch is considered a new time-slice, and is stitched to
an existing set of batches, in order of incoming batches,
where each batch is assigned a unique, increasing index.
Together the indices form an artificial, binned time-axis.

Data representation

popmon uses histogram-based monitoring to track potential
dataset shift and outliers over time, as detailed in the next sub-
section.

In the literature, alternative data representations are also em-
ployed, such as kdg-trees [DKVY06]. Different data representa-
tions are in principle compatible with the popmon pipeline, as it
is similarly structured to alternative methods (see [LLD " 18], c.f.
Fig 5).

Dimensionality reduction techniques may be used to transform
the input dataset into a space where the distance between instances
are more meaningful for comparison, before using popmon, or in-
between steps. For example a linear projection may be used as a
preprocessing step, by taking the principal components of PCA as
in [QAWZ15]. Machine learning classifiers or autoencoders have
also been used for this purpose [LWS18], [RGL19] and can be
particularly helpful for high-dimensional data such as images or
text.

Histogram-based monitoring

There are multiple reasons behind the histogram-based monitoring
approach taken in popmon.

Histograms are small in size, and thus are efficiently stored and
transferred, regardless of the input dataset size. Once data records
have been aggregated feature-wise, with a minimum number of
entries per bin, they are typically no longer privacy sensitive (e.g.
knowing the number of records with age 30-35 in a dataset).

popmon is primarily looking for changes in data distributions.
Solely monitoring the (main) profiles of a distribution, such as
the mean, standard deviation and min and max values, does not
necessarily capture the changes in a feature’s distribution. Well-
known examples of this are Anscome’s Quartet [Ans73] and the
dinosaurs datasets [MF17], where — between different datasets —
the means and correlation between two features are identical, but
the distributions are different. Histograms of the corresponding
features (or feature pairs), however, do capture the corresponding
changes.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)
Implementation

For the creation of histograms from data records the open-source
histogrammar package has been adopted. histogrammar
has been implemented in both Scala and Python [PS21],
[PSSE16], and works on Spark and pandas dataframes re-
spectively. The two implementations have been tested exten-
sively to guarantee compatibility. The histograms coming out
of histogrammar form the basis of the monitoring code in
popmon, which otherwise does not require input dataframes. In
other words, the monitoring code itself has no Spark or pandas
data dependencies, keeping the code base relatively simple.

Histogram types

Three types of histograms are typically used:

« Normal histograms, meant for numerical features with
known, fixed ranges. The bin specifications are the lowest
and highest expected values and the number of (equidis-
tant) bins.

o Categorical histograms, for categorical and ordinal fea-
tures, typically boolean or string-based. A categorical
histogram accepts any value: when not yet encountered,
it creates a new bin. No bin specifications are required.

« Sparse histograms are open-ended histograms, for numer-
ical features with no known range. The bin specifications
only need the bin-width, and optionally the origin (the
lower edge of bin zero, with a default value of zero).
Sparse histograms accept any value. When the value is
not yet encountered, a new bin gets created.

For normal and sparse histograms reasonable bin specifica-
tions can be derived automatically. Both categorical and sparse
histograms are dictionaries with histogram properties. New (index,
bin) pairs get created whenever needed. Although this could result
in out-of-memory problems, e.g. when histogramming billions
of unique strings, in practice this is typically not an issue, as
this can be easily mitigated. Features may be transformed into
a representation with a lower number of distinct values, e.g. via
embedding or substrings; or one selects the top-n most frequently
occurring values.

Open-ended histograms are ideal for monitoring dataset shift
and outliers: they capture any kind of (large) data change. When
there is a drift, there is no need to change the low- and high-range
values. The same holds for outlier detection: if a new maximum
or minimum value is found, it is still captured.

Dimensionality

A histogram can be multi-dimensional, and any combination of
types is possible. The first dimension is always the time axis,
which is always represented by a sparse histogram. The second
dimension is the feature to monitor over time. When adding a third
axis for another feature, the heatmap between those two features
is created over time. For example, when monitoring financial
transactions: the first axis could be time, the second axis client
type, and the third axis transaction amount.

Usually one feature is followed over time, or at maximum two.
The synthetic datasets in section synthetic datasets contain exam-
ples of higher-dimensional histograms for known interactions.

