226

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Wailord: Parsers and Reproducibility for Quantum
Chemistry

Rohit Goswami**

Abstract—Data driven advances dominate the applied sciences landscape,
with quantum chemistry being no exception to the rule. Dataset biases and
human error are key bottlenecks in the development of reproducible and general-
ized insights. At a computational level, we demonstrate how changing the granu-
larity of the abstractions employed in data generation from simulations can aid in
reproducible work. In particular, we introduce wailoxrd (https:/wailord.xyz), a
free-and-open-source python library to shorten the gap between data-analysis
and computational chemistry, with a focus on the ORCA suite binaries. A two
level hierarchy and exhaustive unit-testing ensure the ability to reproducibly
describe and analyze "computational experiments". wailord offers both input
generation, with enhanced analysis, and raw output analysis, for traditionally
executed ORCA runs. The design focuses on treating output and input gener-
ation in terms of a mini domain specific language instead of more imperative
approaches, and we demonstrate how this abstraction facilitates chemical in-
sights.

Index Terms—quantum chemistry, parsers, reproducible reports, computational
inference

Introduction

The use of computational methods for chemistry is ubiquitous
and few modern chemists retain the initial skepticism of the field
[Koh99], [Sch86]. Machine learning has been further earmarked
[MSH19], [Dra20], [SGT'19] as an effective accelerator for
computational chemistry at every level, from DFT [GLL"16] to
alchemical searches [DBCC16] and saddle point searches [AT18].
However, these methods trade technical rigor for vast amounts of
data, and so the ability to reproduce results becomes increasingly
more important. Independently, the ability to reproduce results
[Penll], [SNTHI13] in all fields of computational research, and
has spawned a veritable flock of methodological and program-
matic advances [CAB™ 19], including the sophisticated provenance
tracking of AiiDA [PCS™16], [HZU"20].

Dataset bias

[EIST20], [BS19], [RBA19] has gained prominence in the ma-
chine learning literature, but has not yet percolated through to
the chemical sciences community. At its core, the argument for
dataset biases in generic machine learning problems of image

Corresponding author: r0g32@hi.is
Science Institute, University of Iceland
§ Quansight Austin, TX, USA

Copyright © 2022 Rohit Goswami. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

and text classification, can be linked to the difficulty in obtaining
labeled results for training purposes. This is not an issue in the
computational physical sciences at all, as the training data can
often be labeled without human intervention. This is especially
true when simulations are carried out at varying levels of accuracy.
However, this also leads to a heavy reliance on high accuracy
calculations on "benchmark" datasets and results [HMSE21],
[SEJT19].

Compute is expensive, and the reproduction of data which
is openly available is often hard to justify as a valid scientific
endeavor. Rather than focus on the observable outputs of cal-
culations, instead we assert that it is best to be able to have
reproducible confidence in the elements of the workflow. In the
following sections, we will outline wailord, a library which
implements a two level structure for interacting with ORCA
[Neel2] to implement an end-to-end workflow to analyze and
prepare datasets. Our focus on ORCA is due to its rapid and
responsive development cycles, that it is free to use (but not open
source) and also because of its large repertoire of computational
chemistry calculations. Notably, the black-box nature of ORCA
(in that the source is not available) mirrors that of many other
packages (which are not free) like VASP [Haf08]. Using ORCA
then, allows us to design a workflow which is best suited for
working with many software suites in the community.

We shall understand this wailord from the lens of what is
often known as a design pattern in the practice of computational
science and engineering. That is, a template or description to solve
commonly occurring problems in the design of programs.

Structure and Implementation

Python has grown to become the lingua-franca for much of the
scientific community [Oli07], [MA11], in no small part because
of its interactive nature. In particular, the REPL (read-evaluate-
print-loop) structure which has been prioritized (from IPython to
Jupyter) is one of the prime motivations for the use of Python
as an exploratory tool. Additionally, PyPI, the python package
index, accelerates the widespread disambiguation of software
packages. Thus wailord is implemented as a free and open
source python library.

