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Enabling Active Learning Pedagogy and Insight
Mining with a Grammar of Model Analysis
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Abstract—Modern engineering models are complex, with dozens of inputs,
uncertainties arising from simplifying assumptions, and dense output data.
While major strides have been made in the computational scalability of complex
models, relatively less attention has been paid to user-friendly, reusable tools to
explore and make sense of these models. Grama is a python package aimed at
supporting these activities. Grama is a grammar of model analysis: an ontology
that specifies data (in tidy form), models (with quantified uncertainties), and
the verbs that connect these objects. This definition enables a reusable set
of evaluation "verbs" that provide a consistent analysis toolkit across different
grama models. This paper presents three case studies that illustrate pedagogy
and engineering work with grama: 1. Providing teachable moments through
errors for learners, 2. Providing reusable tools to help users self-initiate pro-
ductive modeling behaviors, and 3. Enabling exploratory model analysis (EMA)
– exploratory data analysis augmented with data generation.

Index Terms—engineering, engineering education, exploratory model analysis,
software design, uncertainty quantification

Introduction

Modern engineering relies on scientific computing. Computational
advances enable faster analysis and design cycles by reducing
the need for physical experiments. For instance, finite-element
analysis enables computational study of aerodynamic flutter, and
Reynolds-averaged Navier-Stokes simulation supports the simu-
lation of jet engines. Both of these are enabling technologies
that support the design of modern aircraft [KN05]. Modern ar-
eas of computational research include heterogeneous computing
environments [MV15], task-based parallelism [BTSA12], and big
data [SS13]. Another line of work considers the development of
integrated tools to unite diverse disciplinary perspectives in a sin-
gle, unified environment (e.g., the integration of multiple physical
phenomena in a single code [EVB+20] or the integration of a
computational solver and data analysis tools [MTW+22]). Such
integrated computational frameworks are highlighted as essential
for applications such as computational analysis and design of
aircraft [SKA+14]. While engineering computation has advanced
along the aforementioned axes, the conceptual understanding of
practicing engineers has lagged in key areas.

Every aircraft you have ever flown on has been designed using
probabilistically-flawed, potentially dangerous criteria [dRFI21].
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The fundamental issue underlying these criteria is a flawed
heuristic for uncertainty propagation; initial human subjects work
suggests that engineers’ tendency to misdiagnose sources of vari-
ability as inconsequential noise may contribute to the persistent
application of flawed design criteria [AFD+21]. These flawed
treatments of uncertainty are not limited to engineering design;
recent work by Kahneman et al. [KSS21] highlights widespread
failures to recognize or address variability in human judgment,
leading to bias in hiring, economic loss, and an unacceptably
capricious application of justice.

Grama was originally developed to support model analysis un-
der uncertainty; in particular, to enable active learning [FEM+14]
– a form of teaching characterized by active student engagement
shown to be superior to lecture alone. This toolkit aims to integrate
the disciplinary perspectives of computational engineering and
statistical analysis within a unified environment to support a
coding to learn pedagogy [Bar16] – a teaching philosophy that
uses code to teach a discipline, rather than as a means to teach
computer science or coding itself. The design of grama is heavily
inspired by the Tidyverse [WAB+19], an integrated set of R
packages organized around the ’tidy data’ concept [Wic14]. Grama
uses the tidy data concept and introduces an analogous concepts
for models.

Grama: A Grammar of Model Analysis

Grama [dR20] is an integrated set of tools for working with data
and models. Pandas [pdt20], [WM10] is used as the underlying
data class, while grama implements a Model class. A grama
model includes a number of functions – mathematical expressions
or simulations – and domain/distribution information for the de-
terministic/random inputs. The following code illustrates a simple
grama model with both deterministic and random inputs1.

# Each cp_* function adds information to the model
md_example = (

gr.Model("An example model")
# Overloaded `>>` provides pipe syntax
>> gr.cp_vec_function(

fun=lambda df: gr.df_make(f=df.x+df.y+df.z),
var=["x", "y", "z"],
out=["f"],

)
>> gr.cp_bounds(x=(-1, +1))
>> gr.cp_marginals(

y=gr.marg_mom("norm", mean=0, sd=1),
z=gr.marg_mom("uniform", mean=0, sd=1),

)

1. Throughout, import grama as gr is assumed.
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>> gr.cp_copula_gaussian(
df_corr=gr.df_make(

var1="y",
var2="z",
corr=0.5,

)
)

)

While an engineer’s interpretation of the term "model" focuses on
the input-to-output mapping (the simulation), and a statistician’s
interpretation of the term "model" focuses on a distribution, the
grama model integrates both perspectives in a single model.