POPMON: ANALYSIS PACKAGE FOR DATASET SHIFT DETECTION
Additivity
Histograms are additive. As an example, a batch of data records
arrives each week. A new batch arrives, containing timestamps
that were missing in a previous batch. When histograms are made
of the new batch, these can be readily summed with the histograms
of the previous batches. The missing records are immediately put
into the right time-slices.

It is important that the bin specifications are the same between
different batches of data, otherwise their histograms cannot be
summed and comparisons are impossible.

Limitations

There is one downside to using histograms: since the data get
aggregated into bins, and profiles and statistical tests are obtained
from the histograms, slightly lower resolution is achieved than
on the full dataset. In practice, however, this is a non-issue;
histograms work great for data monitoring. The reference type
and time-axis binning configuration allow the user for selecting an
effective resolution.

Comparisons

In popmon the monitoring of data stability is based on statistical
process control (SPC) techniques. SPC is a standard method to
manage the data quality of high-volume data processing opera-
tions, for example in a large data warehouse [Eng99]. The idea
is as follows. Most features have multiple sources of variation
from underlying processes. When these processes are stable, the
variation of a feature over time should remain within a known
set of limits. The level of variation is obtained from a reference
dataset, one that is deemed stable and trustworthy.

For each feature in the input data (except the time column),
the stability is determined by taking the reference dataset — for
example the data on which a classification model was trained —
and contrasting each time slot in the input data.

The comparison can be done in two ways:

1) Comparisons: statistically comparing each time slot
to the reference data (for example using Kolmogorov-
Smirnov testing, % testing, or the Pearson correlation).

2) Profiles: for example, tracking the mean of a distribution
over time and contrasting this to the reference data.
Similar analyses can be done for other summary statistics,
such as the median, min, max or quantiles. This is related
to the CUsUM technique [Pag54], a well-known method
in SPC.

Reference types

Consider X to be an N-dimensional dataset representing our
reference data, and X’ to be our incoming data. A covariate shift
occurs when p(X) # p(X’) is detected. Different choices for X
and X’ may detect different types of drift (e.g. sudden, gradual,
incremental). p(X) is referred to as the reference dataset.

Many change-detection algorithms use a window-based solu-
tion that compares a static reference to a test window [DKVY06],
or a sliding window for both, where the reference is dynamically
updated [QAWZ15]. A static reference is a wise choice for mon-
itoring of a trained classifier: the performance of such a classifier
depends on the similarity of the test data to the training data.
Moreover, it may pick up an incremental departure (trend) from
the initial distribution, that will not be significant in comparison to

197

the adjacent time-slots. A sliding reference, on the other hand,
is updated with more recent data, that incorporates this trend.
Consider the case where the data contain a price field that is yearly
indexed to the inflation, then using a static reference may alert
purely on the trend.

The reference implementations are provided for common sce-
narios, such as working with a fixed dataset, batched dataset or
with streaming data. For instance, a fixed dataset is common for
exploratory data analysis and one-off monitoring, whereas batched
or streaming data is more common in a production setting.

The reference may be static or dynamic. Four different refer-
ence types are possible:

1) Self-reference. Using the full dataset on which the sta-
bility report is built as a reference. This method is static:
each time slot is compared to all the slots in the dataset.
This is the default reference setting.

2) External reference. Using an external reference set, for
example the training data of your classifier, to identify
which time slots are deviating. This is also a static
method: each time slot is compared to the full reference
set.

3) Rolling reference. Using a rolling window on the input
dataset, allowing one to compare each time slot to a
window of preceding time slots. This method is dynamic:
one can set the size of the window and the shift from the
current time slot. By default the 10 preceding time slots
are used.

4) Expanding reference. Using an expanding reference,
allowing one to compare each time slot to all preceding
time slots. This is also a dynamic method, with variable
window size, since all available previous time slots are
used. For example, with ten available time slots the
window size is 9.

Statistical comparisons

Users may have various reasons to prefer a two-sample test over
another. The appropriate comparison depends on our confidence in
the reference dataset [Ric22], and certain tests may be more com-
mon in some fields. Many common tests are related [DKVY06],
e.g. the x? function is the first-order expansion of the KL distance
function.