Structure

Data generation involves set of known configurations (say, xyz
inputs) and a series of common calculations whose outputs are
required. Computational chemistry packages tend to be focused
on acceleration and setup details on a per-job scale. wailord,

https://wailord.xyz
mailto:rog32@hi.is

WAILORD: PARSERS AND REPRODUCIBILITY FOR QUANTUM CHEMISTRY

in contrast, considers the outputs of simulations to form a tree,
where the actual run and its inputs are the leaves, and each layer
of the tree structure holds information which is collated into a
single dataframe which is presented to the user.

Downstream tasks for simulations of chemical systems involve
questions phrased as queries or comparative measures. With that in
mind, wailord generates pandas dataframes which are indis-
tinguishable from standard machine learning information sources,
to trivialize the data-munging and preparation process. The outputs
of wailord represent concrete information and it is not meant to
store runs like the ASE database [LMB™17] , nor run a process to
manage discrete workflows like AiiDA [HZU20].

By construction, it differs also from existing "interchange"
formats as those favored by the materials data repositories like
the QCArchive project [SAB"21] and is partially close in spirit to
the cclib endeavor [OTLO8].

Implementation

Two classes form the backbone of the data-harvesting process. The
intended point of interface with a user is the orcaExp class which
collects information from multiple ORCA outputs and produces
dataframes which include relevant metadata (theory, basis, system,
etc.) along with the requested results (energy surfaces, energies,
angles, geometries, frequencies, etc.). A lower level "orca visitor"
class is meant to parse each individual ORCA output. Until the
release of ORCA 5 which promises structured property files,
the outputs are necessarily parsed with regular expressions, but
validated extensively. The focus on ORCA has allowed for more
exotic helper functions, like the calculation of rate constants from
orcaVis files. However, beyond this functionality offered by the
quantum chemistry software (ORCA), a computational chemistry
workflow requires data to be more malleable. To this end, the
plain-text or binary outputs of quantum chemistry software must
be further worked on (post-processed) to gain insights. This means
for example, that the outputs may be entered into a spreadsheet,
or into a plain text note, or a lab notebook, but in practice,
programming languages are a good level of abstraction. Of the
programming languages, Python as a general purpose program-
ming language with a high rate of community adoption is a good
starting place.

Python has a rich set of structures implemented in the standard
library, which have been liberally used for structuring outputs.
Furthermore, there have been efforts to convert the grammar
of graphics [WWO05] and tidy-data [WAB"19] approaches to
the pandas package which have also been adapted internally,
including strict unit adherence using the pint library. The user
is not burdened by these implementation details and is instead
ensured a pandas data-frame for all operations, both at the
orcaVis level, and the orcaExp level.

Software industry practices have been followed throughout the
development process. In particular, the entire package is written in
a test-driven-development (TDD) fashion which has been proven
many times over for academia [DJSO8] and industry [BNO6].
In essence, each feature is accompanied by a test-case. This is
meant to ensure that once the end-user is able to run the test-
suite, they are guaranteed the features promised by the software.
Additionally, this means that potential bugs can be submitted
as a test case which helps isolate errors for fixes. Furthermore,
software testing allows for coverage metrics, thereby enhancing
user and development confidence in different components of any
large code-base.

227

Vib_type Mode hfrel mparel bslyprel

Sym Stretch u -8.000 -5.648 -3.641
Deformed 9 8707 -2946 -1.616
AntiSym Stretch 12 7766 -6.656 -3.622
Deformed 6 256 432 -2590

OrcaVis Objects

g =

000006

VPT2 PES Scans Angles

Populations Rate Constants

Fig. 1: Some implemented workflows including the two input YML
files. VPT2 stands for second-order vibrational perturbation theory
and Orca_vis objects are part of wailord’s class structure. PES
stands for potential energy surface.

