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Accelerating the Advancement of Data Science
Education

Eric Van Duseni*, Anthony Sueni, Alan Liangi, Amal BhatnagariE

Abstract—We outline a synthesis of strategies created in collaboration with
35+ colleges and universities on how to advance undergraduate data science
education on a national scale. The four core pillars of this strategy include the
integration of data science education across all domains, establishing adoptable
and scalable cyberinfrastructure, applying data science to non-traditional do-
mains, and incorporating ethical content into data science curricula. The paper
analyzes UC Berkeley’s method of accelerating the national advancement of
data science education in undergraduate institutions and examines the recent
innovations in autograders for assignments which helps scale such programs.
The conversation of ethical practices with data science are key to mitigate
social issues arising from computing, such as incorporating anti-bias algorithms.
Following these steps will form the basis of a scalable data science education
system that prepares undergraduate students with analytical skills for a data-
centric world.

Index Terms—data science education, autograding, undergraduate institutions

Introduction

Data science is a burgeoning field that is quickly being adopted
across all domains and sectors. Undergraduate data science edu-
cation initiatives have been growing rapidly, but also largely in an
uncoordinated manner. Programs are often developed and imple-
mented in silos, leading to duplication of efforts and differences
in pedagogical approaches and course quality. Furthermore, while
a number of curriculum guidelines for degrees in data science
have been proposed, opportunities for engaging in pedagogical
exchanges and sharing resources remain rare. Without a common
knowledge base of resources and platform for undergraduate
support, many institutions have encountered pedagogical and
infrastructural barriers in setting up Python centric data science
curricula across campus.

Stakeholders around the country previously identified the ne-
cessity of gathering data science enthusiasts and discussing its
implementation in institutions. The importance of defining data
science curriculum guidelines has been the subject of numerous
workshops and meetings such as the “Workshop on Theoretical
Foundations of Data Science,” “The Park City Math Institute
2016 Summer Undergraduate Faculty Program,” and “Envisioning
the Data Science Discipline: The Undergraduate Perspective.”
While these workshops produced comprehensive guidelines on

x Corresponding author: ericvd@berkeley.edu
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the structure of the programs, the actual content and teaching
modalities remain unclear.

On June 24-27, 2019, the Division of Data Sciences at the
UC Berkeley hosted the 2nd National Workshop on Data Science
Education which brought together nearly 70 faculty from a diverse
range of higher-education institutions on at different stages of data
science education. As a pioneer in undergraduate data science edu-
cation, UC Berkeley shared its comprehensive set of open-license
and open-source resources that range from teaching materials to
cloud infrastructure at the workshop.

The workshop sought to build a national community of prac-
tice around undergraduate Data Science education by focusing
around four primary areas:

1) Examining the Foundations of Data Science (Data 8)
course - How does the content to pedagogical methods of Data
8 integrates various disciplines through the use of computational
and inferential thinking.

2) Showcase the infrastructural platform that Berkeley has
developed for its courses, and empower participants to use its
many open-source components to overcome the financial and
technical barriers.

3) Applying Modular Data Science education content into
various disciplinary fields past the scope of that from a traditional
computer science or statistics courses provide.

4) Implementing Ethical Content into data science courses and
examining how such integration could work.

Establishing Foundational Course that Serves the Entire Cam-
pus

Data science can touch all different genres and disciplines of
academia. The proliferation of affordable computational capacity,
migration of publishing channels to the internet, advanced sensing
technology, and other data collection methods has led to the
possibility of data science in almost every area of scientific
endeavor. Applications of data science have created opportunities
to teach students programming, statistical techniques, and other
computational methodologies earlier in their academic careers
to expand the academic possibilities within their chosen area of
focus. Current examples of data science being integrated into other
disciplines include randomized controlled trials in Development
Economics published through open data repositories and the
integration between law and data technologies.

An essential step toward creating a successful campus wide
Data Science program is creating a campus wide introductory-
level data science course that utilizes the Python programming
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language available to students of all academic disciplines. Using
existing introductory computer science and statistics courses in
place of a foundational data science course slows students’ learn-
ing and limits the audience. Such a course also allows students
to explore the realm of data science at an introductory level, so
they can understand the basic concepts using custom made Data
Science “Tables” library without getting lost in the more complex
syntax of Pandas and transition into statistics and computer sci-
ence, as many students do not have prior coding experience. In
2015, UC Berkeley launched Data 8 Foundations of Data Science
for its undergraduate students. With the course centered upon
students learning inferential thinking, computational thinking, and
real-world relevance, students learn how to apply such statistical
or computer programming techniques onto non-traditional fields
through economic and geographical data and social issues. Using
the Python datascience package, students work with real-world
datasets to ask questions and find answers.

Through Data 8, core foundational facilitators now know to
find connections to other departments and stakeholders. In fielding
an entry-level data science course and fitting it into the curriculum,
it’s crucial to engage with faculty across a variety of disciplines in
an inclusive, supportive way and a spirit of partnership. Berkeley
has launched and taught many different connector courses that use
Data 8 as a prerequisite. The Data Science students having classes
from a non-traditional field allows students to find ways to apply
their learning from Data 8 onto other domains.

Setting Campus Wide Educational Cyber-Infrastructure

Implementation of a data science course like Data 8 across the
entire campus requires universities and institutions to develop
capacity in on-demand cyber-infrastructure to support their educa-
tional goals. Local computation is not ideal, as it is harder to scale
when the number of courses and students increases. For many
institutions, the ability to set up the necessary support systems
for JupyterHub or other infrastructure is beyond the expertise of a
single course instructor, who already has to distribute their finite
time in planning lesson outlines and curriculum. Institutional IT
staff members would have to obtain additional training, which
would vary across institutions to better fit the differing needs and
implementations of the data science courses and can be too costly.
For many small institutions and universities, this proves to be a
major barrier in course delivery. The development of regional or
national cloud-based computing solutions that can serve individual
educational institutions is needed.

Universities must invest resources into developing data science
educational infrastructure like JupyterHub, a platform not many
universities have, that differs from research cyber-infrastructure.
The two have different goals, resource needs, deployment time-
lines, cost and pricing of models, and broad access mandates.
Data science educational infrastructure is deployed for relatively
low resource use by a large number of relatively unsophisticated
users. Making the data science infrastructure accessible requires
establishing three components. At UC Berkeley, the core compo-
nents include setting up a campus wide JupyterHub, integration
with existing campus Learning Management Systems (LMS), e.g.
Canvas (https://www.instructure.com/), and utilizing autograder
technology.

Autograding technology is essential to the scalability of data
science education and alleviates substantial work for large classes
at UC Berkeley, such as Data 8: Foundations of Data Science

PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

and Data 8X, its massive open online course, or MOOC, version,
which sees more than 1,500 students per semester and 75,000 stu-
dents enrolled respectively. Currently, UC Berkeley uses various
grading systems even within its own data science courses. Data 8
utilizes ok.py, a Berkeley developed solution that has a plethora of
features for large and diverse computer science and data science
classes. However, this comes with a complexity cost for instructors
who only need a subset of these features and sysadmins operating
an okpy server installation [Suen18]. On the other hand, Data 100,
the upper division core data science course, utilizes nbgrader, an
open source grading solution built for Jupyter Notebooks. On Data
8X, the newly developed gofer grader is used to solely address the
needs of a MOOC course and retains similar aspects from Data
8’s grading system. The gofer grader is relatively new and has run
into issues relatively frequently. Yet, it asynchronously supports
hundreds of students’ grading concurrently

To mitigate high individual institutional infrastructure startup
costs, a national educational cyber-infrastructure strategy with
industry and universities collaboration is required. Options include
leveraging the existing four regional Big Data Innovation Hubs,
which can provide access to cloud resources, partners and exper-
tise or increase utilization of currently free industry platforms like
Google Colab and Azure Notebooks. To maximize learning within
any pilot program, local staff at a given institution would need
to be trained and partake in the beta testing of such a system to
document problems and best practices. Successful implementation
of data science courses across certain locations might lead to
partnerships across and within institutions, allowing for successful
techniques to be communicated across all partners and similar
curriculum modeling to exist for consistency.

All of this infrastructure is crucial for creating, deploying,
and grading data science homework and lab assignments. Having
this educational cyber-infrastructure is more efficient than local
infrastructure, as instructors can teach students for many, the sys-
tem holds all the necessary material, simplifies data management
and analysis, and visualizes data for instructors. Before Berkeley
launched its integrated system, the teaching faculty found it
difficult to efficiently scale courses at the rate of their increasing
interest. Berkeley’s adoption of JupyterHub has allowed more than
1,600 students to enroll in Data 8 for its Spring 2019 iteration,
a historic milestone that would not have been possible absent
Berkeley’s educational cyber-infrastructure.

Creating and Incorporating Modular Data Science Content

There are two main concerns when modularizing data science
content: Having just one introductory data science class is not
enough to warrant an entire data science curricula, and creating
a sustainable model that supports the data science curricula is
challenging for newly adopting institutions.

Implementing and integrating the new course to fit in the over-
all academic curriculum is critical for seamless student experience
in data science. UC Berkeley’s Division of Data Sciences has
also supported the creation of data science content for inserting in
other types of (usually non-data science) courses in self-contained
“Modules” that can showcase aspects of data science to a different
audience. Some examples of modules that students can take
include Linguistics 110: Introduction to Phonetics and Phonology,
Sociology 130 AC: Neighborhood Mapping, and Econ 101B:
Macroeconomics. Developing and implementing such modules
allow students to experience data-driven techniques and scientific
computing through Python.
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Because data science serves functions in a vast array of inter-
disciplinary fields of study, the ability to modify the introductory
course and tailor it to fit in with the current institutional curriculum
will go a long way in communicating the relevance of the field
to students taking the course. This process will need time for
planning and preparation before the actual steps for integration
can start. In addition, faculty across different departments should
collaborate to explore the possibility of connector courses or
incorporation of data science in each others’ subjects. Connector
courses are supplemental courses which build on the introductory
data science course by using similar statistical and computational
techniques across different disciplines, such as business, biol-
ogy, and geography. Berkeley has offered 27 different connector
courses since their launch in 2015. To alleviate the burden of
redistributing finances and to increase funding, faculty might have
to reallocate their time to develop and adopt a new curriculum.
To mitigate increasing startup costs, Berkeley has hired graduate
students and even undergraduate students who previously excelled
at that class to assist in teaching efforts. Incorporating on-campus
talent, such as previous students, creates a robust data science
culture on campus that is easy to spread among the student
population.

To successfully adopt a data science modules curricula, we
propose creating a platform to share teaching resources that is
available to anyone in the community. Such a platform could
be modeled on the popular Data8 public organization (https:
//github.com/data-8) and the site hosting Data Carpentry lessons
(https://datacarpentry.org/lessons/). The principal functions of this
platform are to share teaching resources such as use cases (datasets
and accompanying analyses), open source textbooks or modules,
and programs used to facilitate data science education. National
Workshop on Data Science Education proves that the design of
the courses and the planning of the material and activities is key.
Berkeley’s Data 8’s success in reaching up to 1,500 students within
its first few iterations attests to the importance of curriculum
innovation and pedagogical methods. Having staff with technical
skills to support the computer infrastructure and collaborative
support with nearby/sister institutions who can share best practices
and resources makes this model even more successful. Developing
collaborative, modularized open-source teaching materials, such
as the books used in Data 8 and Data 100, allows other institutions
to more easily implement curricula for themselves.

Recently, Berkeley has been sharing such resources with
institutions interested in adopting a data science curriculum. By
sharing access to textbooks, lecture and lab materials, and similar
resources, about 15 domestic and 10 international institutions have
adopted Data 8 or a similar course or program. Most questions
potential partnering institutions had regarded logistics, course top-
ics, and infrastructure, which were resolved once given access to
shared resources. Such partnering institutions range from commu-
nity colleges to Ivy League universities indicating the widespread
approval of Data 8’s goals, implementation, and adaptability.
Berkeley’s cross-campus collaboration proves that transparency
and communication is key to start and scale undergraduate data
science programs across the world and increase Python literacy.

Integrating The Teaching of Ethics Into Data Science Courses

As data come to structure more and more aspects of our lives, the
potential impact of data science on individuals and societies looms
ever larger. For this reason, it is critical that data scientists under-
stand the social worlds from which their data are drawn and in
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which their science intervenes. They must be trained to recognize
the ethical implications of their work and act accordingly. The
ethics of data science are social, individual, and contextual rather
than linear. Ethical content can be incorporated into data science
curricula both by integrating ethical topics into existing data
science courses and by including ethically-focused courses to data
science degree programs. The first approach may be better suited
to the ethical questions that individual data scientists encounter
in their daily work, while the second may be better suited to the
broader issues raised by the growing role of data and algorithms
in society as a whole. For example, ethical questions arise at every
step of the data science life cycle. Where data science courses
teach professional competencies of statistics, computer science,
and various content areas, they can also introduce students to
the ethical standards of research and practice in those domains
[NASEMS18]. Some data science textbooks already address such
issues as misleading data visualizations, p-hacking, web scraping,
and data privacy [Baumer17].

A recent trend in incorporating such ethical practices includes
incorporating anti-bias algorithms in the workplace. Starting from
the beginning of their undergraduate education, UC Berkeley stu-
dents can take History 184D: Introduction to Science, Technology,
and Society: Human Contexts and Ethics of Data, which covers the
implications of computing, such as algorithmic bias. Additionally,
students can take Computer Science 294: Fairness in Machine
Learning, which spends a semester in resisting racial, political,
and physical discrimination. Faculty have also come together to
create the Algorithmic Fairness and Opacity Working Group at
Berkeley’s School of Information that brainstorms methods to
improve algorithms’ fairness, interpretability, and accountability.
Implementing such courses and interdisciplinary groups is key
to start the conversation within academic institutions, so students
can mitigate such algorithmic bias when they work in industry or
academia post-graduation.

Databases and algorithms are socio-technical objects; they
emerge and evolve in tandem with the societies in which they
operate [Latour90]. Understanding data science in this way and
recognizing its social implications requires a different kind of
critical thinking that is taught in data science courses. Issues such
as computational agency [Tufekcil5], the politics of data classifi-
cation and statistical inference [Bowker08], [Desrosieres11], and
the perpetuation of social injustice through algorithmic decision
making [Eubanks19], [Noblel18], [ONeill8] are well known to
scholars in the interdisciplinary field of science and technology
studies (STS), who should be invited to participate in the develop-
ment of data science curricula. STS or other courses in the social
sciences and humanities dealing specifically with topics related to
data science may be included in data science programs.

Including training in ethical considerations at all levels of
society and all steps of the data science workflow in undergraduate
data science curricula could play an important role in stimulating
change in industry as our students enter the workforce, perhaps
encouraging companies to add ethical standards to their mission
statements or to hire chief ethics officers to oversee not only day-
to-day operations but also the larger social consequences of their
work.

Summary & Vision

We envision a world where all students can learn ethical data-
driven techniques regardless of their domain and can manipulate
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data to find better solutions to problems. To do that requires a four
part strategy involving creating a campus wide foundational data
science course, the modularization of data science course content
to integrate it with courses in existing domains, the scalable cloud
infrastructure power it all, and the human context and ethics
content to reign in misuse of data & artificial intelligence. Inte-
grating Python across different fields exposes students to learning
programming in areas they would not have previously expected.
These strategies will accelerate the creation of a space for Data
Science to exist as a cross-campus endeavor and engage faculty
and students in different departments
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Case study: Real-world machine learning application
for hardware failure detection

Hongsup Shin**

Abstract—When designing microprocessors, engineers must verify whether the
proposed design, defined in hardware description language, does what is in-
tended. During this verification process, engineers run simulation tests and can
fix bugs if the tests have failed. Due to the complexity of the design, the baseline
approach is to provide random stimuli to verify random parts of the design. How-
ever, this method is time-consuming and redundant especially when the design
becomes mature and thus failure rate is low. To increase efficiency and detect
failures faster, it is possible to train machine learning models by using previously
run tests, and assess the likelihood of failure of new test candidates before
running them. This way, instead of running random tests agnostically, engineers
use the model prediction on a new set of test candidates and run a subset of
them (i.e., "filtering" the tests) that are more likely to fail. Due to the severe
imbalance (1% failure rate), | trained an ensemble of supervised (classification)
and unsupervised (outlier detection) models and used the union of the prediction
from both models to catch more failures. The tool has been deployed in an
internal high performance computing (HPC) cluster early this year, as a comple-
mentary workflow which does not interfere with the existing workflow. After the
deployment, | found performance instability in post-deployment performance and
ran various experiments to address the issue, such as by identifying the effect
of the randomness in the test generation process. In addition to introducing the
relatively new data-driven approach in hardware design verification, this study
also discusses the details of post-deployment evaluation such as retraining, and
working around real-world constraints, which are sometimes not discussed in
machine learning and data science research.

Index Terms—hardware verification, machine learning, outlier detection, de-
ployment, retraining, model evaluation

Introduction
Simulation-based hardware verification

Hardware verification is the process of checking that a given
design correctly implements the specifications, which are the tech-
nical description of the computer’s components and capabilities.
It is recognized as the largest task in silicon development and
as such has the biggest impact on the key business drivers of
quality, schedule and cost. In the computer hardware design cycle,
microprocessor manufacturing companies often spend 60-70% of
the cycle dedicated to the verification procedure. Traditionally, two
techniques have been used: formal and simulation-based (random-
constraint) methods [loal2]. The former adopts a mathemati-
cal approach such as theorem proving and requirement checks

x Corresponding author: hongsup.shin@arm.com
# Arm Research

Copyright © 2019 Hongsup Shin. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

[Wil0O5], which provides exhaustiveness but doesn’t scale well
with design complexity. Due to the exponentially-growing design
complexity, the more widely used approach is the simulation-
based testing, which simulates a design by providing stimuli to
tests. These stimuli can be considered as arbitrary values that
control certain functionalities of the design that were expressed
in hardware description language such as whether to turn on or
off a specific setting. During simulation-based testing, verification
engineers provide a set of constraints to stimuli so that they can
direct tests toward a certain direction. However, it is not easy to
target certain design parts deterministically and engineers often
depend on previous knowledge or intuition.

Failures (bugs) in hardware verification

Hardware verification can be compared to unit testing in software
engineering, especially since design functionalities are realized
in hardware description language (HDL) like Verilog. Similar to
software testing, hardware verification process involves checking
whether simulations of the code written in HDL with a set of
given input values (i.e., tests with certain inputs), show desirable
behavior. If a test returns undesirable output, it is considered as
a failure (bug). To fix the failures, engineers modify the HDL
source code such as by fixing "assign" statements or by correcting
or adding conditions (e.g., "if" statements), and so on [SudO8].
The HDL-level hardware verification is one of the many steps in
hardware testing, which precedes physical design implementation.
This low-level verification is a critical step in hardware testing
because fixing a bug in a higher level (e.g., in physical design or
even in a product) is more costly and challenging because it is
hard to identify which previous steps have bugs.

Previous machine-learning based approach

The ultimate goal of hardware verification is to have a (close-to)
failure-free design. From the simulation-based testing perspective,
this is an exploration problem where machine learning can be
useful. For instance, reinforcement learning algorithms can be
used to explore the complex space of test stimuli by learning
a reward function [loal2]. However, this approach is not fea-
sible because the simulation-based testing is non-deterministic
and intractable, which makes it difficult to estimate the level
of stochasticity. This is mainly because the motivation for the
simulation-based approach is randomization, often implemented in
multiple steps (i.e., a value in an input setting randomizes a value
in the next step, which then randomizes a value of a different
setting in the following step, etc.). The testing tools have not
been built to track these setting values and the information on
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Fig. 1: Overview of the prototype pipeline. Top: the existing workflow
(the randomized testing). Bottom: the complementary machine learn-
ing (ML) flow. By default, engineers run all tests that are randomly
generated. In the ML flow, before running tests, the test candidates
(input settings) are shown to the models first. The models then flag
which tests are likely to fail. In the end, engineers can run the flagged
test candidates only. In the final deployed version, approximately 1000
test candidates are provided to the ML flow, which passed about 400
tests. This corresponds to 10% of the number of tests in the top flow.
The cubes correspond to the pre-trained machine learning models
(blue: a supervised model, green: an unsupervised model).

probability distributions used in the randomization process have
been left out. To address this, a few studies [Bar08], [Fin09]
adopted a probabilistic approach but they failed to mention actual
implementation in production cycle and scalability issue. The
majority of the previous research on hardware verification with
the simulation-based testing approach has focused on supervised
learning [Mam16], [Bar08], [Wag07] and evolutionary algorithms
[Ber13], [Crul3]. [Mam16] has shown a study that is the closest
to this study in nature but the authors focused on high-level
instruction set simulator (ISS), which generates instructions at a
higher level (related to hardware performance, a high-level metric)
than the design level.