Grama models are intended to be evaluated to generate data.
The data can then be analyzed using visual and statistical means.
Models can be composed to add more information, or fit to a
dataset. Figure 1 illustrates this interplay between data and models
in terms of the four categories of function "verbs" provided in
grama.

Fig. 1: Verb categories in grama. These grama functions start with an
identifying prefix, e.g. ev_* for evaluation verbs.

Defaults for Concise Code

Grama verbs are designed with sensible default arguments to
enable concise code. For instance, the following code visualizes
input sweeps across its three inputs, similar to a ceteris paribus
profile [KBB19], [Bie20].
(

## Concise default analysis
md_example
>> gr.ev_sinews(df_det="swp")
>> gr.pt_auto()

)

This code uses the default number of sweeps and sweep density,
and constructs a visualization of the results. The resulting plot is
shown in Figure 2.

Grama imports the plotnine package for data visualization
[HK21], both to provide an expressive grammar of graphics, but
also to implement a variety of "autoplot" routines. These are
called via a dispatcher gr.pt_auto() which uses metadata
from evaluation verbs to construct a default visual. Combined
with sensible defaults for keyword arguments, these tools provide
a concise syntax even for sophisticated analyses. The same code
can be slightly modified to change a default argument value, or to
use plotnine to create a more tailored visual.
(

md_example
## Override default parameters
>> gr.ev_sinews(df_det="swp", n_sweeps=10)
>> gr.pt_auto()

)

(
md_example
>> gr.ev_sinews(df_det="swp")
## Construct a targeted plot

Fig. 2: Input sweep generated from the code above. Each panel
visualizes the effect of changing a single input, with all other inputs
held constant.

>> gr.tf_filter(DF.sweep_var == "x")
>> gr.ggplot(gr.aes("x", "f", group="sweep_ind"))
+ gr.geom_line()

)

This system of defaults is important for pedagogical design:
Introductory grama code can be made extremely simple when first
introducing a concept. However, the defaults can be overridden
to carry out sophisticated and targeted analyses. We will see in
the Case Studies below how this concise syntax encourages sound
analysis among students.

Pedagogy Case Studies

The following two case studies illustrate how grama is designed
to support pedagogy: the formal method and practice of teaching.
In particular, grama is designed for an active learning pedagogy
[FEM+14], a style of teaching characterized by active student
engagement.

Teachable Moments through Errors for Learners

An advantage of a unified modeling environment like grama is
the opportunity to introduce design errors for learners in order to
provide teachable moments.

It is common in probabilistic modeling to make problematic
assumptions. For instance, Cullen and Frey [CF99] note that
modelers frequently and erroneously treat the normal distribution
as a default choice for all unknown quantities. Another common
issue is to assume, by default, the independence of all random
inputs to a model. This is often done tacitly – with the indepen-
dence assumption unstated. These assumptions are problematic, as
they can adversely impact the validity of a probabilistic analysis
[dRFI21].

To highlight the dependency issue for novice modelers, grama
uses error messages to provide just-in-time feedback to a user
who does not articulate their modeling choices. For example,
the following code builds a model with no dependency structure
specified. The result is an error message that summarizes the
conceptual issue and points the user to a primer on random
variable modeling.
md_flawed = (

gr.Model("An example model")
>> gr.cp_vec_function(
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fun=lambda df: gr.df_make(f=df.x+df.y+df.z),
var=["x", "y", "z"],
out=["f"],

)
>> gr.cp_bounds(x=(-1, +1))
>> gr.cp_marginals(

y=gr.marg_mom("norm", mean=0, sd=1),
z=gr.marg_mom("uniform", mean=0, sd=1),

)
## NOTE: No dependency specified

)
(

md_flawed
## This code will throw an Error
>> gr.ev_sample(n=1000, df_det="nom")

)

Error ValueError: Present model copula must be de-

fined for sampling. Use CopulaIndependence only
when inputs can be guaranteed independent. See the
Documentation chapter on Random Variable Modeling
for more information. https://py-grama.readthedocs.io/en/
latest/source/rv_modeling.html

Grama is designed both as a teaching tool and a scientific
modeling toolkit. For the student, grama offers teachable moments
to help the novice grow as a modeler. For the scientist, grama
enforces practices that promote scientific reproducibility.

