Skip to contentSkip to frontmatterSkip to Backmatter

Proceedings of the 10th Python in Science Conference

SciPy 2011, Austin, Texas July 11 - 16

Accepted Papers

A Technical Anatomy of SPM.Python, a Scalable, Parallel Version of Python

Minesh Amin

doi: 10.25080/Majora-ebaa42b7-000, pages: 1-9

Fitting and Estimating Parameter Confidence Limits with Sherpa

Brian Refsdal, Stephen Doe, Dan Nguyen, Aneta Siemiginowska

doi: 10.25080/Majora-ebaa42b7-001, pages: 10-16

Crab: A Recommendation Engine Framework for Python

Marcel Caraciolo, Bruno Melo, Ricardo Caspirro

doi: 10.25080/Majora-ebaa42b7-002, pages: 17-23

gpustats: GPU Library for Statistical Computing in Python

Andrew Cron, Wes McKinney

doi: 10.25080/Majora-ebaa42b7-003, pages: 24-28

Using the Global Arrays Toolkit to Reimplement NumPy for Distributed Computation

Jeff Daily, Robert Lewis

doi: 10.25080/Majora-ebaa42b7-004, pages: 29-35

Vision Spreadsheet: An Environment for Computer Vision

Scott Determan

doi: 10.25080/Majora-ebaa42b7-005, pages: 36-39

Constructing scientific programs using SymPy

Mark Dewing

doi: 10.25080/Majora-ebaa42b7-006, pages: 40-43

Using Python, Partnerships, Standards and Web Services to provide Water Data for Texans

Dharhas Pothina, Andrew Wilson

doi: 10.25080/Majora-ebaa42b7-007, pages: 44-47

PyModel: Model-based testing in Python

Jonathan Jacky

doi: 10.25080/Majora-ebaa42b7-008, pages: 48-52

Automation of Inertial Fusion Target Design with Python

Matthew Terry, Joseph Koning

doi: 10.25080/Majora-ebaa42b7-009, pages: 53-57

Hurricane Prediction with Python

Minwoo Lee, Charles Anderson, Mark DeMaria

doi: 10.25080/Majora-ebaa42b7-00a, pages: 58-62

IMUSim - Simulating inertial and magnetic sensor systems in Python

Martin Ling, Alex Young

doi: 10.25080/Majora-ebaa42b7-00b, pages: 63-69

Using Python to Construct a Scalable Parallel Nonlinear Wave Solver

Kyle Mandli, Amal Alghamdi, Aron Ahmadia, David Ketcheson, William Scullin

doi: 10.25080/Majora-ebaa42b7-00c, pages: 70-75

Building a Framework for Predictive Science

Michael McKerns, Leif Strand, Tim Sullivan, Alta Fang, Michael Aivazis

doi: 10.25080/Majora-ebaa42b7-00d, pages: 76-86

PyStream: Compiling Python onto the GPU

Nick Bray

doi: 10.25080/Majora-ebaa42b7-00e, pages: 87-90

Bringing Parallel Performance to Python with Domain-Specific Selective Embedded Just-in-Time Specialization

Shoaib Kamil, Derrick Coetzee, Armando Fox

doi: 10.25080/Majora-ebaa42b7-00f, pages: 91-97

N-th-order Accurate, Distributed Interpolation Library

Stephen McQuay, Steven Gorrell

doi: 10.25080/Majora-ebaa42b7-010, pages: 98-103

Google App Engine Python

Douglas Starnes

doi: 10.25080/Majora-ebaa42b7-011, pages: 104-106

Time Series Analysis in Python with statsmodels

Wes McKinney, Josef Perktold, Skipper Seabold

doi: 10.25080/Majora-ebaa42b7-012, pages: 107-113

Improving efficiency and repeatability of lake volume estimates using Python

Tyler McEwen, Dharhas Pothina, Solomon Negusse

doi: 10.25080/Majora-ebaa42b7-013, pages: 114-118