User Interface

The core user interface is depicted in Fig. [[fig:uiwail]]. The
test suites cover standard usage and serve as ad-hoc tutorials.
Additionally, jupyter notebooks are also able to effectively
run wailord which facilitates its use over SSH connections to
high-performance-computing (HPC) clusters. The user is able to
describe the nature of calculations required in a simple YAML file
format. A command line interface can then be used to generate
inputs, or another YAML file may be passed to describe the
paths needed. A very basic harness script for submissions is also
generated which can be rate limited to ensure optimal runs on an
HPC cluster.

Design and Usage

A simulation study can be broken into:

o Inputs + Configuration for runs + Data for structures
¢ Outputs per run
o Post-processing and aggregation

From a software design perspective, it is important to rec-
ognize the right level of abstraction for the given problem. An
object-oriented pattern is seen to be the correct design paradigm.
However, though combining test driven development and object
oriented design is robust and extensible, the design of wailord
is meant to tackle the problem at the level of a domain specific
language. Recall from formal language theory [AAO7] the fact
that a grammar is essentially meant to specify the entire possible
set of inputs and outputs for a given language. A grammar can
be expressed as a series of tokens (terminal symbols) and non-
terminal (syntactic variables) symbols along with rules defining
valid combinations of these.

It may appear that there is little but splitting hairs between
parsing data line by line as is traditionally done in libraries, com-
pared to defining the exact structural relations between allowed
symbols. However, this design, apart from disallowing invalid
inputs, also makes sense from a pedagogical perspective.

228

For example, of the inputs, structured data like configurations
(XYZ formats) are best handled by concrete grammars, where
each rule is followed in order:

grammar_xyz = Grammar (
rmn
meta = natoms ws coord _block ws?
natoms = number
coord_block = (aline ws)+
aline = (atype ws cline)
atype = ~"[a-zA-Z]" ~"ro0-9]"
cline = (float ws float ws float)
float = pm number "." number
pm = ~"[4=]2"
number = ~"\\d+"
ws = ~"\\sx"

mn

This definition maps neatly into the exact specification of an xyz
file:

H -2,
H -3
Where we recognize that the overarching structure is of the
number of atoms, followed by multiple coordinate blocks followed
by optional whitespace. We move on to define each coordinate
block as a line of one or many aline constructs, each of which
is an atype with whitespace and three float values representing
coordinates. Finally we define the positive, negative, numeric and
whitespace symbols to round out the grammar. This is the exact
form of every valid xyz file. The parsimonious library allows
handling grammatical constructs in a Pythonic manner.

However, the generation of inputs is facilitated through the
use of generalized templates for "experiments" controlled by
cookiecutter. This allows for validations on the workflow
during setup itself.

For the purposes of the simulation study, one "experiment"
consists of multiple single-shot runs; each of which can take a
long time.

Concretely, the top-level "experiment" is controlled by a
YAML file:
project_slug: methylene
project_name: singlet_triplet_methylene

outdir: "./lab6"
desc: An experiment to calculate singlet and triplet

states differences at a QCISD(T) level
author: Rohit

year: "2020"

license: MIT

orca_root: "/home/orca/"

orca_yml: "orcaST_meth.yml"

inp xyz: "ch2 631ppg88_trip.xyz"

Where each run is then controlled individually.

gc:
active: True
style: ["UHE",
calculations:
basis_sets:

- 6-311++G*x*
"inp.xyz"

"QCISD",
["OPT"]

"QCISD(T)"]

XyzZ:
spin:
- "0 1" # Singlet
- "0 3" # Triplet
extra: "!NUMGRAD"
viz:
molden: True
chemcraft: True
jobscript: "basejob.sh"

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Usage is then facilitated by a high-level call.

waex.cookies.gen_base (
template="basicExperiment",
absolute=False,
filen="./lab6/expCookieST_meth.yml",
)

The resulting directory tree can be sent to a High Performance

Computing Cluster (HPC), and once executed via the generated
run-script helper; locally analysis can proceed.

mdat = waio.orca.genEBASet (Path ("buildOuts") / \

"methylene",

deci=4)

print (mdat.to_latex (index=False,

caption="CH2 energies and angles \

at various levels of theory, with NUMGRAD"))

In certain situations, ordering may be relevant as well (e.g. for gen-
erating curves of varying density functional theoretic complexity).
This can be handled as well.