Encouraging Sound Analysis

As mentioned above, concise grama syntax is desirable to encour-
age sound analysis practices. Grama is designed to support higher-
level learning outcomes [Blo56]. For instance, rather than focusing
on applying programming constructs to generate model results,
grama is intended to help users study model results ("evaluate,"
according to Bloom’s Taxonomy). Sound computational analysis
demands study of simulation results (e.g., to check for numerical
instabilities). This case study makes this learning outcome distinc-
tion concrete by considering parameter sweeps.

Generating a parameter sweep similar to Figure 2 with stan-
dard Python libraries requires a considerable amount of boilerplate
code, manual coordination of model information, and explicit loop
construction. The following code generates parameter sweep data
using standard libraries. Note that this code sweeps through values
of x holding values of y fixed; additional code would be necessary
to construct a sweep through y2.

## Parameter sweep: Manual approach
# Gather model info
x_lo = -1; x_up = +1;
y_lo = -1; y_up = +1;
f_model = lambda x, y: x**2 * y
# Analysis parameters
nx = 10 # Grid resolution for x
y_const = [-1, 0, +1] # Constant values for y
# Generate data
data = np.zeros((nx * len(y_const), 3))
for i, x in enumerate(

np.linspace(x_lo, x_up, num=nx)
):
for j, y in enumerate(y_const):

data[i + j*nx, 0] = f_model(x, y)
data[i + j*nx, 1] = x
data[i + j*nx, 2] = y

# Package data for visual
df_manual = pd.DataFrame(

2. Code assumes import numpy as np; import pandas as
pd.

data=data,
columns=["f", "x", "y"],

)

The ability to write low-level programming constructs – such
as the loops above – is an obviously worthy learning outcome
in a course on scientific computing. However, not all courses
should focus on low-level programming constructs. Grama is not
designed to support low-level learning outcomes; instead, the
package is designed to support a "coding to learn" philosophy
[Bar16] focused on higher-order learning outcomes to support
sound modeling practices.

Parameter sweep functionality can be achieved in grama
without explicit loop management and with sensible defaults for
the analysis parameters. This provides a "quick and dirty" tool
to inspect a model’s behavior. A grama approach to parameter
sweeps is shown below.

## Parameter sweep: Grama approach
# Gather model info
md_gr = (

gr.Model()
>> gr.cp_vec_function(

fun=lambda df: gr.df_make(f=df.x**2 * df.y),
var=["x", "y"],
out=["f"],

)
>> gr.cp_bounds(

x=(-1, +1),
y=(-1, +1),

)
)
# Generate data
df_gr = gr.eval_sinews(

md_gr,
df_det="swp",
n_sweeps=3,

)

Once a model is implemented in grama, generating and visualizing
a parameter sweep is trivial, requiring just two lines of code and
zero initial choices for analysis parameters. The practical outcome
of this software design is that users will tend to self-initiate
parameter sweeps: While students will rarely choose to write the
extensive boilerplate code necessary for a parameter sweep (unless
required to do so), students writing code in grama will tend to self-
initiate sound analysis practices.

For example, the following code is unmodified from a student
report3. The original author implemented an ordinary differential
equation model to simulate the track time "finish_time" of
an electric formula car, and sought to study the impact of variables
such as the gear ratio "GR" on "finish_time". While the
assignment did not require a parameter sweep, the student chose
to carry out their own study. The code below is a self-initiated
parameter sweep of the track time model.

## Unedited student code
md_car = (

gr.Model("Accel Model")
>> gr.cp_function(

fun = calculate_finish_time,
var = ["GR", "dt_mass", "I_net" ],
out = ["finish_time"],

)

>> gr.cp_bounds(
GR=(+1,+4),
dt_mass=(+5,+15),
I_net=(+.2,+.3),

3. Included with permission of the author, on condition of anonymity.

https://py-grama.readthedocs.io/en/latest/source/rv_modeling.html
https://py-grama.readthedocs.io/en/latest/source/rv_modeling.html
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)
)

gr.plot_auto(
gr.eval_sinews(

md_car,
df_det="swp",
#skip=True,
n_density=20,
n_sweeps=5,
seed=101,

)
)

Fig. 3: Input sweep generated from the student code above. The image
has been cropped for space, and the results are generated with an
older version of grama. The jagged response at higher values of the
input are evidence of solver instabilities.