Therefore, popmon provides an extensible framework that
allows users to provide custom two-sample tests using a simple
syntax, via the registry pattern:

@Comparisons.register (key="jsd", description="JSD")
def jensen_shannon_divergence (p, qg):

m=0.5% (p+ q)
return (
0.5 *

(kl_divergence(p, m) + kl_divergence (g, m))

)

Most commonly used test statistics are implemented, such as the
Population-Stability-Index and the Jensen-Shannon divergence.
The implementations of the y> and Kolmogorov-Smirnov tests
account for statistical fluctuations in both the input and reference
distributions. For example, this is relevant when comparing adja-
cent, low-statistics time slices.

Profiles

Tracking the distribution of values of interest over time is achieved
via profiles. These are functions of the input histogram. Metrics

198

may be defined for all dimensions (e.g. count, correlations), or

for specific dimensions as in the case of 1D numerical histograms

(e.g. quantiles). Extending the existing set of profiles is possible

via a syntax similar as above:

@Profiles.register(
Key=["q5", "g50",
description=|[

"5% percentile",
"50% percentile
"95% percentile"

"q95"7,

(median) ™",

]I
dim=1,
type="num"
)
def profile_quantiles(values, counts):
return logic_goes_here(values, counts)

Denote x;(¢) as the profile i of feature x at time ¢, for example the
5% quantile of the histogram of incoming transaction amounts in
a given week. Identical bin specifications are assumed between the
reference and incoming data. &; is defined as the average of that
metric on the reference data, and oy, as the corresponding standard
deviation.

The normalized residual between the incoming and reference
data, also known as the “pull” or “Z-score”, is given by:

pull,(t) = xi(t) =% .

Xi
When the underlying sources of variation are stable, and assuming
the reference dataset is asymptotically large and independent from
the incoming data, pull,(¢) follows a normal distribution centered
around zero and with unit width, N(0, 1), as dictated by the central
limit theorem [Fis11].

In practice, the criteria for normality are hardly ever met. Typi-
cally the distribution is wider with larger tails. Yet, approximately
normal behaviour is exhibited. Chebyshev’s inequality [Che67]
guarantees that, for a wide class of distributions, no more than kLZ
of the distribution’s values can be k or more standard deviations
away from the mean. For example, a minimum of 75% (88.9%) of
values must lie within two (three) standard deviations of the mean.
These boundaries reoccur in Sec. dynamic monitoring rules.

Alerting

For alerting, popmon uses traffic-light-based monitoring rules,
raising green, yellow or red alerts to the user. Green alerts signal
the data are fine, yellow alerts serve as warnings of meaningful
deviations, and red alerts need critical attention. These monitoring
rules can be static or dynamic, as explained in this section.

Static monitoring rules

Static monitoring rules are traditional data quality rules (e.g.
[RD00]). Denote x;(¢) as metric i of feature x at time ¢, for example
the number of NaNs encountered in feature x on a given day. As
an example, the following traffic lights might be set on x;(¢):

Green, ifx;(r) <1
TL(x;,t) = { Yellow, if 1 <x;(t) < 10
Red, ifx(t) > 10

The thresholds of this monitoring rule are fixed, and considered
static over time. They need to be set by hand, to sensible values.
This requires domain knowledge of the data and the processes
that produce it. Setting these traffic light ranges is a time-costly
process when covering many features and corresponding metrics.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

POPMON REPORT

Overview

This overview shows the variables orderd by the number of alerts.

Alerts frequency per Feature

4(20%)

Distance
Airline
Departure Delay 19 (95%)
Air Time 20 (100%)

Taxi Out

20 (100%)

Cancelled

20 (100%)

Fig. 3: A snapshot of part of the HTML stability report. It shows the
aggregated traffic light overview. This view can be used to prioritize
features for inspection.

