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Abstract—In recent years we are seeing exponential growth in the space sector,
with new companies emerging in it. On top of that more people are becoming
fascinated to participate in the aerospace revolution, which motivates students
and hobbyists to build more High Powered and Sounding Rockets. However,
rocketry is still a very inaccessible field, with high knowledge of entry-level and
concrete terms. To make it more accessible, people need an active community
with flexible, easy-to-use, and well-documented tools. RocketPy is a software
solution created to address all those issues, solving the trajectory simulation
for High-Power rockets being built on top of SciPy and the Python Scien-
tific Environment. The code allows for a sophisticated 6 degrees of freedom
simulation of a rocket’s flight trajectory, including high fidelity variable mass
effects as well as descent under parachutes. All of this is packaged into an
architecture that facilitates complex simulations, such as multi-stage rockets,
design and trajectory optimization, and dispersion analysis. In this work, the
flexibility and usability of RocketPy are indicated in three example simulations:
a basic trajectory simulation, a dynamic stability analysis, and a Monte Carlo
dispersion simulation. The code structure and the main implemented methods
are also presented.

Index Terms—rocketry, flight, rocket trajectory, flexibility, Monte Carlo analysis

Introduction

When it comes to rockets, there is a wide field ranging from
orbital rockets to model rockets. Between them, two types of
rockets are relevant to this work: sounding rockets and High-
Powered Rockets (HPRs). Sounding rockets are mainly used
by government agencies for scientific experiments in suborbital
flights while HPRs are generally used for educational purposes,
with increasing popularity in university competitions, such as the
annual Spaceport America Cup, which hosts more than 100 rocket
design teams from all over the world. After the university-built
rocket TRAVELER IV [AEH+19] successfully reached space by
crossing the Kármán line in 2019, both Sounding Rockets and
HPRs can now be seen as two converging categories in terms of
overall flight trajectory.

HPRs are becoming bigger and more robust, increasing their
potential hazard, along with their capacity, making safety an
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important issue. Moreover, performance is always a requirement
both for saving financial and time resources while efficiently
launch performance goals.

In this scenario, crucial parameters should be determined be-
fore a safe launch can be performed. Examples include calculating
with high accuracy and certainty the most likely impact or landing
region. This information greatly increases range safety and the
possibility of recovering the rocket [Wil18]. As another example,
it is important to determine the altitude of the rocket’s apogee in
order to avoid collision with other aircraft and prevent airspace
violations.

To better attend to those issues, RocketPy was created as a
computational tool that can accurately predict all dynamic param-
eters involved in the flight of sounding, model, and High-Powered
Rockets, given parameters such as the rocket geometry, motor
characteristics, and environmental conditions. It is an open source
project, well structured, and documented, allowing collaborators
to contribute with new features with minimum effort regarding
legacy code modification [CSA+21].

Background

Rocketry terminology

To better understand the current work, some specific terms regard-
ing the rocketry field are stated below:

• Apogee: The point at which a body is furthest from earth
• Degrees of freedom: Maximum number of independent

values in an equation
• Flight Trajectory: 3-dimensional path, over time, of the

rocket during its flight
• Launch Rail: Guidance for the rocket to accelerate to a

stable flight speed
• Powered Flight: Phase of the flight where the motor is

active
• Free Flight: Phase of the flight where the motor is inactive

and no other component but its inertia is influencing the
rocket’s trajectory

• Standard Atmosphere: Average pressure, temperature, and
air density for various altitudes

• Nozzle: Part of the rocket’s engine that accelerates the
exhaust gases

• Static hot-fire test: Test to measure the integrity of the
motor and determine its thrust curve
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• Thrust Curve: Evolution of thrust force generated by a
motor

• Static Margin: Is a non-dimensional distance to analyze
the stability

• Nosecone: The forward-most section of a rocket, shaped
for aerodynamics

• Fin: Flattened append of the rocket providing stability
during flight, keeping it in the flight trajectory

Flight Model

The flight model of a high-powered rocket takes into account at
least three different phases:

1. The first phase consists of a linear movement along the
launch rail: The motion of the rocket is restricted to one dimen-
sion, which means that only the translation along with the rail
needs to be modeled. During this phase, four forces can act on
the rocket: weight, engine thrust, rail reactions, and aerodynamic
forces.

2. After completely leaving the rail, a phase of 6 degrees of
freedom (DOF) is established, which includes powered flight and
free flight: The rocket is free to move in three-dimensional space
and weight, engine thrust, normal and axial aerodynamic forces
are still important.