Simulation-based testing in practice

In practice, engineers build a testbench to house all the compo-
nents that are needed for the verification process: test generator,
interface, driver, monitor, model, and scoreboard. To run tests,
verification engineers define a set of values as input settings, which
can be compared to input arguments to a function. These values are
passed to the test generator, and under certain constraints, a series
of subsequent values that stimulate various parts of the design
are randomly generated. This information is then passed to the
interface through the driver. The interface interacts with a design
part (register-transfer level (RTL) design written in HDL) and then
the returned output is fed into the monitor. To evaluate the result,
the desirable output should be retrieved. This information is stored
in the model, which is connected to the driver. A test is identified
as a failure when the desirable output from the driver (through the
model) and the output from the monitor do not match. In addition
to the binary label of pass or failure, the testbench also returns
a log file of the failure, if the test has failed. This log contains
detailed information of the failure. Each failure log is encoded as
an 8-digit hexadecimal code by a hash function. This code is called
unique failure signature (UFS). In general, instead of inspecting
every failure log, engineers are more interested in maximizing the
number of UFS that are collected after a batch of tests. Collecting
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a large number of UFS means failures with a great variety have
been hunted down. Having a larger variety of failures is important
because it means the tests have explored various parts of the design
and thus, it’s likely to discover failures associated with rare edge
cases or problems overlooked before. Once a new UFS is found,
engineers starts a debugging process to fix the failure.

Random generation of the test settings in the test generator is
used to run a batch of tests automatically almost daily to explore
random parts of the design with efficiency. In practice, engineers
run tests with certain input settings and collect the results after
the tests are simulated. The way that engineers control the input
settings varies widely. In an extreme case, they only control the
seed number of a pseudo-random number generator in the test
generator for the entire set of the input settings of test candidates.
Normally for a test, engineers have a set of input settings, not
just the seed, which either turns a setting on and off or controls
stochastic behavior a setting by defining what kind of values the
setting can take. For instance, if a certain input setting has a string
value of "I-5", it indicates that the actual stimulus that goes into
the simulation can be any integer from 1 to 5. Unfortunately, the
testbench does not track this information and it is not possible to
know which value ended up getting chosen eventually. Hence, it is
extremely challenging to guide a testbench to generate a specific
value of the input settings. This is why building a machine learning
model is challenging because two tests with the exact same
values of an input setting can result in two different outcomes.
Additionally, engineers make changes to the design almost every
day, which includes a new implementation or modification in the
design, or bug fixes. This affects the test behavior and in turn, data
generation process, which implies that the data distribution can
potentially change almost daily (i.e., frequent data drift).

Working around the stochastic test generation

This situation requires a unique approach. It is impossible to
eliminate randomness in the test generation step, which makes
it difficult to guide testbench to test specific input values or parts
of the system (cf. it is possible to target a specific module but
the process is still not deterministic). Instead, we leave the inputs
to be generated randomly and filter them afterward. By using
the labeled data from previous tests (i.e., tests that were already
simulated), a machine learning model (classifier) can be trained
to predict whether a test will fail or pass with a given set of
input settings. Then, it is possible to provide a large set of test
candidates (a number of tests with random input setting values,
i.e., providing the new input values) to the trained model that
assesses which subset of the test candidates will fail. This way, it
is possible to run the subset of tests only, instead of running the
entire test candidates agnostically. This can bring cluster savings
and make the verification process more efficient. However, the
existing simulation-based testing with random constraints should
remain because we still have to explore new design parts, which
in turn provides new training data for model update. Hence, two
parallel pathways can be proposed (Fig. 1); one with the default
randomized testing and the other with machine learning models,
where an additional set of test candidates are provided and then
only the tests flagged by the models are filtered and run. This
way, it is possible to continue collecting novel data from the first
pathway to explore a new input space while utilizing the data from
previous tests via the ML flow.
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Fig. 2: Relationship between the number of failures (x axis) and the
number of unique fail signatures (UFS) on the y axis (mean and
standard error). To generate the error bar, I ran 100 simulations where
in each simulation, I draw N failed tests among a pool of 250k tests
and counted the number of UFs. The more failures occur, the more
UFS are found.

Post-deployment analysis

I used both supervised and unsupervised models to address the
severe class imbalance problem and used the union of the pre-
diction from both models. This means, a test is predicted to fail
when at least one of the two models predict it will fail. With this
approach, for a set of independent testing datasets, it was possible
to find 80% of unique failure signatures (Fig. 3) by running only
40% of tests on average, compared to running tests based on the
original simulation-based method. The tool has been deployed in
production since early this year in our internal cluster as a part of
daily verification workflow, which is used by verification engineers
in the production team. It is not common in both machine learning
and hardware verification literature to find how suggested models
perform in a real-world setting. Often machine learning studies
show performance based on a single limited dataset or commonly
used benchmark datasets. In this paper, I address this and attempt
to provide practical insights to the post-deployment process such
as decisions regarding the automation of model retraining and
addressing randomness in the post-deployment period.

Methods
Data

Simulation-based testing is run almost every day via a testbench.
Every simulated test and outcome (i.e., test success (pass or
failure) and unique failure signature (UFS) if a test has failed)
are stored in a database. To address the issue of data drift over
time, two datasets are collected. The first dataset ("snapshot") is
generated from a same version of testbench (115k tests). Model
evaluation with this dataset provides information on the baseline
model performance when data doesn’t change over time. For the
second set, a month’s worth of data (ca. 6k tests per day) is
collected. The second dataset ("1-month") is used specifically to
simulate retraining scenarios and to challenge our model for every-
day changes in the testbench (150k). Both datasets are from a
specific unit of a microprocessor with a specific test scenario. The
input dataset has individual tests as rows and test settings (stimuli)
as columns. These settings are specified by verification engineers.
The total number of settings are in the range of several hundreds.
The output dataset has tests as rows and two columns, one for
the pass-failure binary label and the other for the unique failure
signatures of the failed tests.

Data preprocessing

The input data was preprocessed based on the domain knowledge
of the verification engineers. In the raw data, roughly 70% of
the data was missing, which corresponds to input settings that
were not modified from the defaults. Using a software analogy,
this is similar to not having to specify an input argument value
in a function, if it already has a default value for that argument.
The engineers were able to obtain the default values, which fixed
the missing data issue. There were about 20% object (i.e., non-
numerical) columns. Some of them were nominal columns (e.g.,
"namel", "name2") but the majority turned out to be numerical
values in quotes (e.g., "5", "100"), quoted ranges (e.g., "1-5", "50-
100") or a dictionary with key-value pairs in quotes. For the quoted
numerical values, I simply stripped the quotes and converted them
to numbers. For the quoted ranges, it was not straightforward
because these columns have uncertainty information in them. For
instance, "1-5" means any values from 1 to 5 and there was no way
to know which value was chosen in the end and also what type of
probability distribution was used for the random draw. Although
I initially considered treating them as nominal, I decided to take
the mean of the minimum and maximum values of a range value:
for "1-5", it would be represented as (1+5)/2 = 3. This way, it
might be possible to preserve some numerical information about
the range in the input data. For the quoted dictionary, I parsed
them and expanded to multiple columns so that each key became a
column in the input dataset. Finally, I dropped columns that were
non-informative (i.e., single unique value) and duplicates. This
resulted in about 10% increase of the number of columns, which
was still in the range of several hundreds. Whenever a change is
made to the design, the set of the input settings may change. In this
project, on average, less than 5 columns (including 0) were either
added or removed every time the tests were run. When building a
training dataset from tests across multiple days with different input
settings, I used the union to include all. Here, to impute missing
values from the settings absent in the past, I used the domain
knowledge of the verification engineers. When preprocessing a set
of new test candidates for prediction, I dropped the input settings
that are absent in the feature set of the pre-trained models. The
output datasets did not require preprocessing.

Models

I used an ensemble of a supervised and an unsupervised learning
models. Due to the severe class imbalance between passes and
failures (near 99% pass and 1% failure rate) in the training data,
it is possible to either train a supervised model with adjusted
class weight or train an unsupervised model that detects outliers
(i.e. failures). For the unsupervised, because the majority of the
training data is passed tests, it is possible to consider the failures
as outliers or abnormalities. In a preliminary analysis, I found that
the supervised and the unsupervised models provided predictions
that were qualitatively different; the unique failure signatures
(UFS) from the supervised model’s and the unsupervised one’s
predictions were not identical although there were some overlaps.
Thus, when the union of both predictions were computed, there
was a small increase of UFS recovery across many testing datasets.
Hence, I decided to use both models and take the union of the
predictions. This means, when test candidates are passed to the
model for prediction, a candidate will be flagged as failure either
of the supervised or the unsupervised predicts it as failure.

Due to the frequent changes in data generation process, I
decided to use algorithms robust to frequent retraining and tuning



Model Recall Efficiency
candidates

#1 0.70 1.25

#2 (chosen) 0.66 1.85

#3 0.85 0.55

#4 0.25 2.50

TABLE 1: Example of model candidate scores and how the best
model is chosen. In the tuning process, both recall and efficiency are
considered. Efficiency of 1 means the ML flow is as efficient as the
random flow. This becomes the lower bound of model performance.
#3 is ruled out because even though it has the highest recall, the
efficiency is lower than 1 (baseline). Then, #1 is the model with the
highest recall. However, instead of choosing this, I look at other
candidates within a margin (0.05 in this case) from the maximum
value of the recall, meaning all the candidates that have recall values
between 0.70 (maximum) and 0.65 (=0.70-0.05). In this example, #2
has higher efficiency than #1 and is within the recall margin. Hence,
#2 is chosen as the best model.

(i.e., faster training time). I used a group of non-neural-net scikit-
learn (v0.20.2) classifiers as supervised and isolation forest as
unsupervised learning algorithms. For both cases, I conducted
randomized search to tune the hyperparameters and select the
best model. For the supervised, I used algorithms such as logistic
regression and tree-based ensemble methods (random forest, gra-
dient boosting, and extra trees). The winning algorithm was the
logistic regression with L2 regularization, potentially because the
preprocessed input data had high sparsity (i.e., more than 50% was
0 after imputation).

Engineers care more about the unique failure signatures than
simple binary labels. When a number of failures are found in
test simulation, if the majority have the same failure signatures, it
means engineers found failures that are very similar to each other,
which has little value to them; the ultimate goal of verification is
to find every possible type of failure (bug) to make the design bug-
free. The more UFS engineers find, the more likely to find novel
failures. Moreover, if we find more UFS by running fewer tests,
it bring higher efficiency in the procedure. Hence, it would make
sense to have an objective function that maximizes the number of
UFS found, for instance, by formulating the problem as multi-class
classification where each class corresponds to a failure signature.
In the training data, each failure signature is found mostly just
once or a few times, which makes it difficult to use in model
training. However, I found that the number of failure signatures
increases with the number of failures (Fig. 2); the more failures
we find, the more unique failure signatures are retrieved. This
suggests that as long as the binary approach works well and catch
more failures, it will be natural to retrieve more unique failure
signatures.

Metrics and hyperparameter tuning

For both supervised and unsupervised models, I used recall and
precision as basic metrics (for model selection in the tuning
process). In general, it is not easy to evaluate unsupervised models
but in this case, I have labeled datasets and hence it was possible
to use the classification metrics. I also used more practical metrics
to increase interpretability and address unique failure signatures,
which engineers care about. I defined the following two metrics:
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Fig. 3: The unique failure signature (UFS) recovery rate (left) and
efficiency (right) metrics across 15-day (I month, the tests were
not generated daily during this duration) performance for the three
models (union, supervised and unsupervised). The dashed orange line
in the efficiency plot shows average fail-discovery rate (the lower
bound of the efficiency metric). Note that the union approach catches
more UFS but lowers efficiency because more tests should be run.

unique failure signature (UFS) recovery rate and efficiency.
card(Sy—1)
card(Sy—1)’

where S is a set of UFS, y and y are true and predicted labels of
failure (0 as pass and 1 as failure), and card(S) is the cardinality
of the set S, also known as the unique count of the set. Hence,
card(Sy—;) means the number of the UFS in the tests that are
predicted as failure and card(S,—;) as the total number of UFS
in all failed tests in training data. This metric is similar to recall
but here the focus is on the retrieval of UFS instead of the binary
labels.

UFS recovery rate! =

Efficiency = 7Pre;:]1510n’

N
where N is the total number of the tests in the training data. In the
deployment setting where both the default and ML flows exist, N
is the total number of the tests in the default flow. The efficiency
metric is defined to easily understand how efficient the ML flow
is compared to the baseline (the random flow). The numerator is
the precision of the ML flow. The denominator is the proportion
of the failures in training data (or the tests in the random flow),
which means how often failures are found on average when
running randomized tests (i.e., average fail-discovery rate). This
metric can be used as a lower bound of model performance. Since
engineers want to discover as many failures as possible, this would
mean maximizing recall. Due to the trade-off between recall and
precision, this attempt would decrease precision. However, the
precision should not be lower than the average fail-discovery rate,
because otherwise, the random flow would be enough or even
more efficient than the ML flow at finding failures. Therefore,
desired model performance should show the efficiency score larger
than 1.

Since the efficiency metric provides a lower bound to model
performance, when tuning the hyperparameters, instead of looking
at the combination with best recall, I use the following rule
to select the best model. First, the model candidates with the

1. This metric is the same as the Jaccard similarity of Sy—; and Sy—;. When
Jaccard similarity is used as a metric between two arbitrary sets A and B, it is
often assumed that |A — B| and |B — A| are non-zero (i.e., A ¢ B and B ¢ A).
In this case, Sy—1 C Sy—1, and thus I defined the UFS recovery rate with set
cardinality.
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Fig. 4: First 17 days (3k-4k tests per day) of model performance
(efficiency) after deployment. The performance fluctuates widely (all
the way up to more than 5 then sometimes plummet to zero). Note that
the models have not been retrained during this period.

efficiency score smaller than 1 are dropped because they are less
efficient than the baseline. Next, the maximum of the recall values
from the rest of the candidates is identified. Instead of selecting the
candidate with the maximum recall, I set up a recall margin (0.05)
from the maximum recall and check whether there are candidates
that are within the margin. Consider this as looking at not just a
single model with the best recall but multiple models with close-
to the best recall values. Among these candidates, I chose the one
with the highest efficiency. This way, without compromising the
recall too much, the model with higher efficiency can be chosen.
The example is shown in Tab. 1.

Results

For the snapshot dataset, the testing data (50% holdout data in 10
different sets; each set is generated independently) shows that the
union predictions from the trained supervised and unsupervised
models achieved a UFS recovery rate of 82 +2 % (mean + sem)
and an efficiency of 1.8 £0.1 (mean + sem). Similar results were
obtained in the /-month dataset (Fig. 3). Note that in the figure,
the UFS recovery rate increased for the union approach but the
efficiency was sacrificed because the union approach naturally
required running more tests. Since the precision score was very
low (due to the class imbalance), I ran a permutation test as a
sanity check (100 runs) and found the model performance was
significantly different from the permuted runs (p = 0.010 for the
snapshot dataset). Overall, in both datasets, on average, the union
approach flagged about 40% of the tests and was able to retrieve
80% of the unique failure signatures. This suggests that with the
ML flow, it is possible to find 80% of UFS by running only 40%
tests, compared to the random flow (baseline).

Post-deployment analysis
Deployment

Several productions engineers and I wrote Python and shell scripts
to build a command-line tool that verification engineers can run
without changing their main random flow. The script takes test
candidates as input and makes a binary prediction on a test
candidate’s success (pass or failure) based on the pre-trained
models (both the supervised and the unsupervised and then their
union). Whenever new test candidates are provided to the tool, the
input settings of those are preprocessed so that they are consistent
with the training data. The tool is provided with 1k test candidates,
generated from the testbench, and it flags about 400 tests on
average. The number of test candidates provided depends on the
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Fig. 5: Average model performance metrics obtained by simulating
retraining scenarios for the training data size (rolling window) and the
relative importance of recent data (weight decay). The x axis shows
decay parameter, which decides the weights applied to training data.
The larger the weights, the faster the decay, meaning old tests become
much less important. The y axis shows the rolling window size as
the number of days. This decides the training data size; 10 means
the training data consists of the tests gathered for the past 10-days.
For both plots, brighter colors indicate more desirable results. The
marked orange squares show the final decision on training (i.e., 14-
day window without decay)

computational resources available in the internal cluster. In the
flagging (i.e., prediction) process, the script returns the unique
identifier of the flagged test candidates. Then it invokes a testbench
simulation where only the filtered tests are run. The scripts are
deployed as a part of the production team’s continuous integration.

After the deployment, model performance started showing
high variability, sometimes very different from the pre-deployment
model performance. Figure 4 shows the model performance of the
first 17 days of post-deployment period. Note that the models were
not retrained during this period. During this period, the efficiency
scores were often larger than one but they changed dramatically
sometimes. In the following sections, I will discuss how to identify
the cause of the performance variability in the context of model
retraining, and other issues found during the post-deployment
stage.

Data for retraining

During the initial period of post-deployment, the models were
manually retrained whenever major changes were made either in
the tool or in the design. To automate the retraining process, I
tested ideas related to the model retraining. First, for any retrain-
ing, the size of training data should be determined. Technically, it
is possible to use the entire historic data from the very beginning
of the testing process. However, this is not a good idea because the
training data will be too big and very old tests would be useless
since the design would have changed a lot since then. To determine
how much training data is needed, I conducted an experiment
by considering these two factors: rolling window size and weight
decay. The rolling window size corresponds to N consecutive days
(N =3,5,7,10,14) to look back to build a training dataset. For
instance, if N = 7, tests that were run for the past 7 days become
the training data.

The weight decay is related to how fresh the data is. If tests
were generated more recently, they might be more important
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Fig. 6: The effect of the number of tests that are provided to the models
and the performance variability. Each vertical line in the raster plots
represents a single simulated run. The model performance is more
variable when fewer tests are provided to the models. It may imply
that the performance depends on the quality of the test candidates,
which can vary more if the number of the test candidates provided is
smaller. The more tests we provide, the less variable the performance
becomes.

because the design then is more similar to the current day’s
compared to older tests. The multiplicative power decay is used
to compute the weight w, (w(r) = x, where x is the power
parameter (0.3, 0.6, 0.9, 1 (=no decay)) and ¢ is the number
of days counting from today). Using the power law, x = 0.9
would mean tests from yesterday are 10% less important than
today’s. Once the weights are computed, they are applied to the
objective function during training by using sample_weight
parameter in scikit-learn models’ £it () module. It allows users
to assign weights during model fitting for every data point. Since
multiple tests are generated on a day, they each get the same
weights and the weights only vary on the day-level. Note that this
weight adjustment is added on top of the class weight adjustment
(class_weight='balanced").

All combinatorial scenarios between the rolling window and
weight decay were tested via simulation across multiple datasets
(Fig. 5). When the rolling window was too small (e.g., N = 3),
performance was low for both the UFS recovery rate and the
efficiency, which suggests the 3-day window might be too small
to construct a good training dataset. A faster decay (small power
parameter) tends to mimic the effect of having a smaller rolling
window and generally degraded performance. As shown in Fig. 5
as an orange box in each grid, the final decision was to have a 14-
day window without any decay even though the efficiency value
was slightly higher in the 7-day without any decay. This was to
consider the fact that it is possible to run a smaller number of tests
in the future due to the potential cluster resource constraints and
thus the 7-day window might not provide enough tests for training.

Random-draw effect

It is suspected that the fluctuation in model performance (Fig.
4) might be related to the quality of the test candidates. This
is because the test candidates were generated randomly in the
testbench independently and we have no control over it. Hence, by
chance, it is possible that the test candidates on a certain day might
be more challenging to the models (e.g., samples that are closer
to the decision boundary), which may result in low performance
(i.e., "random-draw" effect). To test this idea, I simulated the effect
of the random draw by varying the number of test candidates
provided to the models (Fig. 6). I found that when more candidates
were provided, model performance was more stable for both UFS

PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

recovery rate and efficiency. In the actual deployment, about 1000
test candidates were provided to the tool. As shown in Fig. 6, it
is very much possible that with 1000 candidates, the efficiency
can be lower than one or as high as four in certain draws. For
the simulation in Fig. 6, I drew tests from a pool of 250k tests
but considering that the actual number of possible test candidates
that can be ever generated is astronomical, variability in model
performance due to the random-draw effect could be more severe
in reality.

Top-K approach with periodic retraining

Although the predictions from the supervised and the unsupervised
models are binary in the deployed tool, in fact both models
(logistic regression and isolation forest) can return a continuous
score, which can be used as a measure of likelihood of failure.
For the supervised model, this is prediction probability and for the
unsupervised, this is anomaly score. In the default setting (as in
the deployed tool), the supervised model classifies the candidates
with the probability of failure larger than 0.5 as failures, and
the unsupervised flags the ones with negative anomaly scores as
outliers.