For the outputs, similar to the key ideas across signac, nix,
spack and other tools, control is largely taken away from the user
in terms of the auto-generated directory structure. The outputs of
each run is largely collected through regular expressions, due to
the ever changing nature of the outputs of closed source software.

Importantly, for a code which is meant to confer insights,
the concept of units is key. wailord with ORCA has first class
support for units using pint.

Dissociation of H2

As a concrete example, we demonstrate a popular pedagogical
exercise, namely to obtain the binding energy curves of the H2
molecule at varying basis sets and for the Hartree Fock, along with
the results of Kolos and Wolniewicz [KW68]. We first recognize,
that even for a moderate 9 basis sets with 33 points, we expect
around 1814 data points. Where each basis set requires a separate
run, this is easily expected to be tedious.

Naively, this would require modifying and generating ORCA
input files.

UHF 3-21G ENERGY

2 H 0.4, 2.0, 33 [f] x~axis of H1

0.0000000
0.0000000

0.0000000
0.0000000

We can formulate the requirement imperatively as:

gc:
active: True
style: ["UHEF", "QCISD", "QCISD(T)"]
calculations: ["ENERGY"] # Same as single point or
basis_sets:
- 3-21G
- 6-31G
- 6-311G
- 6-311G~*
- 6-311G**
- 6-311++G*~*
- 6-311++G(2d, 2p)
- 6-311++G(2df, 2pd)
- 6-311++G (3df, 3pd)
xyz: "inp.xyz"
spin:
— "O l"
params:
— name: R

WAILORD: PARSERS AND REPRODUCIBILITY FOR QUANTUM CHEMISTRY

range: [0.4, 2.00
points: 33
slot:
Xyz:
atype:
anum:
axis: "x
extra: Null
jobscript:

True
nyn
1 # Start
"

from 0

"basejob.sh"

This run configuration is coupled with an experiment setup file,
similar to the one in the previous section. With this in place,
generating a data-set of all the required data is fairly trivial.

kolos = pd.read_csv (
"../kolos_H2.ene",
skiprows=4,
header=None,
names=["bond_length",
sep=" ",

"Actual Energy"l],

)

kolos['theory']="Kolos"

expt = wailo.orca.orcaExp (expfolder=Path ("buildOuts")
h2dat = expt.get_energy_surface ()

Finally, the resulting data can be plotted using tidy principles.

imgname = "images/plotH2A.png"
pla = (
p9.ggplot (
data=h2dat, mapping=p9.aes (x="bond_length",
y="Actual Energy",
color="theory")

+ p9.geom_point ()
+ p9.geom_point (mapping=p9.aes (x="bond_length",
y="SCF Energy"),
color="black", alpha=0.1,
shape="'+*"', show_legend=True)
+ p9.geom_point (mapping=p9.aes (x="bond_length",
y="Actual Energy",
color="theory"),
data=kolos,
show_legend=True)
+ p9.scales.scale_y_continuous (breaks
= np.arange (h2dat["Actual Energy"].min(),
h2dat ["Actual Energy"].max(), 0.05))
+ p9.ggtitle("Scan of an H2 \
bond length (dark stars are SCF energies)")
+ p9.labels.xlab ("Bond length in Angstrom")

+ p9.labels.ylab ("Actual Energy (Hatree)")
+ p9.facet_wrap ("basis"

)

pla.save (imgname, width=10, height=10, dpi=300)

Which gives rise to the concise representation Fig. 2 from which
all required inference can be drawn.