Dynamic monitoring rules

Dynamic monitoring rules are complementary to static rules. The
levels of variation in feature metrics are assumed to have been
measured on the reference data. Per feature metric, incoming data
are compared against the reference levels. When (significantly)
outside of the known bounds, instability of the underlying sources
is assumed, and a warning gets raised to the user.

popmon’s dynamic monitoring rules raise traffic lights to
the user whenever the normalized residual pull,(¢) falls outside
certain, configurable ranges. By default:

Green, if |pull;(r)| <4
TL(pull;,r) =< Yellow, if4 < |pull,(¢)] <7
Red, if [pully(r)| > 7

If the reference dataset is changing over time, the effective ranges
on x;(z) can change as well. The advantage of this approach over
static rules is that significant deviations in the incoming data can
be flagged and alerted to the user for a large set of features and
corresponding metrics, requiring little (or no) prior knowledge of
the data at hand. The relevant knowledge is all extracted from the
reference dataset.

With multiple feature metrics, many dynamic monitoring tests
can get performed on the same dataset. This raises the multiple
comparisons problem: the more inferences are made, the more
likely erroneous red flags are raised. To compensate for a large
number of tests being made, typically one can set wider traffic
light boundaries, reducing the false positive rate.> The boundaries
control the size of the deviations - or number of red and yellow
alerts - that the user would like to be informed of.

Reporting

popmon outputs monitoring results as HTML stability reports.
The reports offer multiple views of the data (histograms and
heatmaps), the profiles and comparisons, and traffic light alerts.
There are several reasons for providing self-contained reports: they
can be opened in the browser, easily shared, stored as artifacts, and
tracked using tools such as MLFlow. The reports also have no need
for an advanced infrastructure setup, and are possible to create and

2. Alternatively one may apply the Bonferroni correction to counteract this
problem [Bon36].

POPMON: ANALYSIS PACKAGE FOR DATASET SHIFT DETECTION

Fig. 4: LED: Pearson correlation compared with previous histogram.
The shifting points are correctly identified at every 5th of the LED
dataset. Similar patterns are visible for other comparisons, e.g. x>.

view in many environments: from a local machine, a (restricted)
environment, to a public cloud. If, however, a certain dashboarding
tool is available, then the metrics computed by popmon are
exposed and can be exported into that tool, for example Kibana
[Ela22]. One downside of producing self-contained reports is that
they can get large when the plots are pre-rendered and embedded.
This is mitigated by embedding plots as JSON that are (lazily)
rendered on the client-side. Plotly express [Plo22] powers the
interactive embedded plots in popmon as of v1.0.0.

Note that multiple reference types can be used in the same sta-
bility report. For instance, popmon’s default reference pipelines
always include a rolling comparison with window size 1, i.e.
comparing to the preceding time slot.

Synthetic datasets

In the literature synthetic datasets are commonly used to test the
effectiveness of dataset shift monitoring approaches [LLD"18].
One can test the detection for all kinds of shifts, as the generation
process controls when and how the shift happens. popmon has
been tested on multiple of such artificial datasets: Sinel, Sine2,
Mixed, Stagger, Circles, LED, SEA and Hyperplane [PVP18],
[SK], [Fan04]. These datasets cover myriad dataset shift charac-
teristics: sudden and gradual drifts, dependency of the label on
just one or multiple features, binary and multiclass labels, and
containing unrelated features. The dataset descriptions and sample
popmon configurations are available in the code repository.

The reports generated by popmon capture features and time
bins where the dataset shift is occurring for all tested datasets.
Interactions between features and the label can be used for
feature selection, in addition to monitoring the individual feature
distributions. The sudden and gradual drifts are clearly visible
using a rolling reference, see Fig. 4 for examples. The drift in the
Hyperplane dataset, incremental and gradual, is not expected to be
detected using a rolling reference or self-reference. Moreover, the
dataset is synthesized so that the distribution of the features and
the class balance does not change [Fan04].

The process to monitor this dataset could be set up in multiple
ways, one of which is described here. A logistic regression model
is trained on the first 10% of the data, which is also used as static

199

T

100

075

0.50

0.25

0.00

—0.25

—0.50

—0.75

Fig. 5: Sinel: The dataset shifts around data points 20.000, 40.000,
60.000 and 80.000 of the Sinel dataset are clearly visible.