To address the random-draw effect, it might be better to use
these likelihood metrics. With these metrics, the test candidates
can be ranked and the tool can choose the top candidates, which
are more likely to fail (prediction probability for a supervised
model) or more abnormal (anomaly score of an unsupervised
model) than other candidates. Then it is possible to provide a
larger number of test candidates to the models, which can simply
choose the top K candidates. This allows the models to see more
test candidates, which can potentially reduce the random-draw
effect. It also works well with the deployed tool because the test
candidate generation is very fast and doesn’t cost much. Assuming
that enough test candidates are provided to the models, it is not
necessary to set specific cut-offs for the likelihood measures but
to pick the top K tests where K will simply depend on the cluster
resource constraints, which is more straightforward.

To test the idea of the top K approach, I ran simulations using
the tests collected during the post-deployment period, retrospec-
tively (cf. note that tests were not run every day) (Fig. 7) and
also simulated model retraining. I set K = 400, then simulated and
compared the following three scenarios:

e Random K: K tests that were randomly drawn from the
tests that were run in the existing random flow. Approx-
imately, 3k-4k tests were run daily and thus, a subset of
K tests (K = 400) were randomly drawn and this process
was repeated multiple times. Note that this flow does not
involve the ML models. This simulation is to approximate
the average outcome of the random flow when K tests are
run. It is represented as gray dot-line (mean and sem from
100 random simulations) in Fig. 7.

o Top K without any retraining: Top K candidates flagged as
failure by the models. The models saw the input settings
of the ftests that were run in the existing random flow
(the same 3k-4k tests from the Random K). Using the
same tests as in the "Random K" is important to make
the comparison fair and consistent. In this scenario, both
supervised and unsupervised models were never retrained.
This is shown as blue dots in Fig. 7.

o Top K with retraining under "three-strikes" rule: Same
as the previous but both models were retrained whenever
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Fig. 7: Comparison in UF'S counts between the randomly drawn K tests and the model-filtered K tests (K=400) for 36 days after deployment.
The prediction probability and the anomaly score were used to rank the filtered test candidates and choose the top K tests to run (the orange
crosses and blue dots), for the supervised and the unsupervised model, respectively. For the orange crosses, the models were retrained and
tuned whenever the model performance was worse than the baseline, three days in a row. The blue dots show the scenario without any
retraining throughout the whole period. The gray dot-line plot shows mean and 95% confidence interval of performance generated from 100
random draws from a pool of 3k tests from the random flow (daily). Since all scenarios that are compared here have the same number of tests,

direct comparison of the UFS counts is available.

model performance was lower than the Random K’s, three
days in a row. It is shown as orange crosses in Fig. 7.

Since all scenarios have the same K = 400, it is possible to
compare the unique failure signature (UFS) counts (the y axis in
Fig. 7) instead of the UFS recovery rate. Although the models
did not always perform better than the baseline, when they did
(the middle section of the figure), retraining the models based
on the "three-strikes rule" did help. This rule kept the models
relatively new but also helped keeping good models without
retraining too frequently. In the middle section of the figure, it
was possible to use the same models without retraining for almost
two weeks. Theoretically, it is possible to retrain the models every
day. However, model retraining is not free and it still consumes
computational resources in the internal cluster. This means, too
frequent retraining can undermine the benefit of using the ML
models.

This simulation was based on the 3k-4k tests that were run
almost daily. To compare the model performance and the random-
testing results, it was important to use the same set of tests for
the simulation; the models saw the input settings of the same 3k-
4k tests and made predictions which were then compared to the
actual results. In this case, the models have seen only 3k-4k of test
candidates but in reality, if the top K approach is adopted, it will
be possible to increase the number of candidates provided to the
models, which may potentially increase model performance given
that the models see a larger number of the candidates. During
the mid two-week period in Fig. 7, on average, the "top K with
retraining" approach was able to obtain 2.62+1.21 (mean =+ std)
more UFS compared to the random flow. According to verification
engineers, even a single additional UFS is valuable once the design
is mature and failure rate is low. Hence, if the top K approach is
applied with a larger number of test candidates, it will be possible
to find even more UFS.

Opportunities for enhancement

This project still has room for improvement in terms of data
and modeling. From the data perspective, first, it’s necessary to
gather more information on data drift to easily debug abnormal

model performance. Aside from the above-mentioned random-
draw effect, the main culprit of the decrease in model performance
is a change in the design or the testbench. Currently, it is difficult
to understand a change with immediacy and to measure its degree.
For instance, in Fig. 7, model performance was worse than the
baseline for multiple days and it was very difficult to pinpoint the
reason; the only option was to increase the retraining frequency. A
possible idea to cope with this problem is to measure a change in
the design or the testbench, by comparing commits although this
might not necessarily reflect a high-level functional modification.
Thus, further discussion with domain experts is needed to find a
better solution.

Second, the input dataset quality can be improved by reducing
the randomness of the input settings. An important modeling
challenge comes from the fact that two identical input settings
can result in different outcomes because there is stochasticity in
the test generation process. Considering that a testbench cannot
be completely deterministic without a design overhaul, exposing
subsequent settings controlled by the input settings can provide
additional features to the input dataset.

Third, how to measure failure signatures can be improved
as well. Currently, the unique failure signatures are 8-digit hex-
adecimal codes from a hash function based on failure log files.
Engineers do not use any similarity metrics between hexadecimal
codes and whether a distance between two hexadecimal codes is
meaningful is unknown. Instead of using a hash function, it is
possible to directly extract semantic information from the failure
logs and use it to group and label failures in a meaningful way.
This can improve interpretability of the failure signatures and
make it possible to build a multi-class classifier, if the log files
can be categorized into several groups.

The quality of the union approach depends on the perfor-
mance of both supervised and unsupervised models. Currently,
the vote from each model has the same weight; when one of
the models flags a test candidate, the candidate is predicted as
failure. However, it is possible that the two models have different
performance, meaning one model might have better reliability than
the other. In fact, in the early stage of the post-deployment period,
I found that the supervised model performance was better than
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the unsupervised but in the later stage, it was the opposite. This
might have been caused by the design maturation over time, which
decreased the number of failures in the training dataset. Therefore,
it is possible to consider the difference in model performance
when using the ensemble approach. Related to this issue, it is
possible to apply different rolling window sizes to the two models.
For instance, the supervised model might require a larger training
dataset to obtain more failure examples. It would be possible to
find the optimal rolling window size for each model by running
an experiment similar to Fig. 5.

Conclusions

Hardware verification is a costly process in microprocessor manu-
facturing, especially when design is mature and failures are rarely
found. At this stage, the default randomized testing gets redundant
and manual intervention from verification engineers is often re-
quired, which is time-consuming. By using the input setting values
and test outcomes from the tests that were run previously (99%
pass rate), it was possible to train machine learning models that
reduce the number of tests to run by 60% while retrieving 80%
of unique failure signatures on average. This indicates, engineers
can run fewer tests to retrieve similar number of unique failure
signatures. Currently, the models have been deployed and used
by production engineers to make the verification process more
efficient.

In real-world scenarios, it is often the case where a machine
learning approach faces many practical constraints. Hardware
verification turns out to be a good example. Verification tests are
randomly generated and the information about the randomization
is intractable, which makes it difficult to control test generation or
measure the degree of the stochastic behavior. Also, ML models
are only useful in the later stage of hardware verification when it
is not easy to find failures by running random tests because in the
beginning, the random testing can find a number of failures easily.
This means, to use machine learning for the failure detection
in hardware verification, one will inevitably face severe class
imbalance. Modifying the objective function so that it actually
considers the metric of interest, unique failure signature, is not
easy because simply there are not enough training examples for
each signature. On top of this, the design and even the testbench
itself change frequently, suggesting that the data generation pro-
cess goes through frequent changes.

To address these issues, this study shows a prototype that
provides test candidates and filters out failure-prone tests instead
of trying to guide the testbench itself. To work with the class
imbalance issues, I used both supervised and unsupervised models
to address the problem as classification and outlier detection at the
same time. I chose a customized approach for model selection
by evaluating multiple metrics to be more practical and be able to
make a compromise between the metrics. Finally, I have conducted
experiments in the post-deployment process to address the details
of retraining and identifying the cause of performance variability,
which are often overlooked but crucial in deployment. In sum-
mary, this study proves that a machine learning approach can be
used for failure detection in hardware verification. It also provides
an example to work under practical constraints and investigate
performance-related issues in building actual machine learning
products.
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Expert RF Feature Extraction to Win the Army RCO
Al Signal Classification Challenge

Kyle Logue®*, Esteban Valles*, Andres Vila*, Alex Utter*, Darren Semmen*, Eugene Grayver*, Sebastian Olsen*,
Donna Branchevsky*

Abstract—Automatic modulation classification is a challenging problem with
multiple applications including cognitive radio and signals intelligence. Most of
the existing efforts to solve this problem are only applicable when the signal to
noise ratio (SNR) is high and/or long observations of the signal are available.
Recent work has focused on applying shallow and deep machine learning (ML)
to this problem. Feature generation, where raw signal information is transformed
prior to attempting classification is a key part of this process. A big question
that researchers face is whether to let the deep learning system infer the
relevant features or build expert features based on expected signal character-
istics. In this paper, we present novel signal feature extraction methods for use
in signal classification via ML. The deep learning and combined approaches
are discussed in a simultaneous publication. Expert features were utilized via
ensemble leaning and shallow neural networks to win the Army Rapid Capability
Office (RCO) 2018 Signal Classification Challenge. The features include both
standard statistical measurements such as variance and kurtosis, as well as
measurements tailored for specific waveform families. We discuss the best
statistical descriptors along with a ranked list of signal features and discuss
individual feature importance. We then demonstrate our implementation of these
features and discuss effectiveness in estimating different modulation classes.
The methods discussed when combined with deep learning are capable of
correctly classifying waveforms at -10 dB SNR with over 63% accuracy and
signals at +10 dB SNR with over 95% accuracy from an Army RCO provided
training set.

Index Terms—modulation, feature extraction, neural networks, machine learn-
ing, decision trees, wireless communication, signals intelligence, feature impor-
tance

Introduction

All conventional communications systems are designed with the
assumption that the transmitter and receiver are cooperative and
have full knowledge of the waveform being exchanged. However,
there are scenarios where the receiver does not know what
waveform (i.e. modulation, coding, etc.) has been transmitted.
Classical examples include cognitive radio network (i.e. a new
terminal enters a network and needs to figure out what waveform
is being used), and signals intelligence (i.e. interception of adver-
sary’s communications). The problem of waveform classifications,
or more narrowly, modulation recognition has been studied for
decades [ModRec]. Given the implication of SIGINT' applica-
tions before cognitive radio, much of the work had not been
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published. Key early work is done by Azzouz & Nandi [Nandil],
[Nandi2], [Azz1], [Azz2].

The fundamental approach taken by most authors has been
to find data reduction functions that accentuate the differences
between different waveforms. These functions are applied to input
samples and decision is made by comparing the values against
a set of multi-dimensional thresholds. Determining the threshold
values by hand becomes impractical as the number of clusters
and/or functions grows. The idea to apply neural networks to
help make these decisions has been around for decades [Azz2].
However, it is only recently that our understanding of machine
learning combined with enormous increase in computational re-
sources has enabled us to use ML techniques with many data
reduction functions against many simultaneous waveforms.

Challenge Description

The Army Rapid Capability Office is seeking innovative ap-
proaches to leverage artificial intelligence (AI) to conduct blind
radio frequency signal analysis. To this end, they published a
labeled modulation classification dataset and created a competition
[Army] to properly classify a pair of unlabeled test sets. This paper
details the efforts of The Aerospace Corporation’s Team Platypus
to build a modulation classification system via traditional expert
features and shallow machine learning classifiers. In this context,
shallow refers to the fact that the ML classifier will not build
features out of the raw data, instead the classifier will only use
the expert features provided. The winning submission from Team
Platypus utilized a combination of this expert feature engineering
with a deep neural network trained on raw IQ? samples, which are
described in a simultaneous companion publication.

The training dataset [Mitre] consists of 4.32 million signals
each of which containing 1024 complex (IQ) points and a label
indicating the modulation type and SNR. Modulation type is
selected from one of 24 digital and analog modulations (including
a noise class), with AWGN at six different signal-to-noise ratios
(-10, -6, -2, +2, +6, or +10 dB). The complete dataset included
30,000 rows for each modulation and SNR configuration. Sample
rate is selected from a set (200, 500, 1000, or 2000 ksps), and
symbol rate is selected from a set (4, 8, 16, or 32 samples per
symbol). Neither of the rate parameters is included in the label.

1. Signals Intelligence
2. In-Phase & Quadrature
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Fig. 1: Data flow through engineering features evaluation to classification and scoring. Light-blue denote the many variable parameters

available. In the Army dataset, cv is short for cross validation.

The competition consisted of assigning a likelihood score to
each of the 24 possible modulation classes for each of the 100,000
rows in a pair of unlabeled test sets.

Classifier performance is evaluated via a pre-defined equation
based on the well-known log loss metric, sometimes referred to
as cross-entropy loss. The traditional cross validation log loss
equation is:

1 N M
logloss = fNZ Zyijlogpij (1)

i=1j=1
Where N is the number of instances in the test set, M is the number
of modulation class labels (24), y;; is 1 if test instance i belongs
to class j and O otherwise, p;; is the predicted probability that
observation i belongs in class j. Per [Mitre] this is then scaled
between 0 and 100.
100

seore = 1+logloss

2

Note:

e A uniform probability estimate would yield a score of
23.935, not zero.

e To get a perfect 100 score participants would need to be
both 100% correct and 100% confident of every estima-
tion.

We will also use a more standard F; metric for each mod-
ulation is used. This is an excellent measurement of classifier
performance since it uses both recall » and precision p, which
better account for true positives and false positives:

Y true positive
r= . — 3)
Y false negative + Y true positive

Y true positive

= 4
p Y false positive + Y true positive @
2
Fi=1p 5)
r + )4

Approach

Team Platypus’ approach to solve this modulation classification
problem is to combine deep neural networks and a shallow
learning classifiers leveraging custom engineering features. Both
of these are supervised machine learning systems. The engineering
features that we applied to this data set are based on traditional
signal processing and digital communication techniques. Some
shallow learning classifiers, such as Extremely Randomized Trees
(ERT) [ModRec] and Random Forests [Nandil], are decision-tree
ensemble methods designed to be robust to overfitting. Ensemble

methods train multiple classifiers that will ultimately decide the
class using a majority vote or similar metric. These constituent
classifiers learn to be different by using different training datasets
and/or random parameters independent of the output. The ma-
jority voting over this diverse set tends to mitigate the possible
overfitting of the constituent classifiers. This is a highly desirable
property that becomes even more useful in applications where the
test data may have some deviations compared to the labeled train
data. The other advantage of decision-tree ensemble methods is
that they provide an estimate on whether the features are useful
in the classification process. This is further described in Feature
Importance Evaluation.

Figure 1 shows the general flow of data through the engineer-
ing features evaluation system. The labeled training data is split
into training, cross-validation, and testing using a 70%-15%-15%
split. When using neural networks, the cross-validation set is the
only fair method to prevent network overfitting. When using ERT,
the 15% allocated to cross-validation is appended to the training
set. Using the Army RCO score metric, the final version of this
system scored 65.281. This equates to a cross-validation log loss
of 0.532. The output of each step is written to large cache files to
enable quick evaluation of new features and integration into the
next processing pipeline.

Not pictured are the later steps that merge these expert fea-
tures with the ResNeXt convolutional deep neural network and a
temperature calibration step; all of which yielded an internal final
score of 76.422, which equates to a final cross-validation log loss
of 0.308.

Measurement Vectors

Multiple transformations of the raw complex measurement vectors
were made as intermediate steps to feature extraction. Most of the
reduction functions (i.e. feature extraction) are applied to each
of the transformed vectors. The following sections describe these
methods.

I.  Brute-Force PSK & QAM Symbol Estimation

Many common modulations can be expressed in the following
form:

20 = X ¥ ety ©)
n=0

Where z(;) is the received baseband continuous-time signal, x|, are

the complex-valued data symbols (each selected from some fixed

constellation, depending on modulation), Ty is the time offset of

the first symbol, s is the symbol period, and A, is the pulse-

shaping impulse response. This broad description includes all
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Fig. 2: Ranked importance of measurement vectors. Numbers in
the heat map indicate residual crossvalidation logloss. See Feature
Importance Evaluation for a description of the ranking statistics.

ordinary PSK?, APSK*, and QAM> modulations, and it can be
extended to include variants such as OQPSK(’, I QPSK, etc.

Given z(;) (or its discrete-time approximation), the blind sym-
bol recovery operation determines Ty, Ts, and hy in order to esti-
mate xj,; without attempting to determine the precise modulation
type.

For the Army RCO Challenge, this process is greatly simpli-
fied because Ts may only take one of four discrete values: 4, 8,
16, or 32 samples per symbol. Similarly, A is always the simple
rectangular pulse or a root-raised-cosine (SRRC) filter with one
of a few rolloff parameters. We simply attempt recovery for all
possible combinations of these parameters, estimate SNR using
the MM, method [Pauluzzi], and keep the configuration with the
highest SNR. (Note the generic, constant-envelope M>M,; method
will return biased results for APSK and QAM modulations, but the
max-SNR point is still accurate enough for timing estimation.) The
pulse-shaping library can be simplified by pre-calculating discrete
filter responses for 75 = 4, and decimating all other inputs to match
that effective sampling rate.

One notable special case is OQPSK. Since the dataset has
neither phase nor frequency offsets, this signal can be trivially
“converted” to QPSK by delaying the real-part of the input signal
by % This method would not work for real-world signals, but is
adequate for the Challenge.

The only remaining parameter is Ty, which we estimated using
one of two methods. The first is Seung Joon Lee’s “absolute
value nonlinearity” method [Lee]. The second is simple brute-
force search with a step size of 1/16th of the symbol period,
retaining the output with the highest SNR (as above). The former
method is selected because it ran considerably faster and returned
essentially identical results.

Given all input parameters, we decimate z(, to four samples
per symbol, optionally delay the in-phase part of the signal (see

3. Phase Shift Keying

4. Amplitude and Phase Shift Keying

5. Quadrature Amplitude Modulation

6. Offset Quadrature Phase Shift Keying
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Fig. 3: Ranked importance of descriptive statistics. See Feature
Importance Evaluation for a description of the NNy statistic.

above), apply the selected matched filter, then finally estimate x|,
by applying piecewise quadratic interpolation to the filtered signal.

The resulting symbol set is not used directly, but is used to
calculate various statistics (such as the decision-directed noise
power) that are used as machine-learning features.

II.  Phase Histogram

The purpose of this metric is to estimate how many different
modulated phases were present in each waveform. The goal is
to provide a way to differentiate between different M-ary PSK
waveforms.

To this end, we first calculate the instantaneous phase of each
input signal Zz(;y. Then divide the interval from 0 to 27 into 32
equal-size bins and count the number of samples within each bin.
The resulting histogram is circular-shifted such that the largest
count is in first bin. The output feature set is simply the vector of
32 counts, one per bin. Since the input vector size is fixed at 1024
samples, no further normalization is required.

Descriptive Statistics

Descriptive statistics were applied to all vector measurands and ac-
counted for 37% of all engineering features in the most expansive
feature functions. Figure 3 details which were of most importance.
Note that some of these features are nonlinear combinations of
each other.

Custom Features

I. Decision-Directed Noise Estimation

Decision-directed noise estimation operates on recovered sym-
bols. Given a fixed constellation, the estimated noise for each
symbol x[n] is simply the difference vector to the nearest constel-
lation point. This nearest-neighbor calculation can be run quickly
using k-d trees. The estimated noise power for each constellation
is simply the mean-square power of these difference vectors.

Normally, this process would require gain and phase esti-
mation, to correctly align the received signal with the reference
constellation. For the Challenge, all input signals had a fixed gain
and no phase or frequency offset, so this step is not required.

The estimated noise is calculated separately for a constellation
from each of the following modulation types: BPSK’, QPSKS®,
8PSK’, 16PSK, 16APSK, 32APSK, 16QAM'?, 32QAM, and
64QAM. Each such estimate is then used as a machine-learning
feature.

7. Binary Phase Shift Keying, each symbol representing 1 bit
8. Quadrature Phase Shift Keying, each symbol representing 2 bits
9. 8, 16, and 32 value PSK represent 3, 4, and 5 bits per symbol

10. Similar to PSK Modulations, 16, 32, and 64 QAM represent 4, 5, and 6
bits per symbol
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Fig. 4: Ranked importance of individual features. NNp differs from
NNpy in that these permutaiton importances were derived from two
separately trained neural networks. #..; denotes total number of
features in each category noted left. P.. denotes power spectral
density. Notice that the color map is normalized per column since
metrics are difficult to compare otherwise.