3. Once apogee is reached, a parachute is usually deployed,
characterizing the third phase of flight: the parachute descent. In
the last phase, the parachute is launched from the rocket, which is
usually divided into two or more parts joined by ropes. This phase
ends at the point of impact.

Design: RocketPy Architecture

Four main classes organize the dataflow during the simulations:
motor, rocket, environment, and flight [CSA+21]. Furthermore,
there is also a helper class named function, which will be described
further. In the Motor class, the main physical and geometric
parameters of the motor are configured, such as nozzle geometry,
grain parameters, mass, inertia, and thrust curve. This first-class
acts as an input to the Rocket class where the user is also asked
to define certain parameters of the rocket such as the inertial mass
tensor, geometry, drag coefficients, and parachute description.
Finally, the Flight class joins the rocket and motor parameters with
information from another class called Environment, such as wind,
atmospheric, and earth models, to generate a simulation of the
rocket’s trajectory. This modular architecture, along with its well-
structured and documented code, facilitates complex simulations,
starting with the use of Jupyter Notebooks that people can adapt
for their specific use case. Fig. 1 illustrates RocketPy architecture.

Fig. 1: RocketPy classes interaction [CSA+21]

Function

Variable interpolation meshes/grids from different sources can
lead to problems regarding coupling different data types. To
solve this, RocketPy employs a dedicated Function class which
allows for more natural and dynamic handling of these objects,
structuring them as Rn→ R mathematical functions.

Through the use of those methods, this approach allows for
quick and easy arithmetic operations between lambda expressions
and list-defined interpolated functions, as well as scalars. Different
interpolation methods are available to be chosen from, among
them simple polynomial, spline, and Akima ([Aki70]). Extrapo-
lation of Function objects outside the domain constrained by a
given dataset is also allowed.

Furthermore, evaluation of definite integrals of these Function
objects is among their feature set. By cleverly exploiting the
chosen interpolation option, RocketPy calculates the values fast
and precisely through the use of different analytical methods. If
numerical integration is required, the class makes use of SciPy’s
implementation of the QUADPACK Fortran library [PdDKÜK83].
For 1-dimensional Functions, evaluation of derivatives at a point
is made possible through the employment of a simple finite
difference method.

Finally, to increase usability and readability, all Function
object instances are callable and can be presented in multiple
ways depending on the given arguments. If no argument is given,
a Matplotlib figure opens and the plot of the function is shown in-
side its domain. Only 2-dimensional and 3-dimensional functions
can be plotted. This is especially useful for the post-processing
methods where various information on the classes responsible for
the definition of the rocket and its flight is presented, providing for
more concise code. If an n-sized array is passed instead, RocketPy
will try and evaluate the value of the Function at this given point
using different methods, returning its value. An example of the
usage of the Function class can be found in the Examples section.

Additionally, if another Function object is passed, the class
will try to match their respective domain and co-domain in order
to return a third instance, representing a composition of functions,
in the likes of: h(x)= (g◦ f )(x)= g( f (x)). With different Function
objects defined, the comparePlots method can be used to plot, in
a single graph, different functions.

By imitating, in syntax, commonly used mathematical no-
tation, RocketPy allows for more understandable and human-
readable code, especially in the implementation of the more
extensive and cluttered rocket equations of motion.

Environment

The Environment class reads, processes and stores all the infor-
mation regarding wind and atmospheric model data. It receives
as inputs launch point coordinates, as well as the length of the
launch rail, and then provides the flight class with six profiles as
a function of altitude: wind speed in east and north directions,
atmospheric pressure, air density, dynamic viscosity, and speed
of sound. For instance, an Environment object can be set as
representing New Mexico, United States:
1 from rocketpy import Environment
2

3 ex_env = Environment(
4 railLength=5.2,
5 latitude=32.990254,
6 longitude=-106.974998,
7 elevation=1400
8 )
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RocketPy requires datetime library information specifying the
year, month, day and hour to compute the weather conditions on
the specified day of launch. An optional argument, the timezone,
may also be specified. If the user prefers to omit it, RocketPy will
assume the datetime object is given in standard UTC time, just as
follows:
1 import datetime
2 tomorrow = (
3 datetime.date.today() +
4 datetime.timedelta(days=1)
5 )
6

7 date_info = (
8 tomorrow.year,
9 tomorrow.month,

10 tomorrow.day,
11 12
12 ) # Hour given in UTC time

By default, the International Standard Atmosphere [ISO75] static
atmospheric model is loaded. However, it is easy to set other
models by importing data from different meteorological agencys’
public datasets, such as Wyoming Upper-Air Soundings and Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF);
or to set a customized atmospheric model based on user-defined
functions. As RocketPy supports integration with different meteo-
rological agencies’ datasets, it allows for a sophisticated definition
of weather conditions including forecasts and historical reanalysis
scenarios.