In this particular case, it is possible to see the deviations from
the experimental results at varying levels of theory for different
basis sets.

Conclusions

We have discussed wailord in the context of generating, in
a reproducible manner the structured inputs and output datasets
which facilitate chemical insight. The formulation of bespoke
datasets tailored to the study of specific properties across a wide
range of materials at varying levels of theory has been shown.
The test-driven-development approach is a robust methodology
for interacting with closed source software. The design patterns
expressed, of which the wailord library is a concrete imple-
mentation, is expected to be augmented with more workflows, in
particular, with a focus on nudged elastic band. The methodology

229

Scan of an Hz bond length (dark stars are SCF energies)
3216 6-31G 6-311G

~0.9225- »
09725~
~1.0225- g8

~1.0725-

-1.1225-

-1.1725-

6-311G* 63116+ 6-31144G*

09225
~0.9725- theory
« qcisp

Qciso(m)
UHF
o Kolos

-1.0225- "

-10725-

Actual Energy (Hatree)

-1.1225-

-1.1725-

6-311++G(2d,2p) 6-311++G(2df,2pd) 6-311++G(3df,3pd)

~0.9225-
0.9725-

-1.0225- *
-10725- *

1.1225-

~11725-
05 i 15 2 o i 1's 2
Bond length in A

Fig. 2: Plots generated from tidy principles for post-processing
wailord parsed outputs.

here has been applied to ORCA, however, the two level structure
has generalizations to most quantum chemistry codes as well.

Importantly, we note that the ideas expressed form a design
pattern for interacting with a plethora of computational tools
in a reproducible manner. By defining appropriate scopes for
our structured parsers, generating deterministic directory trees,
along with a judicious use of regular expressions for output data
harvesting, we are able to leverage tidy-data principles to analyze
the results of a large number of single-shot runs.

Taken together, this tool-set and methodology can be used to
generate elegant reports combining code and concepts together
in a seamless whole. Beyond this, the interpretation of each
computational experiment in terms of a concrete domain specific
language is expected to reduce the requirement of having to re-run
benchmark calculations.

Acknowledgments

R Goswami thanks H. Jénsson and V. Asgeirsson for discussions
on the design of computational experiments for inference in
computation chemistry. This work was partially supported by the
Icelandic Research Fund, grant number 217436052.

REFERENCES

[AAO07] Alfred V. Aho and Alfred V. Aho, editors. Compilers: Principles,
Techniques, & Tools. Pearson/Addison Wesley, Boston, 2nd ed
edition, 2007.

Vilhjalmur Asgeirsson and Hannes J6nsson. Exploring Potential
Energy Surfaces with Saddle Point Searches. In Wanda Andreoni
and Sidney Yip, editors, Handbook of Materials Modeling, pages
1-26. Springer International Publishing, Cham, 2018. doi:
10.1007/978-3-319-42913-7_28-1.

Thirumalesh Bhat and Nachiappan Nagappan. Evaluating the
efficacy of test-driven development: Industrial case studies. In
Proceedings of the 2006 ACM/IEEE International Symposium
on Empirical Software Engineering, ISESE ’06, pages 356-363,
New York, NY, USA, September 2006. Association for Comput-
ing Machinery. do1:10.1145/1159733.1159787.
Avrim Blum and Kevin Stangl. Recovering from Biased Data:
Can Fairness Constraints Improve Accuracy? arXiv:1912.01094
[cs, stat], December 2019. arxXiv:1912.01094.