II.  Hilbert Score

An analytic signal is a complex-valued function that has no
negative frequency components. The real and imaginary parts of
an analytic signal are real-valued functions related to each other by
the Hilbert transform. The negative frequency components of the
Fourier transform of a real-valued function are superfluous, due
to the Hermitian symmetry of such a spectrum. Many techniques
for modulating and demodulating single-sideband waveforms use
a Hilbert transformer as a core block.

One the most challenging waveforms we had to deal with
in this challenge is differentiating between the AM-SSB'!' and
AM-DSB!? pair, especially given the modulation bandwith was
as little as 0.5% of the total bandwidth in some cases. The
initial intent of this method is to convert time domain data to
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analytic domain. Another modulation pair that our classifiers had
issues with is differentiating QPSK and § QPSK waveforms. The
“Hilbert score” feature is developed to help our classifier reduce
confusion among these similar modulations.

The metric is defined as follows:

HSM = \ZH(real (z[t] - 20))] +ZH(imag (z[t]-z0))| (D

Where HSM is the Hilbert score metric, H(z) is the Hilbert
transform, z is the vector of input samples, and zo is a rotation
phasor at either O or 45°. This figure of merit proved to be useful
to our shallow classification algorithm.

III. DC Power

This metric is simply the Oth bin of the FFT of the complex
input vector. The feature consists of the real and imaginary part of
this value, considered separately.

IV.  Simple SNR Estimation

In principle, given that at the time this metric is imple-
mented we were already using more precise SNR estimators, the
usefulness of this simpler and noisier estimator may not have
been justified. However, the extremely randomized tree classifier
reported this metric as initially useful and we will use it as a
baseline for other metrics.

av LIzl

SNRsimple = W (8)

V. M>M4 SNR Estimation

Pauluzzi in [Pauluzzi] presents a comparison of different SNR
estimators for phase-shift keyed (PSK) channels with additive
white Gaussian noise (AWGN) noise. Though many of those
methods are of limited accuracy at very low SNR, the MMy
method still performs well under such conditions.

MM, method uses the second and fourth moments of a wave-
form to estimate its SNR. Though it is only directly applicable to
constant-envelope signals, it is still useful for relative comparisons
under almost any conditions. For simplicity, we use the general-
ized complex form (m-ary PSK) regardless of modulation:

\V 2M22_M.v
My — \/2M3 — My

Many digital communication algorithms require knowledge of
the operating signal-to-noise ratio (SNR). Different algorithms
exist that estimate signal and noise power or the actual ratio
between these two. However, most of the known techniques at low
SNR either fail or have very large variance. In order to estimate
SNR below 5 dB, we developed a technique that builds on the
work by Davenport [Davenport]. This approach to SNR estimation
introduces a non-linear technique that uses the inherent properties
of non-linear devices, such as a limiter or an automatic-gain-
control (AGC) device, to estimate negative SNRs. In our case, the
non-linear function used is a sign function. The properties of these
devices used for SNR estimation are well known and have been
carefully studied in the literature [Davenport]. Similarly to many
tracking loops operating at low SNRs, this method multiplies the

SNRyv,m, = &)

VI. o SNR Estimation

11. Single Sideband Amplitude Modulation
12. Dual Sideband Amplitude Modulation
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Fig. 5: Top 30 individual engineering features sorted by neural network permutation importance.

current sample of a given waveform by the sign of the previous
sample (under an assumption of multiple samples per symbol).

Sye [k] = sign(zre[t] - zre[t —1]))
Sim [k] = Sign(lim[t] *Zim [t - 1]))

o= %Zsign(sre[f] +Slm[t])

If the signal is modulated, this process will introduce an error
every time the sign of a symbol changes. If the signal has no
modulation present, then this block is simply equivalent to a
magnitude block. This operation is performed independently on
the real and imaginary component of the signal. The metric can be
plugged into the result from [Davenport] where for a non-coherent
receiver, the SNR can be approximated by:
2

1-a?
A comparison of the Simple, MyM,, and ¢ SNR estimators are
shown in Figure 6 and Figure 7.

SNR Estimate

SNRa =

-20 i i | i i
(10) -15 -10 -5 0 5 10 15

SNR Input

Fig. 6: Comparison of SNR estimation methods of a PSK modulated
signal including novel SNRy, metric.

VII. N-M-D Power Estimation

In the SNRyy, 1, method, we see that the differences of signal
moments can be part of the core of SNR estimation algorithms. > .
As we explored generating new features to aid our shallow (SSB) depends on this assumption.
classifier, we introduced a new feature that would simply compute First, the carrier frequency and phase is estimated with the

the difference of two moments M, — M,. This proved to be of three-sample discrete-Fourier-spectrum interpolator described in
section II1.D. of Macleod [Macleod]. Multiplication by the inverse

of the estimated carrier signal (with unit amplitude) makes the
estimated carrier DC. Next, two transformations of the resulting
analytic signal are compared.
1. The mean is simply subtracted from the signal: if the signal
The sample AM signals all were baseband analytic signals is DSB, this would result in its coherent demodulation.
with a residual carrier close to zero frequency. The feature we 2. Non-coherent demodulation is achieved by taking the mod-

designed to distinguish double sideband (DSB) vs. single sideband

extremely useful as a feature generating function. This function is
not meant to compute an approximation metric for estimating SNR
but as an intermediate feature in the signal classification process.

VIII. AM Hypothesis Testing
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Fig. 7: Error of SNR estimation methods.

ulus of the analytic signal and subtracting off its mean over the
sample time.

The feature used is the energy of the difference between
these two transformations, divided by the energy of the first
transformation. When close to zero, the signal would likely be
DSB and, when close to one, SSB.

IX. Modified Allan Deviation (Mod G} (7))

Typically used as a tool to characterize the stability of time
& frequency sources, we applied the modified Allan deviation
[NIST] statistic to a number of angle measurements taken of
the raw signal and several low-pass transformations. These were
computed with a Butterworth Sth-order low pass with cutoff
frequencies at 2.5% and 37.5% of the max & min sample rates
in order to filter for narrowband modulations.

Zz(t) = arctan2(real(z(t)), imag(z(t))) (11)

This effectively captured the variability of phase over a number of
averaging taus including 1, 2, 4, 8, 16, and 32 complex samples.
A nice implementation can be found in the AllanTools'? python
module.

X. Zero Crossings

Some modulations such as § QPSK are designed such that
transitions between symbols avoid passing through the origin. In
general, this is used to reduce peak-to-average signal power ratios,
which removes certain design constraints on signal amplifiers.

The zero-crossing metric is selected to detect these types of
modulations. Considering the real and imaginary parts separately,
the metric examines the sign of each sample and counts the total
number of transitions from positive to negative or vice versa.

The zero-crossing feature is calculated on the z() directly, but
is most valuable on the multiple lowpass transformations.

Feature Importance Evaluation

When single or multiple features were added to the feature
extraction engine they are computed over all signals in the training

13. https://pypi.org/project/AllanTools/
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set. These features were then appended to the shared cache of
features from prior runs. This new larger feature set is then sent to
classification and a score is produced.

Initial feature importance is derived from the delta change in
score from run to run. This method requires close tracking of
every feature and is ambiguous when multiple features or vectors
of features are added simultaneously. To address this, several more
precise approaches are used to evaluate performance.

A comparison of the following feature importance statistics
can be found in Figures 2, 3, 4, and 5.

1. Gini Importance (ETg)

Gini importance or mean decrease in impurity, is imple-
mented in sklearn for Random Forest type classifiers as the
feature_importances_ attribute. After training this metric is avail-
able with no additional effort or computation, giving immediate
feedback. This metric is useful for the Extra Trees classifier
specifically, but is only available for ensemble-type classifiers.
While his metric is computationally free, there are several pitfalls
described by [Cutler] such as incorrect valuation of correlated or
random features that make Gini importance of limited use.

II.  Permutation Importance (E7p & NNp)

Permutation importance [Parr] can be computed for any classi-
fier by creating a logloss benchmark score for a test set (Eq 1), then
randomly permuting 1 feature across all signals. This has the effect
of keeping the population statistics of that feature constant, but
removing it’s contribution to the overall logloss score. Permutation
importance is then calculated by subtracting the predicted logloss
score of the permuted set from the prior benchmark. Since the
shape of the input data is preserved, a trained classifier does
not need retraining and is therefor a fast metric. We denote
permutation importance for ExtraTress and our shallow neural
network as ETp & NNp respectively. Permutation importance
provides the fastest & most robust method for evaluating feature
importance for any classifier.

III. Drop-Column Importance (NN¢)

Drop-column importance [Parr] provides perhaps the highest
quality estimate of individual feature importance, but is extremely
computationally expensive and may take weeks or months to
compute for even moderately sized neural networks. An initial
logloss benchmark is computed, then a feature is dropped across
the entire test population, requiring retraining of the classifier for
every feature. Resulting importance residuals are difficult to judge
since the scale is so small and correlated features often yield near
zero change when removed.

IV.  Max-Column Importance (NNys)

Max-column importance is a metric used in Figure 2, 3, and
4, to denote the maximum NNp across many features grouped
into a set. This is computed since the quantiles of importances
are heavily skewed toward zero since there are so many (1269)
features being compared.

V. Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a technique originally
designed for gene selection [Guyon]. This method evaluates the a
feature importance estimate of choice after training, then prunes a
number of features each step attempting to build a sorted list. This
is implemented within sklearn.feature_selection as RFE. This is
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Fig. 8: Final Army RCO Al Signal Classification leaderboard.

also highly computationally intensive since it requires retraining
the classifier every step. There is value in RFE for comparing total
number of features to logloss score, especially when building a
classifier for low SWAP'# implementations where computation is
limited.

Classification Strategy & Scores

From the beginning of the challenge it was clear that in scenarios
where cross validation labeled sets were used to evaluate the
performance of classifiers, that ERT have worse overall perfor-
mance than neural networks. However, given that the nature of the
unlabeled sets was unknown, both techniques were pursued.
There were two unlabeled sets released to competitors. Esti-
mates generated for the first set using our deep neural network
estimator resulted in very low and inconsistent scores. It was
apparent that the data was very unlike the training data initially
provided. Team Platypus estimates that only half of the first
unlabeled set was like the training set. Only the ERT classifier
was applied to that set due to its resiliency to overfitting. Only one
of the competitors achieved a higher score (0.8 points) for this set.
The challenge administrators disclosed that the second set
contained data 95% like the training set. As such, a combination of
a ResNeXt deep convolutional network combined with a shallow
two-layer neural network comprised of engineering features was
used to submit the winning prediction. Team Platypus held the
highest submission score for the duration of the challenge.

Performance

The accuracy of estimation can be visualized as a confusion ma-
trix, shown in Figure 12. Each row represents the true waveform,
while each column is the estimated probability. The diagonal val-
ues correspond to the ‘correct’ estimate. Brighter colors indicate
higher confidence (e.g. the top left square indicates almost 100%
correct identification of the BPSK modulation). This view allows
us to quickly identify waveforms that are challenging for our
classifier such as the narrowband CPFSK/FSK/FM.

The F; score (see Challenge Description) provides another
view of the same data. Note that while BPSK is correctly identified
100% of the time, it is not always identified with 100% precision,
making the F; score less than 1.0. The performance of the classifier
decreases at lower SNR. For example, at 10 dB the Fj score
is perfect for most of the waveforms (Figure 10). The overall
classifier accuracy versus SNR is shown in Figure 9. Note that
we achieve about 50% accuracy even at -10 dB SNR, which is
significantly better than previously published results.
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Fig. 10: F; scores at 10 dB SNR signals only.
Conclusion

The robust results presented in this paper show the significant
progress that has been made in application of machine learning
over the past decade. However, it is important to note that the test
cases offered by the Challenge are somewhat unrealistic. Real-
world scenarios would include non-idealities like those found in
[OShea].

In regard to feature importance there were a number of
interesting results. We emphasize that while Gini importance
(ETg) can approximate neural network permutation importance
(NNp), it can be very misleading when given duplicate or random
features. Drop-column importance provides a metric that gives an
absolute value of the individual contribution of a feature, but is
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prohibitively computationally expensive and with correlated fea-
tures provides almost no value. We generally found permutation
importance from our neural networks to be the best measure of
feature value in our classifiers, though all methods still generally
suffer when features correlate with other features.

We suggest that further research utilize the best statistics
and features described herein to achieve modulation classification
estimates robust to the traditional pitfalls of deep neural networks,
which include generated adversarial networks like those found in
[Dong] and [Moosavi] as well as overfitting due to lack of truth

data.
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Deep and Ensemble Learning to Win the Army RCO
Al Signal Classification Challenge

Andres Vila**, Donna Branchevsky*, Kyle Logue, Sebastian Olsen*, Esteban Valles*, Darren Semmen?*, Alex Utter*,
Eugene Grayver*

Abstract—Automatic modulation classification is a challenging problem with
multiple applications including cognitive radio and signals intelligence. Most of
the existing efforts to solve this problem are only applicable when the signal to
noise ratio (SNR) is high and/or long observations of the signal are available.
Recent work has focused on applying shallow and deep machine learning
(ML) to this problem. In this paper, we present an exploration of such deep
learning and ensemble learning techniques that was used to win the Army
Rapid Capability Office (RCO) 2018 Signal Classification Challenge. An expert
feature extraction and shallow learning approach is discussed in a simultane-
ous publication. We evaluated multiple state-of-the-art deep learning network
architectures and adapted them to work in the RF signal domain instead of the
image/computer-vision domain. The best deep learning methods were merged
with the best expert feature extraction and shallow learning methods using
ensemble learning. Finally, the ensemble classifier was calibrated to obtain
marginal gains. The methods discussed are capable of correctly classifying
waveforms at -10 dB SNR with over 63% accuracy and signals at +10 dB SNR
with over 95% accuracy from an Army RCO provided training set.

Index Terms—modulation classification, neural networks, deep learning, ma-
chine learning, ensemble learning, wireless communications, signals intelli-
gence, probability calibration

Introduction

All conventional communications systems are designed with the
assumption that the transmitter and receiver are cooperative and
have full knowledge of the waveform being exchanged. However,
there are scenarios where the receiver does not know what
waveform (i.e. modulation, coding, etc.) has been transmitted.
Classical examples include cognitive radio network (i.e. a new
terminal enters a network and needs to figure out what waveform is
being used), and signals intelligence (i.e. interception of an adver-
sary’s communications). The problem of waveform classifications,
or more narrowly, modulation recognition has been studied for
decades [Aisbett]. Given the implication of SIGINT! applications
before cognitive radio, much of the work had not been published.
Key early work is done by Azzouz & Nandi [Nandil], [Nandi2],
[Azz1], [Azz2].

The fundamental approach taken by most authors has been
to find data reduction functions that accentuate the differences
between different waveforms. These functions are applied to input
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samples and a decision is made by comparing the values against
a set of multi-dimensional thresholds. Determining the threshold
values by hand becomes impractical as the number of clusters
and/or functions grows. The idea to apply neural networks to help
make these decisions has been around for decades [Azz2]. How-
ever, it is only recently that our understanding of machine learning
combined with enormous increase in computational resources has
enabled us to use ML techniques to solve this problem.

Challenge Description

The Army Rapid Capability Office is seeking innovative ap-
proaches to leverage artificial intelligence (AI) to conduct blind
radio frequency signal analysis. To this end, they published a
labeled modulation classification dataset and created a compe-
tition [Army] to properly classify a pair of unlabeled test sets.
This paper details the efforts of The Aerospace Corporation’s
Team Platypus, the authors of this paper, to build a modulation
classification system via deep learning and ensemble learning. In
this context, deep refers to the fact that the ML classifier will
use the raw 1Q? data, instead of expertly engineered features. The
winning submission from Team Platypus utilized a combination
of these deep classifiers and shallow learning classifiers built on
expert features which are described in a simultaneous companion
publication.

The training dataset [Mitre] consists of 4.32 million signals
each of which contain 1024 complex (IQ) points and a label
indicating the modulation type and SNR. Modulation type is
selected from one of 24 digital and analog modulations (including
a noise class), with AWGN at six different signal-to-noise ratios
(-10, -6, -2, 42, +6, or +10 dB). The complete dataset included
30,000 rows for each modulation and SNR configuration. Sample
rate is selected from a set (200, 500, 1000, or 2000 ksps), and
symbol rate is selected from a set (4, 8, 16, or 32 samples per
symbol). Neither of the rate parameters is included in the label.

The competition consisted of assigning a likelihood score to
each of the 24 possible modulation classes for each of the 100,000
rows in a pair of unlabeled test sets.

Classifier performance is evaluated via a pre-defined equation
based on the well-known log loss metric. The traditional log loss
equations:

1
N !
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Fig. 1: Data flow through the classification pipeline. The many variable parameters available are denoted in light blue.

Where N is the number of instances in the test set, M is the number
of modulation class labels (24), y;; is 1 if test instance i belongs
to class j and O otherwise, p;; is the predicted probability that
observation i belongs in class j. The competition score, which we
will refer to as simply the score in the remainder of this paper,
was defined per [Mitre] as follows:

100

_ 2
1+ logloss @

score =

Notes:

A uniform probability estimate would yield a score of
23.935, not zero.

To get a perfect 100 score participants would need to be
both 100% correct and 100% confident of every estima-
tion.

We will also use a more standard F; metric for each mod-
ulation is used. This is an excellent measurement of classifier
performance since it uses both recall r and precision p, which
better account for false negatives and false positives:

Y true positive

r= 3
Y false negative +Y true positive )
_ Y true positive @
P= Y false positive + Y true positive
2
Fl=—— 5)
= + L
rTp

Approach

Team Platypus’ approach to solve this modulation classification
problem is to combine deep neural networks and shallow learning
classifiers leveraging custom engineering features. Both of these
are supervised machine learning systems.

Figure 1 shows the general flow of data through our winning
system. The labeled training data is split into training, cross-
validation, and testing using a 70%-15%-15% split. When using
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Fig. 2: Final Army RCO Al Signal Classification leaderboard.

neural networks, the cross-validation set is used to prevent clas-
sifier overfitting. Using the Army RCO score metric, the final
version of this system scored 76.422. This equates to a cross-
validation log loss of 0.308. The output of each step is written
to large cache files to enable quick evaluation of new ideas and
integration into the next processing pipeline.

Classification Strategy & Scores

There were two unlabeled sets released to competitors. Estimates
generated for the first set using our deep neural network estimator
resulted in very low and inconsistent scores. It was apparent that
the data was very unlike the training data initially provided. Team
Platypus estimates that only half of the first unlabeled set was like
the training set. Our solutions for these datasets relied exclusively
on expert engineering feature extraction and shallow classification
techniques. Only one of the competitors achieved a higher score
(0.8 points) for this set.

The challenge administrators disclosed that the second set
contained data 95% like the training set. As such, a combination
of a deep learning and shallow learning techniques as described in
the rest of this paper was used to generate the submissions for this
dataset. Team Platypus held the highest submission score for the
duration of the challenge.
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Network Type Best Scores

Simple Convolutional 45.47
VGG 58.38
Modified ResNet 66.21
ResNet-34 72.39
ResNet-50 72.80
ResNeXt-50 74.69
Xception 70.74
DenseNet 65.98

TABLE 1: Deep Learning Results.

Deep Learning Modulation Classification
Architecture Search

We implemented multiple Neural Network architectures in Keras
using the TensorFlow backend. We begun by testing variations of
the networks proposed in [OSheal]. These networks consisted of
2 or 3 convolutional layers followed by 2 or 3 dense layers. We
will call these networks "Simple Convolutional". These networks
produced scores of around 45 points. We proceeded to test 2
networks proposed in [OShea2], a VGG network and a "Modified
ResNet" network. The VGG network produces results around 55
points and the "Modified ResNet" resulted in a score of 59 points.

Our search strategy changed at this point. We conjectured
that using the state-of-the-art methods currently applied to image
classification would yield good results. Hence, we implemented
multiple algorithms by reading their papers and adapting their
ideas from 2-dimensional (images) to single dimensional (complex
time-series signals). We could not rely on previously built Keras
application models since they were all built for the 2-dimensional
images classification problem.

We implemented multiple ResNets [ResNetl], [ResNet2],
ResNeXts [ResNeXt], DenseNets [DenseNet] and Xception net-
works [Xception]. Their respective papers provided the number of
layers, the number of channels per layer and multiple other details
that we never modified in order reduce the number of parameters
to tune.

Tuning, Testing and Results

We tested these architectures with different regularization parame-
ters, location of pooling layers and convolution window sizes. The
best performance for the different architectures can be found in
Table 1. The best performance we obtained during the competition
was from a ResNeXt-50 network with a log loss of 0.339. Due
to the constraints of the competition, the sub-optimal results of
Xception and DenseNet networks may be due to lack of expert
tuning time and not an inherent deficiency of these architectures
for this problem.

The convolution window size turned out to influence perfor-
mance dramatically. We found early on that increasing the window
size would increase the complexity of the models as well as the
score. Our winning ResNeXt-50 network uses window size 64 to
obtain its 74.69 score. After the competition we trained the same
network with a convolutional window size of 3 and obtained a
score of 64.2 which would not have won the challenge.