In this case, NOAA’s RUC Soundings data model is used, a
worldwide and open-source meteorological model made available
online. The file name is set as GFS, indicating the use of the Global
Forecast System provided by NOAA, which features a forecast
with a quarter degree equally spaced longitude/latitude grid with
a temporal resolution of three hours.
1 ex_env.setAtmosphericModel(
2 type='Forecast',
3 file='GFS')
4 ex_env.info()

What is happening on the back-end of this code’s snippet is Rock-
etPy utilizing the OPeNDAP protocol to retrieve data arrays from
NOAA’s server. It parses by using the netCDF4 data management
system, allowing for the retrieval of pressure, temperature, wind
velocity, and surface elevation data as a function of altitude. The
Environment class then computes the following parameters: wind
speed, wind heading, speed of sound, air density, and dynamic
viscosity. Finally, plots of the evaluated parameters concerning
the altitude are all passed on to the mission analyst by calling the
Env.info() method.

Motor

RocketPy is flexible enough to work with most types of motors
used in sound rockets. The main function of the Motor class
is to provide the thrust curve, the propulsive mass, the inertia
tensor, and the position of its center of mass as a function of time.
Geometric parameters regarding propellant grains and the motor’s
nozzle must be provided, as well as a thrust curve as a function
of time. The latter is preferably obtained empirically from a static
hot-fire test, however, many of the curves for commercial motors
are freely available online [Cok98].

Alternatively, for homemade motors, there is a wide range
of open-source internal ballistics simulators, such as OpenMotor
[Rei22], can predict the produced thrust with high accuracy for a
given sizing and propellant combination. There are different types

of rocket motors: solid motors, liquid motors, and hybrid motors.
Currently, a robust Solid Motor class has been fully implemented
and tested. For example, a typical solid motor can be created as an
object in the following way:
1 from rocketpy import SolidMotor
2

3 ex_motor = SolidMotor(
4 thrustSource='Motor_file.eng',
5 burnOut=2,
6 reshapeThrustCurve= False,
7 grainNumber=5,
8 grainSeparation=3/1000,
9 grainOuterRadius=33/1000,

10 grainInitialInnerRadius=15/1000,
11 grainInitialHeight=120/1000,
12 grainDensity= 1782.51,
13 nozzleRadius=49.5/2000,
14 throatRadius=21.5/2000,
15 interpolationMethod='linear')

Rocket

The Rocket Class is responsible for creating and defining the
rocket’s core characteristics. Mostly composed of physical at-
tributes, such as mass and moments of inertia, the rocket object
will be responsible for storage and calculate mechanical parame-
ters.

A rocket object can be defined with the following code:
1 from rocketpy import Rocket
2

3 ex_rocket = Rocket(
4 motor=ex_motor,
5 radius=127 / 2000,
6 mass=19.197 - 2.956,
7 inertiaI=6.60,
8 inertiaZ=0.0351,
9 distanceRocketNozzle=-1.255,

10 distanceRocketPropellant=-0.85704,
11 powerOffDrag="data/rocket/powerOffDragCurve.csv",
12 powerOnDrag="data/rocket/powerOnDragCurve.csv",
13 )

As stated in [RocketPy architecture], a fundamental input of the
rocket is its motor, an object of the Motor class that must be
previously defined. Some inputs are fairly simple and can be easily
obtained with a CAD model of the rocket such as radius, mass,
and moment of inertia on two different axes. The distance inputs
are relative to the center of mass and define the position of the
motor nozzle and the center of mass of the motor propellant. The
powerOffDrag and powerOnDrag receive .csv data that represents
the drag coefficient as a function of rocket speed for the case where
the motor is off and other for the motor still burning, respectively.