1.00

0.95

0.90

0.85

0.80

(LI

Fig. 6: Hyperplane: The incremental drift compared to the reference
dataset is observed for the PhiK correlation between the predictions
and the label.

reference. The predictions of this model are added to the dataset,
simulating a machine learning model in production. popmon is
able to pick up the divergence between the predictions and the
class label, as depicted in Figure 6.

Conclusion

This paper has presented popmon, an open-source Python pack-
age to check the stability of a tabular dataset. Built around
histogram-based monitoring, it runs on a dataset of arbitrary size,
supporting both pandas and Spark dataframes. Using the variations
observed in a reference dataset, popmon can automatically detect
and flag deviations in incoming data, requiring little prior domain
knowledge. As such, popmon is a scalable solution that can be
applied to many datasets. By default its findings get presented
in a single HTML report. This makes popmon ideal for both
exploratory data analysis and as a monitoring tool for machine
learning models running in production. We believe the combina-
tion of out-of-the-box performance and presented features makes
popmon an excellent addition to the data practitioner’s toolbox.

200

Acknowledgements

We thank our colleagues from the ING Analytics Wholesale
Banking team for fruitful discussions, all past contributors to
popmon, and in particular Fabian Jansen and Ilan Fridman Rojas
for carefully reading the manuscript. This work is supported by

ING Bank.

REFERENCES

[Ans73]

[Bon36]

[Che67]

[DKVYO06]

[Ela22]
[Eng99]

[Fan04]

[Fis11]

[GCSG22]

[HMvdW+20]

[KVLC*20]

[LL17]

[LLD'18]

[LPO17]

[LWS18]

FJ. Anscome. Graphs in statistical analysis. American
Statistician. 27 (1), pages 17-21, 1973. URL: https://doi.org/
10.2307/2682899, doi:10.2307/2682899.

Carlo Bonferroni. Teoria statistica delle classi e calcolo delle
probabilita. Pubblicazioni del R Istituto Superiore di Scienze
Economiche e Commericiali di Firenze, 8:3-62, 1936.
Pafnutii Lvovich Chebyshev. Des valeurs moyennes, liou-
ville’s. J. Math. Pures Appl., 12:177-184, 1867.

Tamraparni Dasu, Shankar Krishnan, Suresh Venkatasubra-
manian, and Ke Yi. An information-theoretic approach to
detecting changes in multi-dimensional data streams. In In
Proc. Symp. on the Interface of Statistics, Computing Science,
and Applications. Citeseer, 2006.

Elastic. Kibana, 2022. URL: https://github.com/elastic/kibana.
Larry English. Improving Data Warehouse and Business Infor-
mation Quality: Methods for Reducing Costs and Increasing
Profits. Wiley, 1999.

Wei Fan. Systematic data selection to mine concept-drifting
data streams. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’04, page 128-137, New York, NY, USA, 2004.
Association for Computing Machinery. URL: https://doi.
org/10.1145/1014052.1014069, doi:10.1145/1014052.
1014069.

Hans Fischer. The Central Limit Theorem from Laplace to
Cauchy: Changes in Stochastic Objectives and in Analytical
Methods, pages 17-74. Springer New York, New York, NY,
2011. URL: https://doi.org/10.1007/978-0-387-87857-7_2,
doi:10.1007/978-0-387-87857-7_2.

Abe Gong, James Campbell, Superconductive, and Great Ex-
pectations. Great Expectations, 2022. URL: https://github.
com/great-expectations/great_expectations, doi:10.5281/
zenodo.5683574.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Ferndndez del
Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357-362, Septem-
ber 2020. URL: https://doi.org/10.1038/s41586-020-2649-2,
doi:10.1038/s41586-020-2649-2.

Janis Klaise, Arnaud Van Looveren, Clive Cox, Giovanni
Vacanti, and Alexandru Coca. Monitoring and explainability
of models in production. arXiv preprint arXiv:2007.06299,
2020. URL: https://doi.org/10.48550/arXiv.2007.06299, do1 :
10.48550/arxXiv.2007.06299.

Scott M Lundberg and Su-In Lee. A unified approach to in-
terpreting model predictions. Advances in neural information
processing systems, 30, 2017.

Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and
Guangquan Zhang. Learning under concept drift: A review.
IEEE Transactions on Knowledge and Data Engineering,
31(12):2346-2363, 2018. doi:10.1109/TKDE.2018.
2876857.