Merging and Probability Calibration
Merging

As shown in Figure 1, we merged the best Engineering Features
(EF) network with the best Deep Learning (DL) network. We
merged by taking metrics from both the EF and DL networks
as features to go into a new dense neural network. The metrics
that worked best were the logit outputs of the last layer of both EF
and DL networks as well as the outputs of the penultimate layer
of both networks. We believe this to be a novel idea for merging
diverse neural networks. We tested using outputs of earlier layers
on both networks and didn’t obtain a better performance.

The classifier that produced the best results for these new
features was a dense neural network. At the input of the merging
neural network we use a batch normalization layer [loffe] for the
features that come from the EF network only. We then concatenate
both sets of features and connect them to a dense network that has
2 hidden layers of size 1024 and 512 respectively. The output
layer has size 24 which corresponds to the original number of
modulations in the challenge.

For reference the code to instantiate the best neural net
merging classifier is:
from keras.layers import Input,

BatchNormalization,
Concatenate,
Dense,

Activation
from keras.models import Model

#Deep Neural Net inputs

main_inputl = Input (shape=(2048,))
main_input2 = Input (shape=(24,))
#Engineering Features Neural Net inputs
auxiliary_inputl = Input (shape=(512,))
auxiliary_input2 = Input (shape=(24,))

#Batch normalizing Engineering Feature layers
x1 = BatchNormalization () (auxiliary_inputl)
x2 = BatchNormalization () (auxiliary_input2)

#Concatenate Layers
x = Concatenate ([main_inputl,main_input2, x1,
#Put through Dense Network
x=Dense (1024, activation='relu',
x=Dense (512, activation='relu',
x=Dense (24, init='he_normal') (x)
output=Activation ('softmax') (x)
model = Model (inputs=[main_inputl,
main_input2,
auxiliary_inputl,
auxiliary_input2],
outputs=output)

x21)

init="he_normal') (x)
init="he_normal') (x)

We tested other types of classifiers that we obtained by using
AutoML. The AutoML package we used is TPOT [TPOT1],
[TPOT2] which is built on top of scikit-learn. TPOT proposed
to use a combination of Linear Support Vector Classification
(sklearn.svm.LinearSVC), Naive Bayes for multivariate Bernoulli
models (sklearn.naive_bayes.BernoulliNB) and Logistic Regres-
sion (sklearn.linear_model.LogisticRegression).

The code to instantiate the best AutoML generated merging
classifier is:
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression

from tpot.builtins import StackingEstimator
import sklearn.feature_ selection as sklfs

model = make_pipeline (
sklfs.VarianceThreshold (threshold=0.1),
StackingEstimator (
estimator=BernoulliNB (alpha=100.0)),
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Classifier(s) Calibration Pre-cal Post-cal Accuracy
score score

Neural Network Temperature  75.55 75.68 86.94

BernoulliNB and  isotonic 74.75 74.8 87.2

LogisticRegression

BernoulliNB and  isotonic 73.9 74.74 87.2

LinearSVC

LogisticRegression  isotonic 73.49 74.33 86.93

LinearSVC isotonic 74.23 74.99 87.22

TABLE 2: Sub-sampled merging and calibration results.

Classifier(s) Calibration Pre-cal Post-cal Accuracy
score score

Neural Network Temperature 75.87 76.42 87.47

BernoulliNB and  isotonic 74.97 75.14 87.2

LogisticRegression

TABLE 3: Complete dataset merging and calibration results.

"

LogisticRegression(C=0.01, dual=False, penalty="11",

tol=0.001)

Probability Calibration

The final step in the pipeline presented in Figure 1 is calibration.
Probability calibration consists on modifying the final probabilities
without changing the class that corresponds to the highest prob-
ability. It uses the 15% cross-validation data to shape the output
probabilities to increase the score.

In order to calibrate our merging neural network we used
a modification of the temperature scaling approach proposed
in [Guo]. The temperature scaling approach finds the optimal
temperature scalar to divide the output logits by, that minimizes
the log loss on the cross-validation dataset. We extended this
method by finding the separate optimal temperature scalars for
each predicted modulation type using the cross-validation data.
Temperature scaling consistently increased the score of neural nets
from 0.3 to 0.6 points.

Calibration of the scikit-learn merging classifiers consisted
on using the CalibrateClassifierCV class in scikit-learn [SKCal].
This class implements two different approaches for performing
calibration: a parametric approach based on Platt’s sigmoid model
and a non-parametric approach based on isotonic regression. Our
best results were achieved with the isotonic approach which were
always between 0.1 to 0.9 points better than the uncalibrated score.

Merging and Calibration Results

The best merging and calibration results are presented in Table 2.
These results were obtained by training on the same random sub-
sample of the training dataset of size 144000. Table 3 shows the
best merging and calibration results for both neural nets classifiers
and scikit-learn classifiers when trained on the full training dataset.

Overall Performance

The accuracy of estimation can be visualized as a confusion
matrix, shown in Figures 7 and 8 for the deep learning classi-
fier and the final calibrated and merged classifier respectively.
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Fig. 3: Classifier Accuracy vs SNR for deep learning network.

Each row represents the true waveform, while each column is
the estimated probability. The diagonal values correspond to the
‘correct’ estimate. Brighter colors indicate higher confidence (e.g.
the top left square indicates almost 100% correct identification of
the BPSK modulation). This view allows us to quickly identify
waveforms that are challenging and to see where merging the
deep learning classifier with the engineering features classifier
helps. Calibration does not improve the confusion matrix since
the winning class per sample doesn’t change.

The F; score (see Challenge Description) provides another
view of the same data. Figures 5 and 6 show the performances
for the deep learning classifier and the final calibrated and merged
classifier respectively. The overall classifier accuracy versus SNR
is shown in Figures 3 and 4. Note that we achieve about 63%
accuracy even at -10 dB SNR, which is significantly better than
previously published results.

Conclusion

This paper showed the variety of ways machine learning tech-
niques in python can be used to dramatically increase the per-
formance of modulation classification algorithms. We presented
a performance overview of different deep learning architectures
when applied to the one-dimensional RF modulation-classification
problem as presented in [Army] and [Mitre]. While the best
performing architectures were ResNet and ResNeXt, we would
caution against deducing that there is something inherent in those
architectures that makes them more suited to the modulation-
classification problem. Those algorithms produced the most
promising results earlier on and thus, more time was spent running
variations of them instead of trying to improve the performance of
Xception or DenseNet networks.

This paper also presented a new merging method to fuse
different neural networks. The novelty resides in what is being
used as the input features of the merging classifiers. We used
as inputs not only the results of the final layers of the original
networks but the outputs of the last few layers of each of the
initial neural networks.
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Fig. 5: F\ scores for all test data for deep learning network.

Finally, we showed that calibration techniques can improve
the log loss of diverse classifiers. However, it is important to
note that the test cases offered by the Challenge are somewhat
unrealistic. Real-world scenarios would include non-idealities like

those described in [OShea2].
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Analyzing Particle Systems for Machine Learning and
Data Visualization with freud
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Abstract—The freud Python library analyzes particle data output from
molecular dynamics simulations. The library’s design and its variety of high-
performance methods make it a powerful tool for many modern applications.
In particular, freud can be used as part of the data generation pipeline for
machine learning (ML) algorithms for analyzing particle simulations, and it can
be easily integrated with various simulation visualization tools for simultaneous
visualization and real-time analysis. Here, we present numerous examples both
of using freud to analyze nano-scale particle systems by coupling traditional
simulational analyses to machine learning libraries and of visualizing per-particle
quantities calculated by freud analysis methods. We include code and exam-
ples of this visualization, showing that in general the introduction of freud
into existing ML and visualization workflows is smooth and unintrusive. We
demonstrate that among Python packages used in the computational molecular
sciences, freud offers a unique set of analysis methods with efficient compu-
tations and seamless coupling into powerful data analysis pipelines.

Index Terms—molecular dynamics, analysis, particle simulation, particle sys-
tem, computational physics, computational chemistry

Introduction

The availability of "off-the-shelf" molecular dynamics engines
(e.g. HOOMD-blue [ALTO08], [GNAT15], LAMMPS [Pli95],
GROMACS [BvdSvD95]) has made simulating complex systems
possible across many scientific fields. Simulations of systems
ranging from large biomolecules to colloids are now common,
allowing researchers to ask new questions about reconfigurable
materials [CDA " 18] and develop coarse-graining approaches to
access increasing timescales [SZR " 19]. Various tools have arisen
to facilitate the analysis of these simulations, many of which are
immediately interoperable with the most popular simulation tools.
The freud library is one such analysis package that differentiates
itself from others through its focus on colloidal and nano-scale
systems.

Due to their diversity and adaptability, colloidal materials are a
powerful model system for exploring soft matter physics [GSO7].
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Such materials are also a viable platform for harnessing photonic
[CDA™ 18], plasmonic [TCLC11], and other useful structurally-
derived properties. In colloidal systems, features like particle
anisotropy play an important role in creating complex crystal
structures, some of which have no atomic analogues [DEGI12].
Design spaces encompassing wide ranges of particle morphology
[DEG12] and interparticle interactions [AADG18] have been
shown to yield phase diagrams filled with complex behavior.

The freud Python package offers a unique feature set that
targets the analysis of colloidal systems. The library avoids
trajectory management and the analysis of chemically bonded
structures, which are the province of most other analysis plat-
forms like MDAnalysis and MDTraj (see also 1) [MADWBI11],
[MBH"15]. In particular, freud excels at performing analyses
based on characterizing local particle environments, which makes
it a powerful tool for tasks such as calculating order parameters to
track crystallization or finding prenucleation clusters. Among the
unique methods present in freud are the potential of mean force
and torque, which allows users to understand the effects of particle
anisotropy on entropic self-assembly [VAAST14], [VAKA ™ 14],
[KGG16], [HMA*15], [AAM™17], and various tools for identi-
fying and clustering particles by their local crystal environments
[TvAG19]. All such tasks are accelerated by freud’s extremely
fast neighbor finding routines and are automatically parallelized,
making it an ideal tool for researchers performing peta- or exascale
simulations of particle systems. The freud library’s scalability
is exemplified by its use in computing correlation functions on
systems of over a million particles, calculations that were used to
illuminate the elusive hexatic phase transition in two-dimensional
systems of hard polygons [AAM™17]. More details on the use
of freud can be found in [RDH'19]. In this paper, we will
demonstrate that freud is uniquely well-suited to usage in the
context of data pipelines for visualization and machine learning
applications.

Data Pipelines

The freud package is especially useful because it can be or-
ganically integrated into a data pipeline. Many research tasks in
computational molecular sciences can be expressed in terms of
data pipelines; in molecular simulations, such a pipeline typically
involves:

1) Generating an input file that defines a simulation.
2) Simulating the system of interest, saving its trajectory to
a file.
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Fig. 1: Common Python tools for simulation analysis at varying length scales. The freud library is designed for nanoscale systems, such
as colloidal crystals and nanoparticle assemblies. In such systems, interactions are described by coarse-grained models where particles’
atomic constituents are often irrelevant and particle anisotropy (non-spherical shape) is common, thus requiring a generalized concept of
particle "types" and orientation-sensitive analyses. These features contrast the assumptions of most analysis tools designed for biomolecular

simulations and materials science.

3) Analyzing the resulting data by computing and storing
various quantities.

4) Visualizing the trajectory, using colors or styles deter-
mined from previous analyses.

However, in modern workflows the lines between these stages
is typically blurred, particularly with respect to analysis. While
direct visualization of simulation trajectories can provide insights
into the behavior of a system, integrating higher-order analyses is
often necessary to provide real-time interpretable visualizations in
that allow researchers to identify meaningful features like defects
and ordered domains of self-assembled structures. Studies of
complex systems are also often aided or accelerated by a real-time
coupling of simulations with on-the-fly analysis. This simultane-
ous usage of simulation and analysis is especially relevant because
modern machine learning techniques frequently involve wrapping
this pipeline entirely within a higher-level optimization problem,
since analysis methods can be used to construct objective functions
targeting a specific materials design problem, for instance.

Following, we provide demonstrations of how freud can be
integrated with popular tools in the scientific Python ecosystem
like TensorFlow, Scikit-learn, SciPy, or Matplotlib. In the context
of machine learning algorithms, we will discuss how the analyses
in freud can reduce the 6N-dimensional space of particle posi-
tions and orientations into a tractable set of features that can be
fed into machine learning algorithms. We will further show that
freud can be used for visualizations even outside of scripting
contexts, enabling a wide range of forward-thinking applications
including Jupyter notebook integrations, versatile 3D renderings,
and integration with various standard tools for visualizing sim-
ulation trajectories. These topics are aimed at computational
molecular scientists and data scientists alike, with discussions of
real-world usage as well as theoretical motivation and conceptual
exploration. The full source code of all examples in this paper can
be found online'.

Performance and Integrability

Using freud to compute features for machine learning algo-
rithms and visualization is straightforward because it adheres to a
UNIX-like philosophy of providing modular, composable features.
This design is evidenced by the library’s reliance on NumPy

1. https://github.com/glotzerlab/freud-examples

arrays [O1i06] for all inputs and outputs, a format that is naturally
integrated with most other tools in the scientific Python ecosystem.
In general, the analyses in freud are designed around analyses
of raw particle trajectories, meaning that the inputs are typically
(N,3) arrays of particle positions and (N,4) arrays of particle
orientations, and analyses that involve many frames over time
use accumulate methods that are called once for each frame.
This general approach enables freud to be used for a range
of input data, including molecular dynamics and Monte Carlo
simulations as well as experimental data (e.g. positions extracted
via particle tracking) in both 3D and 2D. The direct usage of
numerical arrays indicates a different usage pattern than that of
tools, such as MDAnalysis [MADWB11] and MDTraj [MBH " 15],
for which trajectory parsing is a core feature. Due to the existence
of many such tools which are capable of reading simulation
engines’ output files, as well as certain formats like gsd® that
provide their own parsers, £ reud eschews any form of trajectory
management and instead relies on other tools to provide input
arrays. If input data is to be read from a file, binary data formats
such as gsd or NumPy’s npy or npz are strongly preferred for
efficient I/O. Though it is possible to use a library like Pandas
to load data stored in a comma-separated value (CSV) or other
text-based data format, such files are often much slower when
reading and writing large numerical arrays. Decoupling freud
from file parsing and specific trajectory representations allows
it to be efficiently integrated into simulations, machine learning
applications, and visualization toolkits with no I/O overhead and
limited additional code complexity, while the universal usage of
NumPy arrays makes such integrations very natural.

In keeping with this focus on composable features, freud
also abstracts and directly exposes the task of finding particle
neighbors, the task most central to all other analyses in freud.
Since neighbor finding is a common need, the neighbor finding
routines in freud are highly optimized and natively support
periodic systems, a crucial feature for any analysis of particle
simulations (which often employ periodic boundary conditions).
In figure 2, a comparison is shown between the neighbor finding
algorithms in freud and SciPy [JOPoOl]. For each system
size, N particles are uniformly distributed in a 3D periodic cube
such that each particle has an average of 12 neighbors within a
distance of r., = 1.0. Neighbors are found for each particle by

2. https://github.com/glotzerlab/gsd
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Fig. 2: Comparison of runtime for neighbor finding algorithms in
freud and SciPy for varied system sizes. See text for details.

searching within the cutoff distance r,;. The methods compared
are scipy.spatial.cKDTree’s query_ball_tree,
freud.locality.AABBQuery’s queryBall, and
freud.locality.LinkCell’s compute. The benchmarks
were performed with 5 replicates on a 3.6 GHz Intel Core
i3-8100B processor with 16 GB 2667 MHz DDR4 RAM.

Evidently, freud performs very well on this core task
and scales well to larger systems. The parallel C++ back-
end implemented with Cython and Intel Threading Building
Blocks makes freud perform quickly even for large systems
[BBC*11], [Int18]. Furthermore, freud supports periodicity in
arbitrary triclinic volumes, a common feature found in many
simulations. This support distinguishes it from other tools like
scipy.spatial.cKDTree, which only supports cubic boxes.
The fast neighbor finding in freud and the ease of integrating its
outputs into other analyses not only make it easy to add fast new
analysis methods into freud, they are also central to why freud
can be easily integrated into workflows for machine learning and
visualization.

Machine Learning

A wide range of problems in soft matter and nano-scale simu-
lations have been addressed using machine learning techniques,
such as crystal structure identification [SG18]. In machine learn-
ing workflows, freud is used to generate features, which are
then used in classification or regression models, clusterings, or
dimensionality reduction methods. For example, Harper et al.
used freud to compute the cubatic order parameter and gen-
erate high-dimensional descriptors of structural motifs, which
were visualized with t-SNE dimensionality reduction [HWG19],
[vdMHO8]. The library has also been used in the optimization
and inverse design of pair potentials [AADGI18], to compute
fitness functions based on the radial distribution function. The
open-source pythia? library offers a number of descriptor sets
useful for crystal structure identification, leveraging freud for
fast computations. Included among the descriptors in pythia
are quantities based on bond angles and distances, spherical
harmonics, and Voronoi diagrams.

Computing a set of descriptors tuned for a particular system
of interest (e.g. using values of O, the higher-order Steinhardt
W, parameters, or other order parameters provided by freud) is

800 1 | sc
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fcc
400 1
b
20094 | H}
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Fig. 3: Histogram of the Steinhardt Qg order parameter for 4000
particles in simple cubic, body-centered cubic, and face-centered
cubic structures with added Gaussian noise.

possible with just a few lines of code. Descriptors like these (ex-
emplified in the pythia library) have been used with TensorFlow
for supervised and unsupervised learning of crystal structures in
complex phase diagrams [SG18], [AAB"15].

Another useful module for machine learning with freud is
freud.cluster, which uses a distance-based cutoff to locate
clusters of particles while accounting for 2D or 3D periodicity.
Locating clusters in this way can identify crystalline grains,
helpful for building a training set for machine learning models.

To demonstrate a concrete example, we focus on a common
challenge in molecular sciences: identifying crystal structures.
Recently, several approaches have been developed that use ma-
chine learning for detecting ordered phases [SCKL15], [SG18],
[FSM19], [SNR83], [LD08]. The Steinhardt order parameters are
often used as a structural fingerprint, and are derived from rotation-
ally invariant combinations of spherical harmonics. In the example
below, we create face-centered cubic (fcc), body-centered cubic
(bce), and simple cubic (sc) crystals with added Gaussian noise,
and use Steinhardt order parameters with a support vector machine
to train a simple crystal structure identifier. Steinhardt order
parameters characterize the spherical arrangement of neighbors
around a central particle, and combining values of Q; for a range
of [ often gives a unique signature for simple crystal structures.
This example demonstrates a simple case of how freud can be
used to help solve the problem of structural identification, which
often requires a sophisticated approach for complex crystals.

In figure 3, we show the distribution of Qg values for sample
structures with 4000 particles. Here, we demonstrate how to
compute the Steinhardt Qg, using neighbors found via a periodic
Voronoi diagram. Neighbors with small facets in the Voronoi
polytope are filtered out to reduce noise.
import freud

import numpy as np
from util import make_fcc

def get_features (box,
# Create a
voro = freud.voronoi.Voronoi (
box, buff=max (box.L)/2)
voro.computeNeighbors (positions)

positions, structure):

Voronoi compute object

# Filter the Voronoli NeighborList
nlist = voro.nlist
nlist.filter(nlist.weights > 0.1)

3. https://github.com/glotzerlab/pythia
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# Compute Steinhardt order parameters
features = {}
for 1 in [4, 6, 8, 10, 12]:
gl = freud.order.LocalQl (
box, rmax=max (box.L)/2, 1=1)
gl.compute (positions, nlist)
features['qg{}'.format(1l)] = gl.Ql.copy()
return features

# Create a freud box object and an array of
# 3D positions for a face-centered cubic
# structure with 4000 particles
fcc_box, fcc_positions = make_fcc(
nx=10, ny=10, nz=10, noise=0.1)

structures = {}

structures['fcc'] = get_features(
fcc_box, fcc_positions, 'fcc')

# ... repeat for all structures

Then, using Pandas and Scikit-learn, we can train a support vector
machine to identify these structures:

# Build dictionary of DataFrames,

# labeled by structure

structure_dfs = {}

for i, struct in enumerate (structures):
df = pd.DataFrame.from_dict (structures[struct])
df['class'] = 1
structure_dfs[struct] = df

# Combine DataFrames for input to SVM
df = pd.concat (structure_dfs.values())
df .reset_index (drop=True)

from sklearn.preprocessing import normalize
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

# We use the normalized Steinhardt order parameters
# to predict the crystal structure

X = df.drop('class', axis=1).values

X = normalize (X)

y = df['class'].values

X X_test, y_train,
test_size=0.33,

_train,
X, ¥y

y_test = train_test_split(
random_state=42)

svm = SVC ()

svm.fit (X_train, y_train)

print ('Score:', svm.score (X_test,
# The model is ~98% accurate.

y_test))

To interpret crystal identification models like this, it can be
helpful to use a dimensionality reduction tool such as Uniform
Manifold Approximation and Projection (UMAP) [MHI8], as
shown in figure 4. The low-dimensional UMAP projection shown
is generated directly from the Pandas DataFrame:

from umap import UMAP
umap = UMAP ()

# Project the high-dimensional descriptors
# to a two dimensional manifold
data = umap.fit_transform(df)

plt.plot (datal:, 0], datal:, 1]

Visualization

Many analyses performed by the freud library provide a
plot (ax=None) method (new in v1.2.0) that allows their com-
puted quantities to be visualized with Matplotlib. Additionally,
these plottable analyses offer IPython representations, allowing
Jupyter notebooks to render a graph such as a radial distri-
bution function g(r) just by returning the compute object at
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Fig. 4: UMAP of particle descriptors computed for simple cubic,
body-centered cubic, and face-centered cubic structures of 4000
particles with added Gaussian noise. The particle descriptors include
Q; for 1 € {4,6,8,10,12}. Some noisy configurations of bcc can be
confused as fcc and vice versa, which accounts for the small number
of errors in the support vector machine’s test classification.

the end of a cell. Analyses like the radial distribution function
or correlation functions return data that is binned as a one-
dimensional histogram -- these are visualized with a line graph
via matplotlib.pyplot.plot, with the bin locations and
bin counts given by properties of the compute object. Other classes
provide multi-dimensional histograms, like the Gaussian density
or Potential of Mean Force and Torque, which are plotted with
matplotlib.pyplot.imshow.