At this point, the simulation would run a rocket with a tube of a
certain diameter, with its center of mass specified and a motor at its
end. For a better simulation, a few more important aspects should
then be defined, called Aerodynamic surfaces. Three of them are
accepted in the code, these being the nosecone, fins, and tail. They
can be simply added to the code via the following methods:
1 nose_cone = ex_rocket.addNose(
2 length=0.55829, kind="vonKarman",
3 distanceToCM=0.71971
4 )
5 fin_set = ex_rocket.addFins(
6 4, span=0.100, rootChord=0.120, tipChord=0.040,
7 distanceToCM=-1.04956
8 )
9 tail = ex_rocket.addTail(

10 topRadius=0.0635, bottomRadius=0.0435,
11 length=0.06, distanceToCM=-1.194656
12 )
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All these methods receive defining geometrical parameters and
their distance to the rocket’s center of mass (distanceToCM)
as inputs. Each of these surfaces generates, during the flight,
a lift force that can be calculated via a lift coefficient, which
is calculated with geometrical properties, as shown in [Bar67].
Further on, these coefficients are used to calculate the center of
pressure and subsequently the static margin. In each of these
methods, the static margin is reevaluated.

Finally, the parachutes can be added in a similar manner to
the aerodynamic surfaces. However, a few inputs regarding the
electronics involved in the activation of the parachute are required.
The most interesting of them is the trigger and samplingRate
inputs, which are used to define the parachute’s activation. The
trigger is a function that returns a boolean value that signifies
when the parachute should be activated. The samplingRate is the
time interval that the trigger will be evaluated in the simulation
time steps.
1 def parachute_trigger(p, y):
2 if vel_z < 0 and height < 800:
3 boole = True
4 else:
5 boole = False
6 return boole
7

8 ex_parachute = ex_rocket.addParachute(
9 'ParachuteName',

10 CdS=10.0,
11 trigger=parachute_trigger,
12 samplingRate=105,
13 lag=1.5,
14 noise=(0, 8.3, 0.5)
15 )

With the rocket fully defined, the Rocket.info() and
Rocket.allInfo() methods can be called giving us informa-
tion and plots of the calculations performed in the class. One of the
most relevant outputs of the Rocket class is the static margin, as
it is important for the rocket stability and makes possible several
analyses. It is visualized through the time plot in Fig. 2, which
shows the variation of the static margin as the motor burns its
propellant.

Fig. 2: Static Margin

Flight

The Flight class is responsible for the integration of the rocket’s
equations of motion overtime [CSA+21]. Data from instances of

the Rocket class and the Environment class are used as input to
initialize it, along with parameters such as launch heading and
inclination relative to the Earth’s surface:
1 from rocketpy import Flight
2

3 ex_flight = Flight(
4 rocket=rocket,
5 environment=env,
6 inclination=85,
7 heading=0
8 )

Once the simulation is initialized, run, and completed, the
instance of the Flight class stores relevant raw data. The
Flight.postProcess() method can then be used to com-
pute secondary parameters such as the rocket’s Mach number
during flight and its angle of attack.

To perform the numerical integration of the equations of mo-
tion, the Flight class uses the LSODA solver [Pet83] implemented
by Scipy’s scipy.integrate module [VGO+20]. Usually,
well-designed rockets result in non-stiff equations of motion.
However, during flight, rockets may become unstable due to
variations in their inertial and aerodynamic properties, which can
result in a stiff system. LSODA switches automatically between
the nonstiff Adams method and the stiff BDF method, depending
on the detected stiffness, perfectly handle both cases.

Since a rocket’s flight trajectory is composed of multiple
phases, each with its own set of governing equations, RocketPy
employs a couple of clever methods to run the numerical inte-
gration. The Flight class uses a FlightPhases container to
hold each FlightPhase. The FlightPhases container will
orchestrate the different FlightPhase instances, and compose
them during the flight.

This is crucial because there are events that may or may not
happen during the simulation, such as the triggering of a parachute
ejection system (which may or may not fail) or the activation of a
premature flight termination event. There are also events such as
the departure from the launch rail or the apogee that is known to
occur, but their timestamp is unknown until the simulation is run.
All of these events can trigger new flight phases, characterized by
a change in the rocket’s equations of motion. Furthermore, such
events can happen close to each other and provoke delayed phases.

To handle this, the Flight class has a mechanism for creating
new phases and adding them dynamically in the appropriate order
to the FlightPhases container.

The constructor of the FlightPhase class takes the follow-
ing arguments:

• t: a timestamp that symbolizes at which instant such flight
phase should begin;

• derivative: a function that returns the time derivatives
of the rocket’s state vector (i.e., calculates the equations of
motion for this flight phase);

• callbacks: a list of callback functions to be run when
the flight phase begins (which can be useful if some
parameters of the rocket need to be modified before the
flight phase begins).