[AT18]

[BNO6]

[BS19]

http://dx.doi.org/10.1007/978-3-319-42913-7_28-1
http://dx.doi.org/10.1007/978-3-319-42913-7_28-1
http://dx.doi.org/10.1145/1159733.1159787
http://arxiv.org/abs/1912.01094

230

[CABT19]

[DBCC16]

[DJSO08]

[Dra20]

[EIST20]

[GLL"16]

[Haf08]

[HMSE*21]

[HZU*20]

[Koh99]

[KW68]

[LMB*17]

[MAI11]

[MSH19]

The Turing Way Community, Becky Arnold, Louise Bowler,
Sarah Gibson, Patricia Herterich, Rosie Higman, Anna Krys-
talli, Alexander Morley, Martin O’Reilly, and Kirstie Whitaker.
The Turing Way: A Handbook for Reproducible Data Science.
Zenodo, March 2019.

Sandip De, Albert P. Bartok, Géabor Csanyi, and Michele
Ceriotti. ~ Comparing molecules and solids across struc-
tural and alchemical space. Physical Chemistry Chemical
Physics, 18(20):13754-13769, May 2016. doi:10.1039/
C6CP0O0415F.

Chetan Desai, David Janzen, and Kyle Savage. A survey
of evidence for test-driven development in academia. ACM
SIGCSE Bulletin, 40(2):97-101, June 2008. doi:10.1145/
1383602.1383644.

Pavlo O. Dral. Quantum Chemistry in the Age of Ma-
chine Learning. The Journal of Physical Chemistry Let-
ters, 11(6):2336-2347, March 2020. doi:10.1021/acs.
jpclett.9b03664.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris
Tsipras, Jacob Steinhardt, and Aleksander Madry. Identifying
Statistical Bias in Dataset Replication. arXiv:2005.09619 [cs,
stat], May 2020. arXiv:2005.09619.

Ting Gao, Hongzhi Li, Wenze Li, Lin Li, Chao Fang, Hui Li, Li-
Hong Hu, Yinghua Lu, and Zhong-Min Su. A machine learning
correction for DFT non-covalent interactions based on the S22,
S66 and X40 benchmark databases. Journal of Cheminformatics,
8(1):24, May 2016. doi1:10.1186/s13321-016-0133-7.
Jirgen Hafner. Ab-initio simulations of materials using VASP:
Density-functional theory and beyond. Journal of Computa-
tional Chemistry, 29(13):2044-2078, 2008. doi:10.1002/
jcc.21057.

Johannes Hoja, Leonardo Medrano Sandonas, Brian G. Ernst,
Alvaro Vazquez-Mayagoitia, Robert A. DiStasio Jr., and Alexan-
dre Tkatchenko. QM7-X, a comprehensive dataset of quantum-
mechanical properties spanning the chemical space of small
organic molecules. Scientific Data, 8(1):43, February 2021.
doi:10.1038/s41597-021-00812-2.

Sebastiaan P. Huber, Spyros Zoupanos, Martin Uhrin, Leopold
Talirz, Leonid Kahle, Rico Hiuselmann, Dominik Gresch,
Tiziano Miiller, Aliaksandr V. Yakutovich, Casper W. Andersen,
Francisco F. Ramirez, Carl S. Adorf, Fernando Gargiulo, Snehal
Kumbhar, Elsa Passaro, Conrad Johnston, Andrius Merkys, An-
drea Cepellotti, Nicolas Mounet, Nicola Marzari, Boris Kozin-
sky, and Giovanni Pizzi. AiiDA 1.0, a scalable computa-
tional infrastructure for automated reproducible workflows and
data provenance. Scientific Data, 7(1):300, September 2020.
doi:10.1038/s41597-020-00638-4.

W. Kohn. Nobel Lecture: Electronic structure of matter—
wave functions and density functionals. Reviews of Modern
Physics, 71(5):1253-1266, October 1999. doi:10.1103/
RevModPhys.71.1253.

W. Kolos and L. Wolniewicz. Improved Theoretical Ground-
State Energy of the Hydrogen Molecule. The Journal of Chem-
ical Physics, 49(1):404—410, July 1968. doi:10.1063/1.
1669836.