The most complex case for visualization is that of per-particle
properties, which also comprises some of the most useful features
in freud. Quantities that are computed on a per-particle level
can be continuous (e.g. Steinhardt order parameters) or discrete
(e.g. clustering, where the integer value corresponds to a unique
cluster ID). Continuous quantities can be plotted as a histogram
over particles, but typically the most helpful visualizations use
these quantities with a color map assigned to particles in a two-
or three-dimensional view of the system itself. For such particle
visualizations, several open-source tools exist that interoperate
well with freud. Below are examples of how one can integrate
freud with plato®, fresnel?, and OVITO® [Stul0].

plato

plato is an open-source graphics package that expresses a
common interface for defining two- or three-dimensional scenes
which can be rendered as an interactive Jupyter widget or saved to
a high-resolution image using one of several backends (PyThreejs,
Matplotlib, fresnel, POVray’, and Blender®, among others).
Below is an example of how to render particles from a HOOMD-
blue snapshot, colored by the density of their local environment
[ALTO08], [GNA™15]. The result is shown in figure 5.

import plato

import plato.draw.pythreejs as draw

import numpy as np

4. https://github.com/glotzerlab/plato
5. https://github.com/glotzerlab/fresnel
6. https://ovito.org/

7. https://www.povray.org/

8. https://www.blender.org/
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rendered in figure 6.

# Generate a snapshot of tetrahedra using HOOMD-blue
import hoomd

import hoomd.hpmc

hoomd.context.initialize('")

# Create an 8x8x8 simple cubic lattice
system = hoomd.init.create_lattice(
unitcell=hoomd.lattice.sc(a=1.5), n=8)

# Create tetrahedra, configure HPMC integrator
mc = hoomd.hpmc.integrate.convex_polyhedron (seed=123)
mc.set_params (d=0.2, a=0.1)

Fig. 5: Interactive visualization of a Lennard-Jones particle system, vertices = [ 2_8 : 2’ _8 ’ 2’ 8;; !
.5,-0.5, 0.5),

rendered in a Jupyter notebook using plato with the pythreejs (0.5, 0.5,-0.5)
backend. (0.5,-0.5,-0.5)]

mc.shape_param.set ('A', vertices=vertices)

# Run for 5,000 steps
hoomd. run (5e3)
snap = system.take_snapshot ()

# Import analysis & visualization libraries
import fresnel

import freud

import matplotlib.cm

from matplotlib.colors import Normalize
import numpy as np

device = fresnel.Device()

# Compute local density and prepare geometry
poly_info = \
fresnel.util.convex_polyhedron_from_vertices(

Fig. 6: Hard tetrahedra colored by local density, path traced with vertices)
fresnel. positions = snap.particles.position
orientations = snap.particles.orientation
box = freud.box.Box.from box (snap.box)
1d = freud.density.LocalDensity (3.0, 1.0, 1.0)
import matplotlib.cm 1d.compute (box, positions)
import freud colors = matplotlib.cm.viridis(
from sklearn.preprocessing import minmax_scale Normalize () (1d.density))
box_points = np.asarray ([
# snap comes from a previous HOOMD-blue simulation box.makeCoordinates (
box = freud.box.Box.from_box (snap.box) fto, o, o1, o, o, o1, (o, o, o1,
positions = snap.particles.position {1, 1, o1, 1, 1, o1, [1, 1, o1,
to, 1, 11, [0, 1, 11, [0, 1, 11,
# Compute the local density of each particle [, o, 11, 1, o, 11, [1, 0, 111),
1d = freud.density.LocalDensity ( box.makeCoordinates (
r_cut=3.0, volume=1.0, diameter=1.0) (r, o, o1, (o, 1, o1, (o, o, 11,
1d.compute (box, positions) [, o, o1, (o, 1, o1, 1, 1, 11,
(t, 1, 11, o, 1, ol, [0, O, 11,
# Create a scene for visualization, o, o, 11, [, 1, 11, [1, 0, 011 1)
# colored by local density
radii = 0.5 % np.ones(len(positions)) # Create scene
colors = matplotlib.cm.viridis( scene = fresnel.Scene (device)
minmax_scale (ld.density)) geometry = fresnel.geometry.ConvexPolyhedron (
spheres_primitive = draw.Spheres( scene, poly_info,
positions=positions, position=positions,
radii=radii, orientation=orientations,
colors=colors) color=fresnel.color.linear (colors))
scene = draw.Scene (spheres_primitive, zoom=2) geometry.material = fresnel.material.Material (
scene.show() # Interactive view in Jupyter color=fresnel.color.linear([0.25, 0.5, 0.9]),

roughness=0.8, primitive_color_mix=1.0)
geometry.outline_width = 0.05

fresnel box_geometry = fresnel.geometry.Cylinder (
scene, points=box_points.swapaxes (0, 1))
fresnel? is a GPU-accelerated ray tracer designed for particle ~Pox_geometry.radius([:] = 0.1
. . . . . . . box_geometry.color[:] = np.tile(
simulations, with customizable material types and scene lighting, [0, 0, 01, (12, 2, 1))
4 4 4 4 4

as well as support for a set of common anisotropic shapes. Its fea- pox_geometry.material.primitive_color_mix = 1.0
ture set is especially well suited for publication-quality graphics. —scene.camera = ff?snel -camera. fit(

Its use of ray tracing a.lso means that an 1mage’s rendering time Scenjﬁ‘i?:;ﬁ;’f"’ﬁ;iig?i;hé .Tiégigoi‘(i)

scales most strongly with the image size, instead of the number

of particles -- a desirable feature for extremely large simulations.

An example of how to integrate fresnel is shown below and 9. https://github.com/glotzerlab/fresnel
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Fig. 7: A crystalline grain identified using freud’s LocalDensity
module and cut out for display using OVITO. The image shows a tP30-
CrFe structure formed from an isotropic pair potential optimized to
generate this structure [AADGI8].

4 p h trace the
/A ] trace tne

[= scene

fresnel.pathtrace (scene, light_samples=64,
w=800, h=800)

ovITO

OVITO is a GUI application with features for particle selection,
making movies, and support for many trajectory formats [Stul0].
OVITO has several built-in analysis functions (e.g. Polyhedral
Template Matching), which complement the methods in freud.
The Python scripting functionality built into OVITO enables the
use of freud modules, demonstrated in the code below and
shown in figure 7.

import freud

def modify(frame, input, output):

if input.particles != None:

box = freud.box.Box.from matrix(
input.cell.matrix)

1d = freud.density.LocalDensity (
r_cut=3, volume=1, diameter=0.05)

1d.compute (box, input.particles.position)

output.create_user_particle_property (
name='LocalDensity',
data_type=float,
data=1ld.density.copy())

Conclusions

The freud library offers a unique set of high-performance
algorithms designed to accelerate the study of nanoscale and
colloidal systems. These algorithms are enabled by a fast, easy-
to-use set of tools for identifying particle neighbors, a common
first step in nearly all such analyses. The efficiency of both the
core neighbor finding algorithms and the higher-level analyses
makes them suitable for incorporation into real-time visualization
environments, and, in conjunction with the transparent NumPy-
based interface, allows integration into machine learning work-
flows using iterative optimization routines that require frequent
recomputation of these analyses. The use of freud for real-
time visualization has the potential to simplify and accelerate
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existing simulation visualization pipelines, which typically involve
slower and less easily integrable solutions to performing real-
time analysis during visualization. The application of freud
to machine learning, on the other hand, opens up entirely new
avenues of research based on treating well-known analyses of
particle simulations as descriptors or optimization targets. In these
ways, freud can facilitate research in the field of computational
molecular science, and we hope these examples will spark new
ideas for scientific exploration in this field.

Getting freud

The freud library is tested for Python 2.7 and 3.5+ and is
compatible with Linux, macOS, and Windows. To install freud,
execute

conda install -c conda-forge freud

or

pip install freud-analysis

Its source code is available on GitHub'? and its documentation is
available via ReadTheDocs'!.
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CAF Implementation on FPGA Using Python Tools

Chiranth Siddappa*™, Mark Wickert*

Abstract—The purpose of this project is to provide a real time geolocation
solution by generating code for the complex ambiguity function (CAF) in a
hardware description language (HDL) and the implementation on FPGA hard-
ware. The CAF has many practical applications, the more traditional being radar
or sonar type systems. By using scientific Python tools, this project provides
a solution for testing signals and the ability to customize modules to target
multiple devices. The processing for this implementation will be done on a
PYNQ board designed by Xilinx. The PYNQ board provides a Zynq chip which
has both an ARM CPU and FPGA fabric. All required mathematical operations
for the CAF are returned to the user through Python classes which produce
synthesizable code in the Verilog HDL. The Python classes use Jinja templates
integrated into the Verilog code to allow for configuration changes that a user will
need to change for investigation and simulation, development, and test. Helper
methods are included in the package to help simulation of the HDL such as
quantization, complex data reading and writing, and methods to verify the data
using quantized values.

Index Terms—complex, ambiguity, function, overlay, verilog, jinja, jupyter, xilinx,
fpga, zynq, pyngq, linux

Introduction

In this investigation, the pre-processing steps of downsampling
and filtering are simulated and considered outside of the scope
of this project. In the case of geolocation systems, the use of
collectors and reference emitters are used to create geometries
that will allow for the detection of Doppler and movement in the
signal. The Doppler is used to calculate a frequency difference of
arrival (FDOA). Then, cross correlations can be used to determine
the time delay by denoting the peak location of the resulting output
as a time delay of arrival (TDOA). The goal of this project is to
be able to provide a real time solution for FDOA and TDOA. The
basic algorithm for calculating the complex ambiguity function
for time difference of arrival and frequency offset (CAF) has
been well known since the early 1980°s [Ste81]. In many radio
frequency applications, there is a need to find a time lag of the
signal or the frequency offset of a signal. The reader would be
familiar with a form of frequency offset known as Doppler as a
common example. The CAF is the joint time offset and frequency
offset generalization. The CAF was mainly used first for radar and
sonar type processing for locating objects using a method known
as active echo location [KPKS81]. In this scenario, a matched filter
design would be used to ensure that the signals match [Wei9%4].
More commonly with newer radio frequency systems such as
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GPS, similar but orthogonal signals are transmitted in the same
frequency range. Because of the property of orthogonal signals
not cross correlating they do not collide with one another, and
they are an optimal signal type for testing this application [ZT08].

Motivation

The CAF has many practical applications, the more traditional
being the aforementioned radar and sonar type systems, with a
similar use case in image processing. The use of cross-correlations
in the form of the dot product to find similarities is the same
theoretical basis for our use in geolocation. In the particular case
of geolocation systems, the use of collectors and reference emitters
are used to create geometries that will allow for the detection of
Doppler and movement in the signal. This method of calculation
has yet to be simplified. Currently GPU’s have been employed as
the main workhorse due to the availability as a co-prorcessor. But
the use of the FPGA has always been an attractive alternative due
to the high configurability of the hardware options, but comes with
much higher up front design cost [HP17]. For design cost, we are
primarily concerned with the development time for code that can
be written in C syntax in the form of OpenCL or CUDA for a GPU,
as compared to using an HDL which will require background in
digital logic and testing that must occur on hardware directly.

To geolocate a signal emitter’s location the Doppler is used
to calculate a frequency difference of arrival (FDOA) which
represents a satellite’s drift. Then, cross correlations can be used
to determine the time delay by denoting the peak of the resulting
output as a time delay of arrival (TDOA). The refernce signal
will be different for every use case, which motivates the need to
ensure that the resulting Verilog hardware description language
(HDL) module output can also be produced to match necessary
configurations [ver(1]. This became a project goal motivated off
work done by other projects to be able to produce code in other
languages [Sym]. Thus, the solution provided must be able to be
reconfigured based off of different needs. The processing for this
system will be targeted to a PYNQ board manufactured by Xilinx,
but has been designed such that it can be synthesized to any target
device. All Verilog HDL modules that are produced by the Python
classes conform to the AXI bus standards of interfacing [Arm17].
This allows for a streamlined plug and play connection between all
the modules and is the basis of the templating that is implemented
with the help of Jinja.

Starting Point

The main concepts necessary for the understanding of the CAF are
topics that are covered in Modern Digital Signal Processing, Com-
munication Systems, and a digital design course. These concepts
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Fig. 1: Satellite Block Diagram for Emitter and Receiver.

would be the Fast Fourier Transform (FFT), integration in both
infinite and discrete forms, frequency shifting, and digital design.
This project will show a working implementation of digital design
HDL modules implementing the logic accurately with this given
knowledge. Given the mathematical background of this project, it
is crucial to have a way to test implementations against theory.
This is the motivation for the discussion of using Python to help
generate code and test benches.

Project Overview

The goal of this project was to implement the CAF in an HDL such
that the end product can be targeted to any device. The execution
of this goal was taken as a bottom up design approach, and as such
the discussion starts from small elements to larger ones. The steps
taken were in the following order:

1) Obtain and generate a working CAF simulation

2) Break simulation into workable modules

3) Design modules

4)  Verify and generate with test benches

5) Assemble larger modules

6) Synthesize and Implement using Vivado for the PYNQ-
Z1 board

Complex Ambiguity Function

An example of the signal path in the satellite receiver scenario is
described by Fig. 1. In this case, an emitted signal is sent to a
satellite, and then received and captured by an RF receiver. Some
amount of offset is expected to have happened during the physical
relay of the signal back to a receiver within the broadcast area
of the satellite. The signal is then downconverted and filtered,
and then sent to the CAF via a capture buffer. While a signal is
sent through an upconverter and relayed to the satellite, a copy of
the same signal must be stored away as a reference to compute
the TDOA and FDOA. Both the reference and capture blocks are
abstractions, and have individual modules written in Verilog to
handle the storage of these signals.

Another very specific example of the satellite receiver scenario
is described by Fig. 2. In this scenario, we see that no emitter
exists, yet a reference signal is able to be sent to the CAF for
TDOA and FDOA calculations. This is because GPS signals use
a PRN sequence as ranging codes, and the taps for the signals
are provided to the user [ Nal8]. This provides a significant
processing gain as the expected sequence can be computed in
real time or stored locally. This project takes advantage of these
signals through the use of gps-helper [WSal].

As a basis for what the rest of this paper is describing, an
overview of the CAF and the various forms of computing are
provided.

The general form of the CAF is:

X(va) - /:;s(t)s*(z — T)gizn(f/fx)tdt’ _va < f < %

Fig. 2: Satellite Block Diagram for CAF with GPS Signal.

The equation describes both a time offset 7 and a frequency offset
f that are used to create a surface. The frequency shift f is
bounded by half the sampling rate. The discrete form is a little
simpler, and lends itself to the direct implementation [Har05]:

N e pa(f/F)miN) T fs
x(k,f):Zs[n}s [n— ke ’ ) T<f<?
n=0

where N is the signal capture window length, f; is the sampling
rate in Hz making f have units of Hz and kD is a discrete time
offset in samples with sample period 1/ f;. In both the continuous
and discrete-time domains, ¥ is a function of both time offset and
frequency offset. The symbol s represents the signal in question,
generally considered to be the reference signal. The accompanying
s* is the complex conjugate and time shifted signal.

As an example, a signal that was not time shifted would simply
be the autocorrelation [ZTO08]. It is referred to as the received
signal in this context, and it is the signal that is used to determine
both the time and frequency offset. To determine this offset, we
are attempting to shift the signal as close as possible to the
original reference signal. The time offset is what allows for the
computation of a TDOA, and the frequency offset is what allows
for the computation of the FDOA.

In this implementation, the frequency offset is created by a
signal generator and a complex multiply module that are both
configurable. Once this offset has been applied, a cross-correlation
is applied directly in the form of the dot product. This eliminates
the costly implementation case where an FFT and an inverse FFT
are used to produce a result. The signal generator can supply a
specified frequency step and accuracy with configuration of the
signal generator class [Sida]. An example of the signal generator
is shown in Fig. 9. The resulting spectrum is shown in Fig. 8. This
satisfies the frequency (f) portion of the equation. The complex
multiply module is similarly configurable for different bit widths
through the complex multiply generator class [Sida]. An example
CAF surface is provided in Fig. 3 showing how the energy of the
signal is spread over both frequency and time. This type of visual-
ization is very useful for real-world signals with associated noise.
In this project, care was taken in truncation choices to ensure that
the correlation summation ensures signal energy retention. In this
project, the CAF module that has been implemented will return
a time offset index and frequency offset index back to the user
based off provided build parameters shown in the code listing for
the Python class CAF, described in a later section for the CAF
Module. When writing the module, all simulation and testing was
done at the sample by sample level to ensure validity so the CAF
surface was not used in testing. A method for computing the CAF
using the dot product and frequency shifts has been published to
the package. This implementation is specific to this project in that
it uses a sample size that is twice that of the reference signal
for the computation. A sample output slice will be shown in the
Experiments section for the CAF module in Fig. 16.
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Hardware

The targeted hardware for this project is the Zynq processor on
the PYNQ-Z1 board. However, this project is fully synthesizable
and should be able to be targeted for any other Xilinx board.

Python and PYNQ

The PYNQ development board designed by Xilinx provides a
Zynq chip which has an ARM CPU running at 650 MHz and
an FPGA fabric that is programmable via an overlay [Xilb]. This
performance allows for a linux operating system to be run on the
CPU which in this case is Ubuntu, and hosts a Jupyter notebook
to program and interface with the FPGA fabric using an overlay.
This overlay contains mappings for ports and interfaces between
the fabric and the CPU. This functionality is very unique in that
both an ARM core and a fabric are on the same board. As shown
by Fig. 4 the overlay sits between the processing system (CPU)
and the programmable logic (FPGA). This overlay is loaded
and programmed to the fabric through a Jupyter notebook and
allows for native visualization and data interaction through any
Python tools that work inside the IPython kernel. The overlay is
represented by the yellow background with labels "Custom" and
"Accelerator" and shows how the overlay is a communication layer
between the processing system and the programmable logic.

It also contains a bitfile that will properly configure the FPGA
[Xilc]. This bitfile is generated through the Vivado Design Suite
that is provided by Xilinx by loading the output modules from the
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caf-verilog module. A different bitfile must be created for every
unique combination of configuration of the CAF and every device
that is targeted. Every instantiation of the CAF Python class that
has different parameters will require a new bitfile.

The Jupyter notebook itself is considered an interactive com-
puting pool providing an interface to do computation and proto-
typing through a web browser. In this implementation it is meant
to be an easier way for a non-hardware oriented person to be
able to access a computational accelerator designed by a hardware
engineer [Xilb].

A diagram of the processing and the programmable logic is
shown in Fig. 5. The processor system is the Cortex-A9 processor
that is running at 650MHz with 512MB of DDR3 RAM. The
FPGA is a Zynq XC7020 part which has 13,300 logic slices,
53,200 6-input LUTs, 160,400 flip-flops, 630KB of block RAM,
and 220 DSP slices. Later, a usage report is provided with a
description of how the logic was optimized to make use of
these primitives. It is possible to access the DRAM from the
programmable logic (FPGA) through an AXI IP Core.