The constructor of the Flight class initializes the
FlightPhases container with a rail phase and also a dummy
max time phase which marks the maximum flight duration. Then,
it loops through the elements of the container.

Inside the loop, an important attribute of the current
flight phase is set: FlightPhase.timeBound, the maxi-
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mum timestamp of the flight phase, which is always equal
to the initial timestamp of the next flight phase. Ordinar-
ily, it would be possible to run the LSODA solver from
FlightPhase.t to FlightPhase.timeBound. However,
this is not an option because the events which can trigger new
flight phases need to be checked throughout the simulation. While
scipy.integrate.solve_ivp does offer the events ar-
gument to aid in this, it is not possible to use it with most of the
events that need to be tracked, since they cannot be expressed in
the necessary form.

As an example, consider the very common event of a parachute
ejection system. To simulate real-time algorithms, the necessary
inputs to the ejection algorithm need to be supplied at regular
intervals to simulate the desired sampling rate. Furthermore, the
ejection algorithm cannot be called multiple times without real
data since it generally stores all the inputs it gets to calculate if
the rocket has reached the apogee to trigger the parachute release
mechanism. Discrete controllers can present the same peculiar
properties.

To handle this, the instance of the FlightPhase class holds
a TimeNodes container, which stores all the required timesteps,
or TimeNode, that the integration algorithm should stop at so
that the events can be checked, usually by feeding the necessary
data to parachutes and discrete control trigger functions. When it
comes to discrete controllers, they may change some parameters
in the rocket once they are called. On the other hand, a parachute
triggers rarely actually trigger, and thus, rarely invoke the creation
of a new flight phase characterized by descent under parachute
governing equations of motion.

The Flight class can take advantage of this fact by employing
overshootable time nodes: time nodes that the integrator does
not need to stop. This allows the integration algorithm to use
more optimized timesteps and significantly reduce the number of
iterations needed to perform a simulation. Once a new timestep
is taken, the Flight class checks all overshootable time nodes that
have passed and feeds their event triggers with interpolated data.
In case when an event is triggered, the simulation is rolled back to
that state.

In summary, throughout a simulation, the Flight class loops
through each non-overshootable TimeNode of each element of
the FlightPhases container. At each TimeNode, the event
triggers are fed with the necessary input data. Once an event is
triggered, a new FlightPhase is created and added to the main
container. These loops continue until the simulation is completed,
either by reaching the maximum flight duration or by reaching a
terminal event, such as ground impact.

Once the simulation is completed, raw data can al-
ready be accessed. To compute secondary parameters, the
Flight.postProcess() is used. It takes advantage of the
fact that the FlightPhases container keeps all relevant flight
information to essentially retrace the trajectory and capture more
information about the flight.

Once secondary parameters are computed, the
Flight.allInfo method can be used to show and plot
all the relevant information, as illustrated in Fig. 3.

The adaptability of the Code and Accessibility

RocketPy’s development started in 2017, and since the beginning,
certain requirements were kept in mind:

• Execution times should be fast. There is a high interest in
performing sensitivity analysis, optimization studies and

Fig. 3: 3D flight trajectory, an output of the Flight.allInfo method

Monte Carlo simulations, which require a large number of
simulations to be performed (10,000 ~ 100,000).

• The code structure should be flexible. This is important
due to the diversity of possible scenarios that exist in a
rocket design context. Each user will have their simulation
requirements and should be able to modify and adapt new
features to meet their needs. For this reason, the code was
designed in a fashion such that each major component is
separated into self-encapsulated classes, responsible for a
single functionality. This tenet follows the concepts of the
so-called Single Responsibility Principle (SRP) [MNK03].

• Finally, the software should aim to be accessible. The
source code was openly published on GitHub (https:
//github.com/Projeto-Jupiter/RocketPy), where the com-
munity started to be built and a group of developers, known
as the RocketPy Team, are currently assigned as dedicated
maintainers. The job involves not only helping to improve
the code, but also working towards building a healthy
ecosystem of Python, rocketry, and scientific computing
enthusiasts alike; thus facilitating access to the high-
quality simulation without a great level of specialization.

The following examples demonstrate how RocketPy can be a
useful tool during the design and operation of a rocket model,
enabling functionalities not available by other simulation software
before.