The parameter sweep shown in Figure 2 gives an overall impres-
sion of the effect of input "GR" on the output "finish_time".
This particular input tends to dominate the results. However,
variable results at higher values of "GR" provide evidence of
numerical instability in the ODE solver underlying the model.
Without this sort of model evaluation, the student author would
not have discovered the limitations of the model.

Exploratory Model Analysis Case Study

This final case study illustrates how grama supports exploratory
model analysis. This iterative process is a computational approach
to mining insights into physical systems. The following use case
illustrates the approach by considering the design of boat hull
cross-sections.

Static Stability of Boat Hulls

Stability is a key consideration in boat hull design. One of the most
fundamental aspects of stability is static stability; the behavior of a
boat when perturbed away from static equilibrium [LE00]. Figure
4 illustrates the physical mechanism governing stability at small
perturbations from an upright orientation.

As a boat is rotated away from its upright orientation, its center
of buoyancy (COB) will tend to migrate. If the boat is in vertical
equilibrium, its buoyant force will be equal in magnitude to its
weight. A stable boat is a hull whose COB migrates in such a way

Fig. 4: Schematic boat hull rotated to 22.5◦. The forces due to gravity
and buoyancy act at the center of mass (COM) and center of buoyancy
(COB), respectively. Note that this hull is upright stable, as the couple
will rotate the boat to upright.

that a restoring torque is generated (Fig. 4). However, this upright
stability is not guaranteed; Figure 5 illustrates a boat design that
does not provide a restoring torque near its upright angle. An
upright-unstable boat will tend to capsize spontaneously.

Fig. 5: Schematic boat hull rotated to 22.5◦. Gravity and buoyancy
are annotated as in Figure 4. Note that this hull is upright unstable,
as the couple will rotate the boat away from upright.

Naval engineers analyze the stability of a boat design by
constructing a moment curve, such as the one pictured in Figure
6. This curve depicts the net moment due to buoyancy at various
angles, assuming the vessel is in vertical equilibrium. From this
figure we can see that the design is upright-stable, as it possesses
a negative slope at upright θ = 0◦. Note that a boat may not have
an unlimited range of stability as Figure 6 exhibits an angle of
vanishing stability (AVS) beyond which the boat does not recover
to upright.

The classical way to build intuition about boat stability is
via mathematical derivations [LE00]. In the following section we
present an alternative way to build intuition through exploratory
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Fig. 6: Total moment on a boat hull as it is rotated through 180◦.
A negative slope at upright θ = 0◦ is required for upright stability.
Stability is lost at the angle of vanishing stability (AVS).

model analysis.

EMA for Insight Mining

Generation and post-processing of the moment curve are imple-
mented in the grama model md_performance4. This model
parameterizes a 2d boat hull via its height H, width W, shape
of corner n, the vertical height of the center of mass f_com
(as a fraction of the height), and the displacement ratio d (the
ratio of the boat’s mass to maximum water mass displaced).
Note that a boat with d > 1 is incapable of flotation. A
smaller value of d corresponds to a boat that floats higher in
the water. The model md_performance returns stability
= -dMdtheta_0 (the negative of the moment curve slope at
upright) as well as the mass and AVS angle. A positive value
of stability indicates upright stability, while a larger value of
angle indicates a wider range of stability.

The EMA process begins by generating data from the model.
However, the generation of a moment curve is a nontrivial cal-
culation. One should exercise care in choosing an initial sample
of designs to analyze. The statistical problem of selecting efficient
input values for a computer model is called the design of computer
experiments [SSW89]. The grama verb gr.tf_sp() implements the
support points algorithm [MJ18] to reduce a large dataset of target
points to a smaller (but representative) sample. The following code
generates a sample of input design values via gr.ev_sample()
with the skip=True argument, uses gr.tf_sp() to "com-
pact" this large sample, then evaluates the performance model at
the smaller sample.
df_boats = (

md_performance
>> gr.ev_sample(

n=5e3,
df_det="nom",
seed=101,
skip=True,

)
>> gr.tf_sp(n=1000, seed=101)
>> gr.tf_md(md=md_performance)

)

With an initial sample generated, we can perform an ex-
ploratory analysis relating the inputs and outputs. The verb

4. The analysis reported here is available as a jupyter notebook.

gr.tf_iocorr() computes correlations between every pair of
input variables var and outputs out. The routine also attaches
metadata, enabling an autoplot as a tileplot of the correlation
values.
(

df_boats
>> gr.tf_iocorr(

var=["H", "W", "n", "d", "f_com"],
out=["mass", "angle", "stability"],

)
>> gr.pt_auto()

)

Fig. 7: Tile plot of input/output correlations; autoplot gr.pt_auto()
visualization of gr.tf_iocorr() output.