David Lopez-Paz and Maxime Oquab. Revisiting classifier
two-sample tests. In International Conference on Learning
Representations, 2017.

Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. De-
tecting and correcting for label shift with black box predictors.
In International conference on machine learning, pages 3122—
3130. PMLR, 2018.

[MF17]

[Pag54]

[pdt20]

[Plo22]

[PS21]

[PSSE16]

[PVP18]

[QAWZ15]

[QCSSLO08]

[RDOO]

[RGL19]

[Ric22]

[SK]

[SLL20]

[SLS*18]

[VGO™20]

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Justin Matejka and George Fitzmaurice. Same stats, different
graphs: generating datasets with varied appearance and identi-
cal statistics through simulated annealing. In Proceedings of
the 2017 CHI conference on human factors in computing sys-
tems, pages 1290-1294, 2017. URL: https://doi.org/10.1145/
3025453.3025912, doi1:10.1145/3025453.3025912.
Ewas S Page. Continuous inspection schemes. Biometrika,
41(1/2):100-115, 1954. URL: https://doi.org/10.2307/
2333009, doi:10.2307/23330009.

The pandas development team. pandas-dev/pandas: Pan-
das, February 2020. URL: https://doi.org/10.5281/zenodo.
3509134, doi:10.5281/zenodo.3509134.

Plotly Development Team. Plotly.py: The interactive graphing
library for Python (includes Plotly Express), 6 2022. URL:
https://github.com/plotly/plotly.py.

Jim Pivarski and Alexey Svyatkovskiy.
histogrammar/histogrammar-scala: v1.0.20, April
2021. URL: https://doi.org/10.5281/zenodo.4660177,

doi:10.5281/zenodo.4660177.

Jim Pivarski, Alexey Svyatkovskiy, Ferdinand Schenck,
and Bill Engels. histogrammar-python: 1.0.0, September
2016. URL: https://doi.org/10.5281/zenodo.61418, doi:10.
5281/zenodo.61418.

Ali Pesaranghader, Herna Viktor, and Eric Paquet. Reser-
voir of diverse adaptive learners and stacking fast hoeffding
drift detection methods for evolving data streams. Machine
Learning, 107(11):1711-1743, 2018. URL: https://doi.org/10.
1007/s10994-018-5719-z, doi:10.1007/s10994-018~-
5719-z.

Abdulhakim A Qahtan, Basma Alharbi, Suojin Wang, and
Xiangliang Zhang. A pca-based change detection frame-
work for multidimensional data streams: Change detection
in multidimensional data streams. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 935-944, 2015. doi:
10.1145/2783258.2783359.

Joaquin Quifionero-Candela, Masashi Sugiyama, Anton
Schwaighofer, and Neil D Lawrence. Dataset shift in machine
learning. Mit Press, 2008.

Erhard Rahm and Hong Hai Do. Data cleaning: Problems and
current approaches. IEEE Data Eng. Bull., 23(4):3—13, 2000.
Stephan Rabanser, Stephan Giinnemann, and Zachary

Lipton. Failing loudly: An empirical study of
methods for detecting dataset shift. Advances in
Neural Information Processing Systems, 32, 2019.

URL: https://proceedings.neurips.cc/paper/2019/hash/
846c260d715e5b854ffad5f70a516c88- Abstract.html.

Oliver E Richardson. Loss as the inconsistency of a proba-
bilistic dependency graph: Choose your model, not your loss
function. In International Conference on Artificial Intelligence
and Statistics, pages 2706-2735. PMLR, 2022.

W Nick Street and YongSeog Kim. A streaming ensemble
algorithm (sea) for large-scale classification. In Proceedings
of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’01, page
377-382, New York, NY, USA. Association for Comput-
ing Machinery. URL: https://doi.org/10.1145/502512.502568,
doi:10.1145/502512.502568.

Pascal Sturmfels, Scott Lundberg, and Su-In Lee. Visu-
alizing the impact of feature attribution baselines. Distill,
2020. https://distill.pub/2020/attribution-baselines. doi:

10.23915/disti11.00022.

Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem
Celikel, Felix Biessmann, and Andreas Grafberger. Automat-
ing large-scale data quality verification. Proc. VLDB Endow.,
11(12):1781-1794, aug 2018. URL: https://doi.org/10.14778/
3229863.3229867, doi1:10.14778/3229863.3229867.
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, flhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antonio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy

https://doi.org/10.2307/2682899
https://doi.org/10.2307/2682899
http://dx.doi.org/10.2307/2682899
https://github.com/elastic/kibana
https://doi.org/10.1145/1014052.1014069
https://doi.org/10.1145/1014052.1014069
http://dx.doi.org/10.1145/1014052.1014069
http://dx.doi.org/10.1145/1014052.1014069
https://doi.org/10.1007/978-0-387-87857-7_2
http://dx.doi.org/10.1007/978-0-387-87857-7_2
https://github.com/great-expectations/great_expectations
https://github.com/great-expectations/great_expectations
http://dx.doi.org/10.5281/zenodo.5683574
http://dx.doi.org/10.5281/zenodo.5683574
https://doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.48550/arXiv.2007.06299
http://dx.doi.org/10.48550/arXiv.2007.06299
http://dx.doi.org/10.48550/arXiv.2007.06299
http://dx.doi.org/10.1109/TKDE.2018.2876857
http://dx.doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1145/3025453.3025912
https://doi.org/10.1145/3025453.3025912
http://dx.doi.org/10.1145/3025453.3025912
https://doi.org/10.2307/2333009
https://doi.org/10.2307/2333009
http://dx.doi.org/10.2307/2333009
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134
https://github.com/plotly/plotly.py
https://doi.org/10.5281/zenodo.4660177
http://dx.doi.org/10.5281/zenodo.4660177
https://doi.org/10.5281/zenodo.61418
http://dx.doi.org/10.5281/zenodo.61418
http://dx.doi.org/10.5281/zenodo.61418
https://doi.org/10.1007/s10994-018-5719-z
https://doi.org/10.1007/s10994-018-5719-z
http://dx.doi.org/10.1007/s10994-018-5719-z
http://dx.doi.org/10.1007/s10994-018-5719-z
http://dx.doi.org/10.1145/2783258.2783359
http://dx.doi.org/10.1145/2783258.2783359
https://proceedings.neurips.cc/paper/2019/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html
https://doi.org/10.1145/502512.502568
http://dx.doi.org/10.1145/502512.502568
http://dx.doi.org/10.23915/distill.00022
http://dx.doi.org/10.23915/distill.00022
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.14778/3229863.3229867
http://dx.doi.org/10.14778/3229863.3229867

POPMON: ANALYSIS PACKAGE FOR DATASET SHIFT DETECTION

[VLKV*22]

[WM10]

[ZXWT16]

1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261-272,
2020. doi1:10.1038/s41592-019-0686-2.

Arnaud Van Looveren, Janis Klaise, Giovanni Vacanti, Oliver
Cobb, Ashley Scillitoe, and Robert Samoilescu. Alibi Detect:
Algorithms for outlier, adversarial and drift detection, 4 2022.
URL: https://github.com/SeldonlO/alibi-detect.

Wes McKinney. Data Structures for Statistical Computing in
Python. In Stéfan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, pages
56-61,2010. doi:10.25080/Majora-92bf1922-00a.
Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata
Das, Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh
Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Gh-
odsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache
spark: A unified engine for big data processing. Commun.
ACM, 59(11):56-65, oct 2016. URL: https://doi.org/10.1145/
2934664, doi:10.1145/2934664.

201

http://dx.doi.org/10.1038/s41592-019-0686-2
https://github.com/SeldonIO/alibi-detect
http://dx.doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664
http://dx.doi.org/10.1145/2934664

	Introduction
	Related work
	Contributions

	Approach
	Dataset shift
	Temporal representation
	Data representation
	Histogram-based monitoring
	Implementation
	Histogram types
	Dimensionality
	Additivity
	Limitations

	Comparisons
	Reference types
	Statistical comparisons
	Profiles

	Alerting
	Static monitoring rules
	Dynamic monitoring rules

	Reporting
	Synthetic datasets
	Conclusion
	Acknowledgements
	References