Examples

Using RocketPy for Rocket Design

1) Apogee by Mass using a Function helper class

Because of performance and safety reasons, apogee is one of
the most important results in rocketry competitions, and it’s highly
valuable for teams to understand how different Rocket parameters
can change it. Since a direct relation is not available for this kind
of computation, the characteristic of running simulation quickly is
utilized for evaluation of how the Apogee is affected by the mass
of the Rocket. This function is highly used during the early phases
of the design of a Rocket.

https://github.com/Projeto-Jupiter/RocketPy
https://github.com/Projeto-Jupiter/RocketPy
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An example of code of how this could be achieved:
1 from rocketpy import Function
2

3 def apogee(mass):
4 # Prepare Environment
5 ex_env = Environment(...)
6

7 ex_env.setAtmosphericModel(
8 type="CustomAtmosphere",
9 wind_v=-5

10 )
11

12 # Prepare Motor
13 ex_motor = SolidMotor(...)
14

15 # Prepare Rocket
16 ex_rocket = Rocket(
17 ...,
18 mass=mass,
19 ...
20 )
21

22 ex_rocket.setRailButtons([0.2, -0.5])
23 nose_cone = ex_rocket.addNose(.....)
24 fin_set = ex_rocket.addFins(....)
25 tail = ex_rocket.addTail(....)
26

27 # Simulate Flight until Apogee
28 ex_flight = Flight(.....)
29 return ex_flight.apogee
30

31 apogee_by_mass = Function(
32 apogee, inputs="Mass (kg)",
33 outputs="Estimated Apogee (m)"
34 )
35 apogee_by_mass.plot(8, 20, 20)

The possibility of generating this relation between mass and
apogee in a graph shows the flexibility of Rocketpy and also the
importance of the simulation being designed to run fast.

1) Dynamic Stability Analysis

In this analysis the integration of three different RocketPy
classes will be explored: Function, Rocket, and Flight. The moti-
vation is to investigate how static stability translates into dynamic
stability, i.e. different static margins result relies on different
dynamic behavior, which also depends on the rocket’s rotational
inertia.

We can assume the objects stated in [motor] and [rocket]
sections and just add a couple of variations on some input data
to visualize the output effects. More specifically, the idea will be
to explore how the dynamic stability of the studied rocket varies
by changing the position of the set of fins by a certain factor.

To do that, we have to simulate multiple flights with different
static margins, which is achieved by varying the rocket’s fin
positions. This can be done through a simple python loop, as
described below:
1 simulation_results = []
2 for factor in [0.5, 0.7, 0.9, 1.1, 1.3]:
3 # remove previous fin set
4 ex_rocket.aerodynamicSurfaces.remove(fin_set)
5 fin_set = ex_rocket.addFins(
6 4, span=0.1, rootChord=0.120, tipChord=0.040,
7 distanceToCM=-1.04956 * factor
8 )
9 ex_flight = Flight(

10 rocket=ex_rocket,
11 environment=env,
12 inclination=90,
13 heading=0,
14 maxTimeStep=0.01,
15 maxTime=5,

16 terminateOnApogee=True,
17 verbose=True,
18 )
19 ex_flight.postProcess()
20 simulation_results += [(
21 ex_flight.attitudeAngle,
22 ex_rocket.staticMargin(0),
23 ex_rocket.staticMargin(ex_flight.outOfRailTime),
24 ex_rocket.staticMargin(ex_flight.tFinal)
25 )]
26 Function.comparePlots(
27 simulation_results,
28 xlabel="Time (s)",
29 ylabel="Attitude Angle (deg)",
30 )

The next step is to start the simulations themselves, which can
be done through a loop where the Flight class is called, perform
the simulation, save the desired parameters into a list and then
follow through with the next iteration. The post-process flight data
method is being used to make RocketPy evaluate additional result
parameters after the simulation.

Finally, the Function.comparePlots() method is used to plot
the final result, as reported at Fig. 4.

Fig. 4: Dynamic Stability example, unstable rocket presented on blue
line

Monte Carlo Simulation

When simulating a rocket’s trajectory, many input parameters
may not be completely reliable due to several uncertainties in
measurements raised during the design or construction phase of
the rocket. These uncertainties can be considered together in a
group of Monte Carlo simulations [RK16] which can be built on
top of RocketPy.

The Monte Carlo method here is applied by running a signifi-
cant number of simulations where each iteration has a different
set of inputs that are randomly sampled given a previously
known probability distribution, for instance the mean and standard
deviation of a Gaussian distribution. Almost every input data
presents some kind of uncertainty, except for the number of fins or
propellant grains that a rocket presents. Moreover, some inputs,
such as wind conditions, system failures, or the aerodynamic
coefficient curves, may behave differently and must receive special
treatment.