The correlations in Figure 7 suggest that stability is posi-
tively impacted by increasing the width W and displacement ratio
d of a boat, and by decreasing the height H, shape factor n, and
vertical location of the center of mass f_com. The correlations
also suggest a similar impact of each variable on the AVS angle,
but with a weaker dependence on H. These results also suggest that
f_com has the strongest effect on both stability and angle.

Correlations are a reasonable first-check of input/output be-
havior, but linear correlation quantifies only an average, linear
association. A second-pass at the data would be to fit an accurate
surrogate model and inspect parameter sweeps. The following
code defines a gaussian process fit [RW05] for both stability
and angle, and estimates model error using k-folds cross valida-
tion [JWHT13]. Note that a non-default kernel is necessary for a
reasonable fit of the latter output5.
## Define fitting procedure
ft_common = gr.ft_gp(

var=["H", "W", "n", "d", "f_com"],
out=["angle", "stability"],
kernels=dict(

stability=None, # Use default
angle=RBF(length_scale=0.1),

)
)
## Estimate model accuracy via k-folds CV
(

df_boats
>> gr.tf_kfolds(

ft=ft_common,
out=["angle", "stability"],

)
)

5. RBF is imported as from sklearn.gaussian_process.kernels
import RBF.

https://github.com/zdelrosario/boat-stability/blob/main/01-ema-example.ipynb
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angle stability k
0.771 0.979 0
0.815 0.976 1
0.835 0.95 2
0.795 0.962 3
0.735 0.968 4

TABLE 1: Accuracy (R2) estimated via k-fold cross validation of
gaussian process model.

The k-folds CV results (Tab. 1) suggest a highly accurate
model for stability, and a moderately accurate model for
angle. The following code defines the surrogate model over a
domain that includes the original dataset, and performs parameter
sweeps across all inputs.
md_fit = (

df_boats
>> ft_common()
>> gr.cp_marginals(

H=gr.marg_mom("uniform", mean=2.0, cov=0.30),
W=gr.marg_mom("uniform", mean=2.5, cov=0.35),
n=gr.marg_mom("uniform", mean=1.0, cov=0.30),
d=gr.marg_mom("uniform", mean=0.5, cov=0.30),
f_com=gr.marg_mom(

"uniform",
mean=0.55,
cov=0.47,

),
)
>> gr.cp_copula_independence()

)

(
md_fit
>> gr.ev_sinews(df_det="swp", n_sweeps=5)
>> gr.pt_auto()

)

Fig. 8: Parameter sweeps for fitted GP model. Model *_mean and
predictive uncertainty *_sd values are reported for each output
angle, stability.

Figure 8 displays parameter sweeps for the surrogate model of
stability and angle. Note that the surrogate model reports
both a mean trend *_mean and a predictive uncertainty *_sd.
The former is the model’s prediction for future values, while the
latter quantifies the model’s confidence in each prediction.

The parameter sweeps of Figure 8 show a consistent and strong
effect of f_com on the stability_mean of the boat; note that

Direction H W n d f_com

1 -0.0277 0.0394 -0.1187 0.4009 -0.9071
2 -0.6535 0.3798 -0.0157 -0.6120 -0.2320

TABLE 2: Subspace weights in df_weights.

all the sweeps across f_com for stability_mean tend to be
monotone with a fairly steep slope. This is in agreement with
the correlation results of Figure 7; the f_com sweeps tend to
have the steepest slopes. Given the high accuracy of the model
for stability (as measured by k-folds CV), this trend is
reasonably trustworthy.