Ask Hjorth Larsen, Jens Jgrgen Mortensen, Jakob Blomgpvist,
Ivano E. Castelli, Rune Christensen, Marcin Du\lak, Jesper
Friis, Michael N. Groves, Bjgrk Hammer, Cory Hargus, Eric D.
Hermes, Paul C. Jennings, Peter Bjerre Jensen, James Kermode,
John R. Kitchin, Esben Leonhard Kolsbjerg, Joseph Kubal, Kris-
ten Kaasbjerg, Steen Lysgaard, Jon Bergmann Maronsson, Tris-
tan Maxson, Thomas Olsen, Lars Pastewka, Andrew Peterson,
Carsten Rostgaard, Jakob Schigtz, Ole Schiitt, Mikkel Strange,
Kristian S. Thygesen, Tejs Vegge, Lasse Vilhelmsen, Michael
Walter, Zhenhua Zeng, and Karsten W. Jacobsen. The atomic
simulation environment—a Python library for working with
atoms. Journal of Physics: Condensed Matter, 29(27):273002,
June 2017. doi:10.1088/1361-648X/aa680e.

K. J. Millman and M. Aivazis. Python for Scientists and
Engineers. Computing in Science Engineering, 13(2):9-12,
March 2011. doi:10/dc343g.

Ralf Meyer, Klemens S. Schmuck, and Andreas W. Hauser.
Machine Learning in Computational Chemistry: An Evalua-
tion of Method Performance for Nudged Elastic Band Cal-
culations. Journal of Chemical Theory and Computation,
15(11):6513-6523, November 2019. doi:10.1021/acs.
jctc.9b00708.

[Neel2]

[O1i07]

[OTLO8]

[PCST16]

[Penl1]

[RBAT19]

[SAB*21]

[Sch86]

[SEJT19]

[SGTT19]

[SNTH13]

[WAB*19]

[WWO05]

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Frank Neese. The ORCA program system. WIREs Computa-
tional Molecular Science, 2(1):73-78, 2012. doi:10.1002/
wcms . 81.

T. E. Oliphant. Python for Scientific Computing. Comput-
ing in Science Engineering, 9(3):10-20, May 2007. doi:
10/fjzzc8.

Noel M. O’boyle, Adam L. Tenderholt, and Karol M.
Langner. Cclib: A library for package-independent computa-
tional chemistry algorithms. Journal of Computational Chem-
istry, 29(5):839-845, 2008. doi:10.1002/jcc.20823.
Giovanni Pizzi, Andrea Cepellotti, Riccardo Sabatini, Nicola
Marzari, and Boris Kozinsky. AiiDA: Automated interactive
infrastructure and database for computational science. Compu-
tational Materials Science, 111:218-230, January 2016. doi:
10.1016/7j.commatsci.2015.09.013.

Roger D. Peng. Reproducible Research in Computational Sci-
ence. Science, 334(6060):1226-1227, December 2011. doi:
10/fdv356.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler,
Min Lin, Fred Hamprecht, Yoshua Bengio, and Aaron Courville.
On the Spectral Bias of Neural Networks. In Proceedings of
the 36th International Conference on Machine Learning, pages
5301-5310. PMLR, May 2019.

Daniel G. A. Smith, Doaa Altarawy, Lori A. Burns, Matthew
Welborn, Levi N. Naden, Logan Ward, Sam Ellis, Benjamin P.
Pritchard, and T. Daniel Crawford. The MolSSI QCArchive
project: An open-source platform to compute, organize, and
share quantum chemistry data. WIREs Computational Molecular
Science, 11(2):e1491, 2021. doi:10.1002/wcms.1491.
Henry F. Schaefer. Methylene: A Paradigm for Computational
Quantum Chemistry. Science, 231(4742):1100-1107, March
1986. doi:10.1126/science.231.4742.1100.
Andrew W. Senior, Richard Evans, John Jumper, James Kirk-
patrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Zidek,
Alexander W. R. Nelson, Alex Bridgland, Hugo Penedones,
Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli,
David T. Jones, David Silver, Koray Kavukcuoglu, and Demis
Hassabis. Protein structure prediction using multiple deep neural
networks in the 13th Critical Assessment of Protein Structure
Prediction (CASP13). Proteins: Structure, Function, and Bioin-
formatics, 87(12):1141-1148, 2019. doi:10.1002/prot.
25834.