Statistical analysis can then be made on all the simulations,
with the main result being the 1σ , 2σ , and 3σ ellipses representing
the possible area of impact and the area where the apogee is
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reached (Fig. 5). All ellipses can be evaluated based on the method
presented by [Che66].

Fig. 5: 1 1σ , 2 2σ , and 3 3σ dispersion ellipses for both apogee and
landing point

When performing the Monte Carlo simulations on RocketPy,
all the inputs - i.e. the parameters along with their respective
standard deviations - are stored in a dictionary. The randomized
set of inputs is then generated using a yield function:
1 def sim_settings(analysis_params, iter_number):
2 i = 0
3 while i < iter_number:
4 # Generate a simulation setting
5 sim_setting = {}
6 for p_key, p_value in analysis_params.items():
7 if type(p_value) is tuple:
8 sim_setting[p_key] = normal(*p_value)
9 else:

10 sim_setting[p_key] = choice(p_value)
11 # Update counter
12 i += 1
13 # Yield a simulation setting
14 yield sim_setting

Where analysis_params is the dictionary with the inputs and
iter_number is the total number of simulations to be performed. At
that time the function yields one dictionary with one set of inputs,
which will be used to run a simulation. Later the sim_settings
function is called again and another simulation is run until the
loop iterations reach the number of simulations:
1 for s in sim_settings(analysis_params, iter_number):
2 # Define all classes to simulate with the current
3 # set of inputs generated by sim_settings
4

5 # Prepare Environment
6 ex_env = Environment(.....)
7 # Prepare Motor
8 ex_motor = SolidMotor(.....)
9 # Prepare Rocket

10 ex_rocket = Rocket(.....)
11 nose_cone = ex_rocket.addNose(.....)
12 fin_set = ex_rocket.addFins(....)
13 tail = ex_rocket.addTail(.....)
14

15 # Considers any possible errors in the simulation
16 try:
17 # Simulate Flight until Apogee
18 ex_flight = Flight(.....)
19

20 # Function to export all output and input
21 # data to a text file (.txt)

22 export_flight_data(s, ex_flight)
23 except Exception as E:
24 # if an error occurs, export the error
25 # message to a text file
26 print(E)
27 export_flight_error(s)

Finally, the set of inputs for each simulation along with its set of
outputs, are stored in a .txt file. This allows for long-term data
storage and the possibility to append simulations to previously
finished ones. The stored output data can be used to study the final
probability distribution of key parameters, as illustrated on Fig. 6.

Fig. 6: Distribution of apogee altitude

Finally, it is also worth mentioning that all the information
generated in the Monte Carlo simulation is based on RocketPy
may be of utmost importance to safety and operational manage-
ment during rocket launches, once it allows for a more reliable
prediction of the landing site and apogee coordinates.

Validation of the results: Unit, Dimensionality and Acceptance
Tests

Validation is a big problem for libraries like RocketPy, where
true values for some results like apogee and maximum velocity
is very hard to obtain or simply not available. Therefore, in
order to make RocketPy more robust and easier to modify, while
maintaining precise results, some innovative testing strategies have
been implemented.

First of all, unit tests were implemented for all classes and
their methods ensuring that each function is working properly.
Given a set of different inputs that each function can receive, the
respective outputs are tested against expected results, which can be
based on real data or augmented examples cases. The test fails if
the output deviates considerably from the established conditions,
or an unexpected error occurs along the way.

Since RocketPy relies heavily on mathematical functions to
express the governing equations, implementation errors can occur
due to the convoluted nature of such expressions. Hence, to reduce
the probability of such errors, there is a second layer of testing
which will evaluate if such equations are dimensionally correct.

To accomplish this, RocketPy makes use of the numericalunits
library, which defines a set of independent base units as randomly-
chosen positive floating point numbers. In a dimensionally-correct
function, the units all cancel out when the final answer is divided
by its resulting unit. And thus, the result is deterministic, not
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random. On the other hand, if the function contains dimensionally-
incorrect equations, there will be random factors causing a
randomly-varying final answer. In practice, RocketPy runs two
calculations: one without numericalunits, and another with the
dimensionality variables. The results are then compared to assess
if the dimensionality is correct.

Here is an example. First, a SolidMotor object and a Rocket
object are initialized without numericalunits:
1 @pytest.fixture
2 def unitless_solid_motor():
3 return SolidMotor(
4 thrustSource="Cesaroni_M1670.eng",
5 burnOut=3.9,
6 grainNumber=5,
7 grainSeparation=0.005,
8 grainDensity=1815,
9 ...