However, the same figure shows an inconsistent (non-
monotone) effect of most inputs on the AVS angle_mean.
These results are in agreement with the k-fold CV results shown
above. Clearly, the surrogate model is untrustworthy, and we
should resist trusting conclusions from the parameter sweeps for
angle_mean. This undermines the conclusion we drew from
the input/output correlations pictured in Figure 7. Clearly, angle
exhibits more complex behavior than a simple linear correlation
with each of the boat design variables.

A different analysis of the boat hull angle data helps
develop useful insights. We pursue an active subspace analysis
of the data to reduce the dimensionality of the input space by
identifying directions that best explain variation in the output
[dCI17], [Con15]. The verb gr.tf_polyridge() implements
the variable projection algorithm of Hokanson and Constantine
[HC18]. The following code pursues a two-dimensional reduction
of the input space. Note that the hyperparameter n_degree=6 is
set via a cross-validation study.

## Find two important directions
df_weights = (

df_boats
>> gr.tf_polyridge(

var=["H", "W", "n", "d", "f_com"],
out="angle",
n_degree=6, # Set via CV study
n_dim=2, # Seek 2d subspace

)
)

The subspace weights are reported in Table 2. Note that the
leading direction 1 is dominated by the displacement ratio d and
COM location f_com. Essentially, this describes the "loading"
of the vessel. The second direction corresponds to "widening and
shortening" of the hull cross-section (in addition to lowering d and
f_com).

Using the subspace weights in Table 2 to produce a 2d projec-
tion of the feature space enables visualizing all boat geometries in
a single plot. Figure 9 reveals that this 2d projection is very suc-
cessful at separating universally-stable (angle==180), upright-
unstable (angle==0), and intermediate cases (0 < angle <
180). Intermediate cases are concentrated at higher values of
the second active variable. There is a phase transition between
universally-stable and upright-unstable vessels at lower values of
the second active variable.

Interpreting Figure 9 in light of Table 2 provides us with deep
insight about boat stability: Since active variable 1 corresponds to
loading (high displacement ratio d with a low COM f_com), we
can see that the boat’s loading conditions are key to determining
its stability. Since active variable 2 depends on the aspect ratio
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Fig. 9: Boat design feature vectors projected to 2d active subspace.
The origin corresponds to the mean feature vector.

(higher width, shorter height), Figure 9 suggests that only wider
boats will tend to exhibit intermediate stability.

Conclusions

Grama is a Python implementation of a grammar of model anal-
ysis. The grammar’s design supports an active learning approach
to teaching sound scientific modeling practices. Two case studies
demonstrated the teaching benefits of grama: errors for learners
help guide novices toward a more sound analysis, while concise
syntax encourages novices to carry out sound analysis practices.
Grama can also be used for exploratory model analysis (EMA)
– an exploratory procedure to mine a scientific model for useful
insights. A case study of boat hull design demonstrated EMA.
In particular, the example explored and explained the relationship
between boat design parameters and two metrics of boat stability.

Several ideas from the grama project are of interest to other
practitioners and developers in scientific computing. Grama was
designed to support model analysis under uncertainty. However,
the data/model and four-verb ontology (Fig. 1) underpinning
grama is a much more general idea. This design enables very
concise model analysis syntax, which provides much of the benefit
behind grama.

The design idiom of errors for learners is not simply focused
on writing "useful" error messages, but is rather a design orien-
tation to use errors to introduce teachable moments. In addition
to writing error messages "for humans" [Bry20], an errors for
learners philosophy designs errors not simply to avoid fatal
program behavior, but rather introduces exceptions to prevent
conceptually invalid analyses. For instance, in the case study
presented above, designing gr.tf_sample() to assume independent
random inputs when a copula is unspecified would lead to code
that throws errors less frequently. However, this would silently
endorse the conceptually problematic mentality of "independence
is the default." While throwing an error message for an unspecified
dependence structure leads to more frequent errors, it serves as a
frequent reminder that dependency is an important part of a model
involving random inputs.

Finally, exploratory model analysis holds benefits for both
learners and practitioners of scientific modeling. EMA is an alter-

native to derivation for the activities in an active learning approach.
Rather than structuring courses around deriving and implementing
scientific models, course exercises could have students explore
the behavior of a pre-implemented model to better understand
physical phenomena. Lorena Barba [Bar16] describes some of the
benefits in this style of lesson design. EMA is also an important
part of the modeling practitioner’s toolkit as a means to verify a
model’s implementation and to develop new insights. Grama sup-
ports both novices and practitioners in performing EMA through
a concise syntax.
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