Software
Xilinx Vivado WebPack 2018.2

The Vivado design tool provides a simulator along with the ability
to synthesize, elaborate, and implement the design [Xill14]. For
this project, this built-in simulator was used exclusively. Other
simulators were not chosen because the other target devices that
this project seeks to be implemented on are likely to also be
Xilinx products. The tool is free to download for anyone to use,
and allows the hardware engineer to develop and synthesize HDL
designs for Xilinx FPGA’s. There is also a Software Development
Kit that allows an engineer to write in C code. For this project,
all modules are written in Verilog. This was done because of the
need to instantiate multiple submodules that provide functionality
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together. When running the synthesis tool, the output was very
useful in helping make incremental design changes to fully opti-
mize the board. Although none were used in this project, Xilinx
does offer many free IP Cores that can be used in designs. They
are black boxes that can be used in both simulation and the final
implementation in HDL and block designs.

Python and Jupyter

This project made extensive use of the Python ecosystem through
the use of pip, Jupyter, and many other packages. The reader is
encouraged to view the caf-verilog source code [Sida] and
view the releases that have been made on PyPI [Sidb]. When
designing modules, a first test of what a signal should look like
when operated on was done using the interactive plotting ability
that is provided [Pro]. The generation of the modules was done
using Jinja which provides both template parsing and rendering
[Ron]. Whenever a simulated signal was changed, instead of
having to write out a file or test bench by hand, a template was
used to create the output and render it to the simulation directory.
The signals that are used to create the signal generator were first
quantized by using the NumPy library and then written to a file
that gets used a memory buffer in the signal generator [Num].
Most of the mathematical operations that are implemented were
first verified using this library. This project requires the use of
orthogonal signals to ensure that the spectral density that is being
tested is isolated from the others. This was possible using the
gps-helper module that implements the GPS gold codes that are
orthogonal PRN sequences [WSa].

Quantization

In order to use a signal in the digital domain, a signal must first be
quantized by an analog to digital converter (ADC). Most ADC’s
that are available are able to provide a 12-bit value, and some
newer devices are now able to provide 16-bits [Ana]. However,
for this project 12-bit signed signals were used during testing as
this is a very nice number to compute mentally and still provides
minimal energy loss when plotting on the spectrum.

Inspecting signals after quantization is important because
when signals are reduced in size there is information loss. This is
demonstrated by Fig. 6 where a 12 bit and 8 bit quantization of a
cosine signal is shown. Quantization helper functions are provided
in caf_verilog with the help of scikit-dsp-comm’s simpleQuant
function [WSb]. This means that the full bit value of the signal
cannot be used otherwise there is signal loss to DC gain. The
signals must be equal over 0. For a 12-bit quantization of a vector
for example the numbers must be in the range (-4095, 4095) in
comparison to the two’s complement full value of (-4096, 4095).
This is all necessary because the computation that is done on the
FPGA will be done using fixed point or an integer value. This also
reduces power and cost on the FPGA [FR]. Test files are written
out and read back as integer values via this module by all the other
classes for tests and verification.

Complex Multiply

As an example for why this module is necessary, an example
of frequency shifting a signal is presented. In Fig. 7 we have
two inputs: a positive frequency signal on top, and a negative
frequency signal in the middle. The output is shown in the bottom
plot. All of these signals are shown in a spectral density plot,
with both sampling frequencies normalized to a value of 1 for
presentation. What we see is that the resulting spectrum has a
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Fig. 7: Inputs (top and middle) and output (bottom) of the CPX
Multiply Verilog module.

signal at a frequency of the sum of the two negative and positive
frequency signals. This is what is expected. This method is what
is used to shift the captured signal for the CAF.

Signed multiplication in Verilog can be done by specifying the
signed data type. Any multiply of two numbers of the same size
requires twice the number of bits in the result [Tum]. However,
in this project the need for different size operands arises. This
module takes in two complex numbers and performs a pipelined
multiplication on the data. Before the result is provided to the
master, the result is truncated. It should be noted that no timing
constraint violations were encountered during the implementation.
The only timing constraint that was provided was the slew rate for
the fabric clock, and all other constraints were Vivado defaults.

The specific pipeline steps are presented in Table 1 which
shows which operations are completed in which pipeline stage.
Stages 1 and 2 are always conditionally assigned based on the
current state of the AXI interface so that resources are not
constantly being used. This helps for timing and for power usage.
The result is then truncated and returned to the master when
the master’s ready signal is asserted. Because this is a pipelined
implementation, an input and output can be processed every clock.

A code listing of the Verilog HDL output is provided as
reference. The two blocks that are shown are for the first step
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TABLE 1: CPX Multiply Stages

Stage  Operation

xi * yi
Xq * yq
xi * yq
xq * yi
Xu - yv

XV + yu

W NN = = =

Truncate

through the third step. The first two steps can be seen to only be
calculated when the master signal conditions are correct.

always @ (posedge clk) begin
if (m_axis_tvalid & s_axis_tready)
xu <= xi x yi;
yv <= Xq * Y9q;
xv <= xi * yq;
yu <= xq x yi;
end else begin
Xu <= xuj;
yv <= yv;
XV <= XV;
yu <= yu;

begin

end // else: !if(m_axis_tvalid & s_axis_tready)
end
always (@ (posedge clk) begin
if (m_axis_tready) begin
xu_out <= xu;
yv_out <= yv;
xv_out <= xv;
yu_out <= yu;
i_sub <= xu_out - yv_out;

i_sub_out <= i_sub;
g_add <= xv_out + yu_out;
g_add_out <= g_add;
end // if (m_axis_tvalid)
else begin
xu_out <= xu_out;
yv_out <= yv_out;
XV <= XV;
xXv_out <= xv_out;
yu <= yu;
yu_out <= yu_out;
i_sub <= i_sub;
i_sub_out <= i_sub_out;
g_add <= g_add;
g_add_out <= g_add_out;
end // else:
i <= i_sub_out[xi_bits+yi_bits-1:
xi_bits+yi_bits-i_bits];
q <= g_add_out [xq_bits+yqg bits-1:
xq_bits+yqg bits—-qg bits];
(posedge clk)

lif(m axis tvalid)

end // always @

Signal Generator

The signal generator module is implemented using a half sine
lookup table and accumulator. This is commonly known as a
numerically controlled oscillator in direct digital synthesis [MS].
This module produces a sine wave at the specified frequency by us-
ing a modulo counter that increments a phase value at every clock
cycle. Note that the sampling frequency of the signal, 625kHz,
is different from the clock frequency of the board, at 250MHz.
The number of phase bits that are necessary are determined by the
sampling frequency and the frequency resolution specified by Eq.
1.

[logz (ﬂﬂ — phase_bits 1)

freq_res
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The output of one cycle is shown in Fig. 9. The values that are
supplied to the module for the lookup table are generated using
the NumPy sine function and are quantized using helper methods
included in the caf verilog module. To set the frequency of the
signal generator, a phase step or increment value must be provided
by Egq. 2.

fout . 2phase_bits

Selk

An example spectrum of the output of the signal generator that
is created from the Python class is shown in Fig. 8. While no
calculation of power has been provided, a parameter n_bits sets
the signal strength. For this project, a value of 8-bits was found
to be sufficient to provide a frequency shifted signal. The same
settings used to generate the module used as an example in this
section are used in Fig. 10 by using the SigGen class.

= phase_increment )

Frequency Shift

The frequency shift module takes in the same parameters as the
signal generator module and adds an input for a complex value
to shift. This module needs to make sure that different bit width
signals are multiplied together correctly and that the pipeline is
managed correctly to ensure that there are no phase shifts. Fig.
10 shows an input signal, and the resulting shifted signal. When
using the Python generated Verilog module, a negative value
for the frequency will be taken care of by setting a bit in the
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from a PRN sequence from gps-helper.

module parameters to perform the complex conjugate on the signal
generator output.

Required inputs for the FreqShift Python class are the input
vector 'x’, and the number of bits for the I and Q data that
it represents. The same parameters are passed to the FreqShift
class so that the SigGen module can be instantiated internally and
accessed for naming by the Jinja template for the module.

Cross Correlation

The cross correlation is useful in comparing the time offset
between two signals. As an example, a pseudorandom sequence
signal provided by gps-helper [WSa] is time shifted in Fig. 11
by ten samples. Both of these signals are a non-return to zero
representation of the binary bit sequence. The reference is shown
with zero padding on either end so the visual representation stays
centered between the two signals.
The general form of the cross correlation is [ZT08]:

(r+9)(®) = [ FOgte+v)dr ®

In Eq. 3 the signal f(¢) is shown with the complex conjugate, and
the signal g(z) is shown with a time or sample shift of 7. When
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Fig. 12: The cross correlation of two simulated signals, showing a
positive offset of 25 samples using xcorr.

200 A

100 +

0 50 100 150 200 250

200 A

100 +

0 -
80 85 90 95 100 105 110 115 120
Inverse Center Offset (Samples)

Fig. 13: Cross correlated output of a signal of length 250.

translated into the discrete form, the form looks like the following:

=)

Y filmlglm+n) ))

m=—oo

(f*g)ln] =

When looking at the cross product in discrete form (4), it is
possible to see that the form of the multiplication and addition
closely follows that of the dot product (Eq. 5).

a-b:Za[*bi 5)
i=1

These series of equations provide a means of determining where
the signals are correlated in time, or if they are orthogonal meaning
they are not correlated at all [ZTO08]. In order to capture the full
signal power with the dot product, it is necessary to store twice
the length of the reference signal for correlation as shown in Fig.
11. Furthermore, as compared to Fig. 12 which uses xcorr, the
dot product method that produced Fig. 13 has a much higher
magnitude. This is because the xcorr method uses an FFT, and the
result is normalized to one. We also note that the axis for samples
is denoted as an inverse offset. When the peak is generated with
dot products, the center is going to be the center of the sample
length. This is because the multiply and accumulate has the highest
magnitude in the center as compared to the xcorr method with
FFT’s which produces a normalized axis around zero. Since we
are always looking at what offset is necessary to cause the shift
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back to the reference, it is left as a sample offset. This also makes
verifying the Verilog test benches much more straight forward.
However, with the dot product, the magnitude that is achieved
when a full correlation is hit is the length of the correlation
sequence itself. This means that a longer integration time allows
for a higher fidelity difference between signal magnitudes of
surrounding shifted correlations. This method reduces the amount
of multiplies that are necessary and is much simpler to implement
on an FPGA. These results were verified using the xcorr function
from scikit-dsp-comm and the dot product function provided by
NumPy. The simulation for this function required the output of
the entire sequence to be written to and sequentially read from
disk. When running the simulations it was found that the very last
dot product in the sequence was missing. A full cross correlation
using the dot product actually has two times the length plus one
to account for both positive and negative offsets.

Dot Product

The final CAF solution uses a pipelined multiply and accumulate.
When the implementation was run, it was found that a pipelined
implementation was able to make use of the primitive DSP48
type. Further fine-tuning suggestions were taken to ensure that
the multiply and accumulate functionality of the primitive type
was taken advantage of correctly [FWS].

ArgMax

Because there is a need to compare the magnitudes of complex
numbers, the argmax function is required. The mathematical
absolute value of a complex number is described in Eq. 6.
However, finding the true absolute value of the number requires
the implementation of the square root. The first option that was
looked at was a binary square root algorithm [Minl3] that only
uses base 2 division. However, this can take a variable amount of
clock cycles. An implementation is provided in the sqrt package
as reference. The other option is the CORDIC logic core provided
by Xilinx which also would apply backpressure [Xila], essentially
sequentially buffering the result by a fixed number of clocks.

r=y/x2+4y? (6)

After comparing results and performing the argmax using these
different methods a decision was made to just use the squares
of each of the real and imaginary components. This is possible
because we can use the proportion of the squared values and their
square roots to compute the argmax with the same result. Since
the largest magnitude squared value is made up of both a real
and imaginary component, it is enough to say that the largest
magnitude (x> 4 y*) will be sufficient. The result is provided back
by the next clock, with only a delay in the pipeline for the first
multiply. Then, comparisons are done within the module itself
to find the max. This also allows for taking advantage of the
larger integration time by allowing larger max values to propagate
through. The trade-off is that there is much larger utilization with
multiple instantiations all growing in size as the multiply operands
increase in size. Inspecting the utilization of the synthesized and
implemented designs did not seem to indicate that this was the
limiting factor in the design layout growth.

CAF Module

The CAF module uses a generate variable, which is part of the
Verilog standard [ver(O1] to implement the frequency shifts and
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Fig. 14: Block diagram of a CAF implementation with three frequen-
cies.
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Fig. 15: Cross correlation of a frequency shifted signal.

corresponding cross correlations. A reference buffer and a capture
buffer are instantiated in this module that provide the input to the
pipeline as shown in Fig. 14. This module is a slave to a master as
it is being driven by the data lines.

The results of a frequency shifted correlation is shown in Fig.
15, and an autocorrelation is shown in Fig. 16. We see that in Fig.
15 there is no peak. This is because two orthogonal signals should
not have any correlation energy.

In the next code listing, the Python class definition for CAF

1000

800 -

600 -

400 -

200 A

Inverse Center Offset (Samples)

Fig. 16: Autocorrelation output with length of implemented design.
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TABLE 2: 12 phase bits, 8-bit multiplication, 49 frequencies, and
1000 samples.

Resource Utilization  Available Utilization %
LUT 32682 53200 61.43
LUTRAM 490 17400 2.82

FF 28695 106400 26.97

BRAM 25.50 140 18.21

DSP 196 220 89.09

10 53 125 42.40

is provided for reference. The class takes in both a reference and
received or captured signal, and the number of bits requested to
represent the signals. These two signals are required parameters.
The reference signal is used to produce a stored reference as a
capture buffer module, and the received signal is used in the
generated test bench. The same parameters for the SigGen and
FreqShift modules are required here as well, as they are passed
down to their instantiations for the CAF to instantiate.

class CAF (CafVerilogBase) :

def _ init_ (self, reference, received, foas,
ref_i bits=12, ref_g bits=0,
rec_i_bits=12, rec_g bits=0,
fs=625e3, n_bits=8,
pipeline=True, output_dir='."):

Synthesis and Implementation

Both the synthesis and implementation were completed success-
fully, and all timing constraints were met by the tool. Several
different design sizes were elaborated and implemented, all ending
up with different utilization amounts. The final design iteration
that was able to maximize the iteration time is described by Table
2. Each of these tables describes a different usage that is still
below the specific size of the Pynq board. For different devices,
new CAF Python class instantiations should be used to explore
board usages by using the Verilog module outputs to follow the
Vivado design process.

The final implementation run shown by Table 2 was able to
use the most of the resources of the board evenly because of the
8-bit multiplication [FWS]. The first couple implementations were
using 12-bit numbers because that was what was nominally chosen
for the simulations. However, since regenerating the module is
very simple, a new CAF module was written out using the module
and tested with different shifts. The final implementation has 49
different frequency offsets and an integration sample length of
1000.

Future Work and Enhancements

When the original implementation of the sin and cosine generator
was created, a half-sine method was used. While functionally
sound, it is possible to decrease size by using a quarter-sine
implementation where only a fourth of the sine is stored [Tec].

While the body of work for caf-verilog supports the modeling
of the caf itself, this project can be used as a basis for incorporating
Verilog as an extension to the wider scientific computing field.
The SymPy Development Team has already made significant
contributions in this realm, and is being used in many projects
to support code generation for various languages such as c, c++,
and Julia [Sym]. Using a common API, it should be possible to
also provide an extension to incorporate the Verilog HDL.
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Developing a Graph Convolution-Based Analysis
Pipeline for Multi-Modal Neuroimage Data: An
Application to Parkinson’s Disease

Christian McDaniel*, Shannon Quinn, PhD¥*

Abstract—Parkinson’s disease (PD) is a highly prevalent neurodegenerative
condition originating in subcortical areas of the brain and resulting in progres-
sively worsening motor, cognitive, and psychiatric (e.g., depression) symptoms.
Neuroimage data is an attractive research tool given the neurophysiological ori-
gins of the disease. Despite insights potentially available in magnetic resonance
imaging (MRI) data, developing sound analytical techniques for this data has
proven difficult. Principally, multiple image modalities are needed to compile
the most accurate view possible; the process of incorporating multiple image
modalities into a single holistic model is both poorly defined and extremely
challenging. In this paper, we address these issues through the proposition
of a novel graph-based convolutional neural network (GCN) architecture and
present an end-to-end pipeline for preprocessing, formatting, and analyzing
multimodal neuroimage data. We employ our pipeline on data downloaded
from the Parkinson’s Progression Markers Initiative (PPMI) database. Our GCN
model outperforms baseline models, and uniquely allows for direct interpretation
of its results.

Introduction

Affecting more than 1% of the United States population over the
age of 60, Parkinson’s disease (PD) is the second-most preva-
lent age-related neurodegenerative disease following Alzheimer’s
disease [RST14]. PD diagnosis has traditionally relied on clin-
ical assessments with some degree of subjectivity [GGL 18],
often missing early-stage PD altogether [DDH16]. Benchmarks
for delineating PD progression or differentiating between similar
conditions are lacking [[LMS™18], [LWX"12]]. As such, many
efforts have emerged to identify quantitatively rigorous methods
through which to distinguish PD.

Neuroimage data is an attractive tool for PD research. Mag-
netic resonance imaging (MRI) in particular is safe for patients,
highly diverse in what it can capture, and decreasing in cost to
acquire. Recent work shows that multiple MRI modalities are
required to provide researchers and clinicians with the most accu-
rate view of a patient’s physiological state [[LCL*15], [DDHI16],
[LWX*12]]. For example, anatomical MRI (aMRI!) data is useful
for identifying specific brain regions, but the Euclidean distance
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between regions does not well-approximate the functional or struc-
tural connectivity between them. Diffusion-weighted MRI (dMRI)
measures the flow of water through the brain in order to track the
tube-like connections between regions (i.e., tracking nerve fiber
bundles a.k.a. tracts via white matter tractography; see Appendix
A in the appendices file on our GitHub repository? for more
information), and functional MRI (fMRI) measures changes in
blood oxygenation throughout the brain over time to approximate
which regions of the brain function together. As such, it is useful
to analyze a combination of these modalities to gain insights from
multiple measures of brain physiology. Processing and analyzing
multi-modal data together is both poorly defined and extremely
challenging, requiring combined expertise from neuroscience and
data analytics.

MRI data is inherently noisy data and requires extensive
preprocessing before analysis can be performed. This is often
left to the researcher to carry out; many techniques exist, and
the technical implementation decisions made along the way can
affect the outcome of later analysis. This is a major barrier to
reproducibility and prevents data analysts from applying their
skills in this domain. More work is needed to automate the
procedure and provide better documentation for steps requiring
case-specific input. To that end, we discuss our findings and
methods below, and our code is available on GitHub.

Following preprocessing, we address the issue of analyzing
multimodal MRI data together. Previous work has shown that
graph-based signal processing techniques allow multimodal analy-
sis in a common data space [[DMF'17], [KPF' 18], [ZHC18]]. It
has been shown that graph-based signal processing classifiers can
be incorporated in neural network-like architectures and applied to
neuroimage data. Similar to convolutional neural networks, Graph
Convolutional Networks (GCNs) learn filters over a graph so as
to identify patterns in the graph structure, and ultimately perform
classification on the nodes of the graph. In this paper, following
the discussion of our preprocessing pipeline, we propose a novel
GCN architecture which uses graph attention network (GAT)

1. We use “anatomical MRI” to refer to standard T1-weighted (T1w) MR
imaging. “T1 weighted” refers to the specific sequence of magnetic and radio
frequency pulses used during imaging. T1w MRI is a common MR imaging
procedure and yields high-resolution images; different tissues and brain regions
can be distinguished.

2. https://github.com/xtianmcd/GCNeuro
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layers to perform whole-graph classification on graphs formed
from multimodal neuroimage data.

On data downloaded from the Parkinson’s Progression Mark-
ers Initiative (PPMI), we compare the performance of the novel
GCN architecture to that of baseline models. We find that our
GCN model outperforms baseline models on our data. The weights
from GAT layers provide a means for direct interpretation of the
results, indicating which brain regions contributed the most to the
distinction between patients with PD and healthy controls.

Related Works

While genetic and molecular biomarkers have exhibited some
efficacy in developing a PD blueprint [[GGL" 18], [MLL" 18],
[BP14]], many research efforts have turned to neuroimaging due
to its noninvasive nature and alignment with existing knowledge
of the disease. Namely, PD affects a major dopamine-producing
pathway (i.e., the nigrostriatal dopaminergic pathway) of the brain
[Brol6], and results in various structural and functional brain
abnormalities that can be captured by existing imaging modali-
ties [[ZYH 18], [MLL"18], [GLH" 14], [TBVET"15], [LSCT14],
[GRS™16]]. Subsequent whole-brain neuroimage analysis has
identified PD-related regions of interest (ROIs) throughout the
brain, from cortical and limbic regions to the brainstem and
cerebellum [[BWST11], [TBVE"15], [GRST16]].