10 )
11

12 @pytest.fixture
13 def unitless_rocket(solid_motor):
14 return Rocket(
15 motor=unitless_solid_motor,
16 radius=0.0635,
17 mass=16.241,
18 inertiaI=6.60,
19 inertiaZ=0.0351,
20 distanceRocketNozzle=-1.255,
21 distanceRocketPropellant=-0.85704,
22 ...
23 )

Then, a SolidMotor object and a Rocket object are initialized with
numericalunits:
1 import numericalunits
2

3 @pytest.fixture
4 def m():
5 return numericalunits.m
6

7

8 @pytest.fixture
9 def kg():

10 return numericalunits.kg
11

12 @pytest.fixture
13 def unitful_motor(kg, m):
14 return SolidMotor(
15 thrustSource="Cesaroni_M1670.eng",
16 burnOut=3.9,
17 grainNumber=5,
18 grainSeparation=0.005 * m,
19 grainDensity=1815 * (kg / m**3),
20 ...
21 )
22

23 @pytest.fixture
24 def unitful_rocket(kg, m, dimensionless_motor):
25 return Rocket(
26 motor=unitful_motor,
27 radius=0.0635 * m,
28 mass=16.241 * kg,
29 inertiaI=6.60 * (kg * m**2),
30 inertiaZ=0.0351 * (kg * m**2),
31 distanceRocketNozzle=-1.255 * m,
32 distanceRocketPropellant=-0.85704 * m,
33 ...
34 )

Then, to ensure that the equations implemented in both classes
(Rocket and SolidMotor) are dimensionally correct, the val-
ues computed can be compared. For example, the Rocket class
computes the rocket’s static margin, which is a non-dimensional
value and the result from both calculations should be the same:

1 def test_static_margin_dimension(
2 unitless_rocket,
3 unitful_rocket
4 ):
5 ...
6 s1 = unitless_rocket.staticMargin(0)
7 s2 = unitful_rocket.staticMargin(0)
8 assert abs(s1 - s2) < 1e-6

In case the value of interest has units, such as the position of the
center of pressure of the rocket, which has units of length, then
such value must be divided by the relevant unit for comparison:
1 def test_cp_position_dimension(
2 unitless_rocket,
3 unitful_rocket
4 ):
5 ...
6 cp1 = unitless_rocket.cpPosition(0)
7 cp2 = unitful_rocket.cpPosition(0) / m
8 assert abs(cp1 - cp2) < 1e-6

If the assertion fails, we can assume that the formula responsible
for calculating the center of pressure position was implemented
incorrectly, probably with a dimensional error.

Finally, some tests at a larger scale, known as acceptance
tests, were implemented to validate outcomes such as apogee,
apogee time, maximum velocity, and maximum acceleration when
compared to real flight data. A required accuracy for such values
were established after the publication of the experimental data by
[CSA+21]. Such tests are crucial for ensuring that the code doesn’t
lose precision as a result of new updates.

These three layers of testing ensure that the code is trustwor-
thy, and that new features can be implemented without degrading
the results.

Conclusions

RocketPy is an easy-to-use tool for simulating high-powered
rocket trajectories built with SciPy and the Python Scientific
Environment. The software’s modular architecture is based on
four main classes and helper classes with well-documented code
that allows to easily adapt complex simulations to various needs
using the supplied Jupyter Notebooks. The code can be a useful
tool during Rocket design and operation, allowing to calculate
of key parameters such as apogee and dynamic stability as well
as high-fidelity 6-DOF vehicle trajectory with a wide variety of
customizable parameters, from its launch to its point of impact.
RocketPy is an ever-evolving framework and is also accessible to
anyone interested, with an active community maintaining it and
working on future features such as the implementation of other
engine types, such as hybrids and liquids motors, and even orbital
flights.

Installing RocketPy

RocketPy was made to run on Python 3.6+ and requires the
packages: Numpy >=1.0, Scipy >=1.0 and Matplotlib >= 3.0. For
a complete experience we also recommend netCDF4 >= 1.4. All
these packages, except netCDF4, will be installed automatically if
the user does not have them. To install, execute:
pip install rocketpy

or
conda install -c conda-forge rocketpy

The source code, documentation and more examples are available
at https://github.com/Projeto-Jupiter/RocketPy

https://github.com/Projeto-Jupiter/RocketPy
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