K. T. Schiitt, M. Gastegger, A. Tkatchenko, K.-R. Miiller,
and R. J. Maurer. Unifying machine learning and quantum
chemistry with a deep neural network for molecular wavefunc-
tions. Nature Communications, 10(1):5024, November 2019.
doi:10.1038/s41467-019-12875-2.

Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind
Hovig. Ten Simple Rules for Reproducible Computational Re-
search. PLOS Computational Biology, 9(10):e1003285, October
2013. doi:10/pijb.

Hadley Wickham, Mara Averick, Jennifer Bryan, Winston
Chang, Lucy D’Agostino McGowan, Romain Francgois, Garrett
Grolemund, Alex Hayes, Lionel Henry, Jim Hester, Max Kuhn,
Thomas Lin Pedersen, Evan Miller, Stephan Milton Bache,
Kirill Miiller, Jeroen Ooms, David Robinson, Dana Paige Seidel,
Vitalie Spinu, Kohske Takahashi, Davis Vaughan, Claus Wilke,
Kara Woo, and Hiroaki Yutani. Welcome to the Tidyverse.
Journal of Open Source Software, 4(43):1686, November 2019.
doi:10.21105/joss.01686.

Leland Wilkinson and Graham Wills. The Grammar of Graph-
ics. Statistics and Computing. Springer, New York, 2nd ed
edition, 2005.

http://dx.doi.org/10.1039/C6CP00415F
http://dx.doi.org/10.1039/C6CP00415F
http://dx.doi.org/10.1145/1383602.1383644
http://dx.doi.org/10.1145/1383602.1383644
http://dx.doi.org/10.1021/acs.jpclett.9b03664
http://dx.doi.org/10.1021/acs.jpclett.9b03664
http://arxiv.org/abs/2005.09619
http://dx.doi.org/10.1186/s13321-016-0133-7
http://dx.doi.org/10.1002/jcc.21057
http://dx.doi.org/10.1002/jcc.21057
http://dx.doi.org/10.1038/s41597-021-00812-2
http://dx.doi.org/10.1038/s41597-020-00638-4
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1063/1.1669836
http://dx.doi.org/10.1063/1.1669836
http://dx.doi.org/10.1088/1361-648X/aa680e
http://dx.doi.org/10/dc343g
http://dx.doi.org/10.1021/acs.jctc.9b00708
http://dx.doi.org/10.1021/acs.jctc.9b00708
http://dx.doi.org/10.1002/wcms.81
http://dx.doi.org/10.1002/wcms.81
http://dx.doi.org/10/fjzzc8
http://dx.doi.org/10/fjzzc8
http://dx.doi.org/10.1002/jcc.20823
http://dx.doi.org/10.1016/j.commatsci.2015.09.013
http://dx.doi.org/10.1016/j.commatsci.2015.09.013
http://dx.doi.org/10/fdv356
http://dx.doi.org/10/fdv356
http://dx.doi.org/10.1002/wcms.1491
http://dx.doi.org/10.1126/science.231.4742.1100
http://dx.doi.org/10.1002/prot.25834
http://dx.doi.org/10.1002/prot.25834
http://dx.doi.org/10.1038/s41467-019-12875-2
http://dx.doi.org/10/pjb
http://dx.doi.org/10.21105/joss.01686

	Introduction
	Dataset bias
	Structure and Implementation
	Structure
	Implementation
	User Interface

	Design and Usage
	Dissociation of H2

	Conclusions
	Acknowledgments
	References