As neuroimage data has accumulated, researchers have worked
to develop sound analytical techniques for the complex images.
Powerful machine learning techniques have been employed for
analyzing neuroimage data [[MLL 18], [TBVE"15], [BWS"11],
[LSC™14]], but algorithmic differences can result in vastly dif-
ferent results [[GLH' 14], [Kum18], [ZYH" 18]]. [CIM"17] and
[GRS"16] found that implementation choices made during the
processing pipeline can affect analysis results as much as anatom-
ical differences themselves (e.g., when performing white mat-
ter tractography on diffusion-weighted MRI (dMRI) data and
in group analysis of resting-state functional MRI (rfMRI) data,
respectively). To overcome the effect of assumptions made by a
given analysis algorithm, many researchers have turned to appli-
cations of deep machine learning (DL) for neuroimage data anal-
ysis. Considered “universal function approximators” [HKKO90],
DL algorithms are highly flexible and therefore have low bias
in their modeling behavior. Examples of DL applications to
neuroimage analysis are widespread. [KUH " 16] proposes a 3D
convolutional neural network (CNN) for skull stripping 3D brain
images, [HDC 18] proposes a novel recurrent neural network
plus independent component analysis (RNN-ICA) model for fMRI
analysis, and [HCS™ 14] demonstrate the efficacy of the restricted
Boltzmann machine (RBM) for network identification. [LZC17]
offer a comprehensive review of deep learning-based methods for
medical image computing.

Multi-modal neuroimage analysis is increasing in prevalence
[[BSST18], [LCL"15], [DDHI16], [LMS™18], [LWX " 12]] due to
limitations of single modalities, resulting in larger and increasingly
complex data sets. Recently, researchers have utilized advances
in graph convolutional networks to address these concerns. We
discuss the mathematical background of graph convolutional net-
works (GCNs) and graph attention networks (GATs, a variant of
GCNs with added attention mechanisms) in the Methods Section
below and Appendix B in the appendices file on GitHub. Prin-
cipally, our model is based on advancements made by [KW217]
and [VCC18] on GCNs and GATs, respectively.

This work follows from previous efforts applying GCNs to
similar classification tasks. [SNF' 13] - in addition to providing in-
depth intuition behind spectral graph processing (i.e., processing
a signal defined on a graph structure) - demonstrate spectral graph
processing on diffusion signals defined on a graph of connected
brain regions. Their paper preceded but laid the groundwork for
incorporating spectral graph processing into convolutional neural
network architectures. To classify image objects based on multiple
“views” or angles, [[KZS15], [KCR16]] developed “siamese” and
“multi-view” neural networks. These architectures share weights
across parallel neural networks to incorporate each view of the
data. They group examples into pairs, aiming to classify the pairs
as being from the same class or different classes.

Efforts to utilize GCNs for multimodal neuroimage data have
used similar pairwise grouping as a way to increase the size
of their data set. [[DMF"17], [KPF'18]] train GCN models to
learn similarity metrics between subjects with Autism Spectrum
Disorder (ASD) and healthy controls (HC), using fMRI data from
the Autism Brain Imaging Data Exchange (ABIDE) database.
[ZHC18] apply a similar architecture to learn similarity metrics
between subjects with PD and HC, using dMRI data from the
PPMI data set. Their work inspired our paper; to our knowledge,
we are the first publication that uses GCNs to predict the class
of neuroimage data directly, instead of making predictions on
pairwise examples.

Discussion of the Processing Pipeline

This section walks through our pipeline, which handles the for-
matting and preprocessing of multimodal neuroimage data and
readies it for analysis via our GCN architecture. We reference the
specific python files that handle each task, and we provide some
background information. More information can be found in the
Appendices on GitHub.

Data Formatting

MRI signals are acquired through the application of precisely
coordinated magnetic fields and radiofrequency (RF) pulses. Each
image is reconstructed from a series of recordings averaged over
many individual signals, and requires extensive artifact correction
and removal before it can be used. This inherently results in
noisy measurements, magnetic-based artifacts, and artifacts from
human error such as motion artifacts [[Wanl15], [HBL10]]. As
such, extensive preprocessing must be performed to clean the data
before analysis. Appendix A on our GitHub page provides more
details on the main MRI modalities.

Our pipeline assumes that a "multi-zip" download is used to
get data from the PPMI database®. The file neuro_format . py
combines the data from multiple download folders into a single
folder, consolidating the multiple zip files and recombining data
from the same subject.

Next, before preprocessing, images should be converted to
the Neuroimaging Informatics Technology Initiative (NIfTI)* file
format. Whereas many MRI data are initially in the Digital
Information and Communications in Medicine (DICOM)> format
for standardized transfer of medical data and metadata, the NIfTT
format is structured for ease of use when conducting computa-
tional analysis and processing on these files. The size, orientation,
and location in space of the voxel data is dependent on settings

3. The "Advanced Download" option on the PPMI database splits the data
into multiple zip files, separating files from the same subject.
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used during image acquisition and requires an affine matrix to
relate two images in a standard coordinate space. The NIfTI file
format automatically associates each image with an affine matrix
as well as a header file, which contains other helpful metadata.
The software dcm2niix® is helpful for converting the data from
DICOM format to NIfTT format.

Next, it is common practice to convert your data file structure
to the Brain Imaging Data Structure (BIDS)’ format. Converting
data to the BIDS format is required by certain softwares, and
ensures a standardized and intuitive file structure. There exist
some readily available programs for doing this, but we wrote
our own function specifically for PPMI data in make_bids.py,
as the PPMI data structure is quite nuanced. This file also calls
dem2niix to convert the image files to NIfTI format.

Data Preprocessing

This subsection discusses the various softwares and commands
used to preprocess the multimodal MRI data. The bash script
setup should help with getting the necessary dependencies
installed® . The script was written for setting up a Google cloud
virtual machine, and assumes the data and pipeline files are already
stored in a Google cloud bucket.

The standard software for preprocessing anatomical MRI
(aMRI) data is Freesurfer”. Although an actively developed soft-
ware with responsive technical support and rich forums, receiving
training for Freesurfer may still be helpful. The recon-all
command performs all the steps needed for standard aMRI pre-
processing, including motion correction, registration to a common
coordinate space using the Talairach atlas by default, intensity
correction and thresholding, skull-stripping, region segmentation,
surface tessellation and reconstruction, statistical compilation, etc.

The entire process takes around 15 or more hours per image.
Support for GPU-enabled processing was stopped years ago, and
the —~openmp <num_cores> command, which allows parallel
processing across the designated number of cores, may only
reduce the processing time to around 8-10 hours per image'”.
We found that running parallel single-core CPU processes worked
the best, especially when many processing cores are available.
For this we employed a Google Cloud Platform virtual machine
and utilized the python module joblib.Parallel to run
many single-core processes in parallel. For segmentation, the
Deskian/Killiany atlas is used, resulting in around 115 volume
segmentations per image, to be used as the nodes for the graph.

The Functional Magnetic Resonance Imaging of the Brain
(FMRIB) Software Library (FSL)'! is often used to preprocess
diffusion data (AMRI). The b0 volume is taken at the beginning

4. https://ifti.nimh.nih.gov

5. https://www.dicomlibrary.com

6. https://github.com/rordenlab/dcm2niix

7. https://bids.neuroimaging.io

8. We install the softwares to the home (~) to avoid permission issues during
remote Google cloud session. Several environment variables used by Freesurfer
need to be hard coded to accommodate this download location. See the setup
bash script provided for details.

9. https://surfer.nmr.mgh.harvard.edu

10. In the release notes, it is recommended for multi-subject pipelines to use
a single core per image and process subjects in parallel; we also found this
to provide the greatest speedup. Multiprocessing only reduces the processing
time by a few hours, so parallelization is more important. We did not use
GPUs; the time required to transfer data on and off GPU cores may diminish
the speedup provided by GPU processing. Also, Freesurfer has not supported
GPUs for quite some time, and we were unable to compile Freesurfer to use
newer versions of CUDA.
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of dMRI acquisition and is used to align dMRI images to aMRI
images of the same subject. This volume is isolated (fs1roi) and
merged with b0’s of other clinic visits (CVs)!'2 for the same subject
(fslmerge). fslmerge requires that all dMRI acquisitions
for a given subject have the same number of coordinates (e.g.,
(116,116, 78 ,65) vs. the standard (116,116, 72 ,65)). Since some
acquisitions had excess coordinates, we manually examined these
images and, if possible, removed empty space above or below
the brain. Otherwise, these acquisitions were discarded. Next,
the brain is isolated from the skull (skull stripped, bet with the
help of fslmaths -Tmean), magnetic susceptibility correction
is performed for specific cases (see below) using topup, and
eddy correction is performed using eddy_openmp. Magnetic
susceptibility and eddy correction refer to specific noise artifacts
that significantly affect dMRI data.

The topup tool requires two or more dMRI acquisitions
for a given subject, where the image acquisition parameters
TotalReadoutTime and/or PhaseEncodingDirection
(found in the image’s header file) differ from one another. Since
the multiple acquisitions for a given subject typically span dif-
ferent visits to the clinic, the same parameters are often used
and topup cannot be utilized. We found another software,
BrainSuite'?, which can perform magnetic susceptibility correc-
tion using a single acquisition. Although we still include FSL
in our pipeline since it is the standard software used in many
other papers, we employ the BrainSuite software’s Brain Diffusion
Pipeline to perform magnetic susceptibility correction and to align
the corrected dMRI data to the aMRI data for a given subject (i.e.,
coregistration).

First, a BrainSuite compatible brain mask is obtained using
bse. Next, bfc is used for bias field (magnetic susceptibility)
correction, and finally bdp performs co-registration of the diffu-
sion data to the aMRI image of the same subject. The calls to the
Freesurfer, FSL, and BrainSuite software libraries are included in
automate_preproc.py.

Once the data has been cleaned, additional processing is
performed on the diffusion (AMRI) data. As discussed in the
Introduction section, dMRI data measures the diffusion of water
throughout the brain. The flow of water is constricted along the
tube-like pathways (tracts) that connect regions of the brain, and
the direction of diffusion can be traced from voxel to voxel to
approximate the paths of tracts between brain regions. There are
many algorithms and softwares that perform tractography, and the
choice of algorithm can greatly affect the analysis results. We use
the Diffusion Toolkit (DTK)'# to perform multiple tractography
algorithms on each diffusion image. In dtk.py we employ
four different diffusion tensor imaging (DTI)-based deterministic
tractography algorithms: Fiber Assignment by Continuous Track-
ing (FACT; [MCCv99]), the second-order Runge—Kutta method
(RK2; [BPPT00]), the tensorline method (TL; [LWT"03]), and
the interpolated streamline method (SL, [CLC99]). [ZZW " 15]
provide more information on each method. dti_recon first
transforms the output file from Brainsuite into a usable format
for DTK, and then dti_tracker is called for each of the
tractography algorithms. Finally, spline_filter is used to
smooth the generated tracts, denoising the outputs. Now that

11. https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

12. We use “clinic visit” or CV to refer to the MRI acquisitions (anatomical
and diffusion) obtained during a single visit to the clinic.

13. http://brainsuite.org
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Fig. 1: A depiction of the steps involved in forming the adjacency
matrix. First, anatomical images are segmented into regions of interest
(ROIs), which represent the vertices of the graph. The center voxel for
each ROl is then calculated. An edge is placed between each node i
and its k-nearest neighbors, calculated using the center coordinates.
Lastly, each edge is weighted by the normalized distance between each
node i and its connected neighbor j.
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the images are processed, they can be efficiently loaded using
python libraries nibabel and dipy, and subsequently operated
on using standard data analysis packages such as numpy and

scipy.

Defining Graph Nodes and Features

Neuroimage data is readily applied to graph processing techniques
and is often used as a benchmark application for new develop-
ments in graph processing [SNF'13]. Intuitively, the objective is
to characterize the structural and functional relationships between
brain regions, since correlations between PD and abnormal brain
structure and function have been shown. As such, the first step
is to define a graph structure for our data. This step alone
has intuitive benefits. Even after preprocessing, individual voxels
of MRI data contain significant noise that can affect analysis
[GRS ™ 16]. Brain region sizes vary greatly across individuals and
change over one individual’s lifetime (e.g., due to natural aging
[PetO6]). Representing regions as vertices on a graph meaningfully
groups individual voxels and mitigates these potential red herrings
from analysis.

We use an undirected weighted graph ¥ = ¥, &,W with
a set of vertices ¥ with |¥/| = the number of brain regions
N, a set of edges &, and a weighted adjacency matrix W, to
represent our aMRI data. ¢ is shared across the entire data set
to represent general population-wide brain structure. Each vertex
v; € ¥ represents a brain region. Together, ¥, &, and W form
a k-Nearest Neighbor adjacency matrix, in which each vertex
is connected to its k nearest neighbors (including itself) by an
edge, and edges are weighted according to the average Euclidean
distance between two vertices. The weight values are normalized
by dividing each distance by the maximum distance from a given
vertex to all of its neighbors, d;; € [0, 1]. (Refer to Appendix B on
our GitHub for details.)

gen_nodes.py first defines the vertices of the graph using
the anatomical MRI data, which has been cleaned and segmented
into brain regions by Freesurfer. The center voxel for each segmen-
tation volume in each image is calculated. Next, adj_mtx.py
calculates the mean center coordinate across all aMRI images for
every brain region. The average center coordinate for each region
iis a vertex v; € ¥ of the graph ¢. See Figure 1 for a depiction of
the process.

Using these vertices, we wish to incorporate information
from other modalities to characterize the relationships between

14. http://trackvis.org/dtk/
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Fig. 2: The process of generating the features from a single trac-
tography algorithm is shown. Tractography streamlines are aligned
to a corresponding anatomical image. The number of streamlines
connecting each pair of brain regions is calculated to represent the
strength of connection. Using each brain region as a vertex on the
graph, the connection strengths between a given vertex to all other
vertices are compiled to form the signal vector for that vertex.

the vertices. We define a signal on the vertices as a function
f:7 = R, returning a vector f € RV, These vectors can be
analyzed as “signals” on each vertex, where the change in signal
across vertices is used to define patterns throughout the overall
graph structure. In our case, the vector signal defined on a vertex v;
represents that vertex’s weighted connectivity to all other vertices
[SNF"13]. The weights correspond to the strength of connectivity
between v; and some other vertex v;, as calculated by a given
tractography algorithm. As such, each signal is a vertex of size
N and there are N signals defined on each graph (one for each
vertex), forming an N x N weighted connectivity matrix. Each
dMRI image has one N x N set of signals for each tractography
algorithm. In this way, the dimensionality of the data is drastically
reduced, and information from multiple modalities and processing
algorithms may be analyzed in a common data space.

gen_features.py approximates the strength of connec-
tivity between each pair of vertices. For this, the number of
tracts (output by each tractography algorithm) connecting each
pair of brain regions must be counted. Recall that each image
carries with it an affine matrix that translates the voxel data to a
coordinate space. Each preprocessing software uses a different
coordinate space, so a new affine matrix must be calculated
to align the segmented anatomical images and the diffusion
tracts (i.e., coregistration). Freesurfer’s mri_convert, FSL’s
flirt, and DTK’s track_transform are used to put the
two modalities in the same coordinate space so that voxel-to-
voxel comparisons can be made. Next, nibabel’s i/o func-
tionality is used to generate a mask file for each brain region,
nibabel.streamlines is used to read in the tractography
dataand dipy.tracking.utils.target is used to identify
which tracts travel through each volume mask. The tracts are
encoded using a unique hashing function to save space and allow
later identification.

To generate the signals for each vertex, utils.py uses
the encoded tract IDs assigned to each volume to count the
number of tracts connecting each volume pair. The number of
connections between pairs of brain regions approximate the con-
nection strength, and these values are normalized similar to the
normalization scheme mentioned above for the k-nearest neighbor
weights. Figure 2 offers a visualization.

Graph Convolutional Networks

Common to many areas of data analysis, spectral graph processing
techniques (i.e., processing a signal defined on a graph structure)
have capitalized on the highly flexible and complex modeling



46

capacity of so-called deep learning neural network architectures.
The layered construction of nonlinear calculations loosens rigid
parameterizations of other classical methods. This is desirable, as
changes in parameterizations have been shown to affect results in
both neuroimage analysis (e.g., independent component analysis
(ICA) [CIMT17]) and in graph processing (e.g., the explicit
parameterization used in Chebyshev approximation [KW217];
further discussed in Appendix B).

In this paper, we utilize the Graph Convolutional Network
(GCN) to compute signal processing on graphs. GCNs were
originally used to classify the vertices of a single graph using
a single set of signals defined on its vertices. Instead, our task
is to learn signal patterns that generalize over many subjects’
data. To this end, we designed a novel GCN architecture, which
combines information from anatomical and diffusion MRI (dMRI)
data, processes data from multiple diffusion MRI tractography al-
gorithms for each dMRI image, and consolidates this information
into a single vector so as to compare many subjects’ data side-
by-side. A single complete forward pass of our model consists
of multiple parallel Graph Convolutional Networks (one for each
tractography algorithm), max pooling, and graph classification via
Graph Attention Network layers. We will briefly explain each part
in this subsection; see Appendix B on our GitHub for a deeper
discussion.

The convolution operation measures the amount of change
enacted on a function f; by combining it with another function
f>. We can define f, such that its convolution with instances
of f; from one class (e.g., PD) produce large changes while
its convolution with instances of f; from another class (e.g.,
HC) produce small changes; this provides a way to discriminate
instances of fj into classes without explicitly knowing the class
values. Recall that we have defined a function f over the vertices
of our graph using dMRI data (i.e., the signals). We seek to learn
functions, termed filters, that, when convolved with the input graph
signals, transform the inputs into distinguishable groups according
to class value (e.g., PD vs. healthy control). This is similar to the
local filters used in convolutional neural networks, except that the
filters of GCNss use the connections of the graph (i.e., the edges)
to establish locality.

Our specific implementation is based off the GCN class
from [KW217]’s PyTorch implementation', which has several
computational improvements over the original graph convolution
formula. In short, the graph convolutional operation is based off
the graph Laplacian

L=I-DTWDT,

where [ is the identity matrix with 1’s along the diagonal and
0’s everywhere else, W is the weighted adjacency matrix defined
earlier w.r.t. ¢, and D is a weighted degree matrix such that D;; =
Y ; W;j. We define the graph convolutional operation as

Z=D7WD7 X0,
A so-called renormalization trick has been applied to £. wherein
identity matrix Iy has been added; i.e., self-loops have been added
=1 =1 ~ =1 ~ ~—1
to the adjacency matrix. Iy + D2 WD™2 becomes D2 WD,
where W =W + Iy and D; = ¥;W;;. © € R® is a matrix of

trainable coefficients, where C = N is the length of the input
signals at each node, and F = N is the number of C-dimensional

15. https://github.com/tkipf/pygcn
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filters to be learned. X is the N x N matrix of input signals for
all vertices (i.e., the signals from a single tractography output of a
single dMRI image). Z € R¥*F is the output matrix of convolved
signals. We will call the output signals features going forward.

Generalizing © to the weight matrix W(/) at a layer, we can
calculate a hidden layer of our GCN as

Z = f(X,A) = softmax(AReLU (AXW(0))W(1)),

where A=D72 AD 7 .

Multi-View Pooling

For each dMRI acquisition, d different tractography algorithms are
used to compute multiple “views” of the diffusion data. To account
for the variability in the outputs produced by each algorithm, we
wish to compile the information from each before classifying the
whole graph. As such, d GCNs are trained side-by-side, such
that the GCNs share their weights [[KZS15], [DMF"17]]. This
results in d output graphs, i.e. d output vectors for each vertex.
The vectors corresponding to the same vertex are pooled using
max pooling, which has been shown to outperform mean pooling
[ZHC18].

Graph Attention Networks

In order to convert the task from classifying each node to classify-
ing the whole graph, the features on each vertex must be pooled to
generate a single feature vector for each input. The self-attention
mechanism, widely used to compute a concise representation
of a signal sequence, has been used to effectively compute the
importance of graph vertices in a neighborhood [VCCI18]. This
allows for a weighted sum of the vertices’ features during pooling.

We employ a PyTorch implementation of [VCCI8]’s GAT
class'® to implement a graph attention network, using a feed-
forward neural network to learn attention coefficients as

exp(LeakyReLU (a® [W h;||Wah;]))
ajj = s
7 Ykes exp(LeakyReLU (a” [Wohil[Wahy]))

where || is concatenation.

Multi-Subject Training

The model is trained using train.py. First, several helper
functions in utils.py are called to load the graph, input signals,
and their labels, and prepare them for training. The model is built
and run using the GCNetwork class in GCN. py. During training,
the model reads in the signals for one dMRI acquisition at a time,
where the signals from each tractography algorithm are processed
in parallel, pooled into one graph, and then pooled into a single
feature vector via the graph attention network. Using this final
feature vector, a class prediction is made. Once a class prediction
is made for every input dMRI instance, the error is computed and
the weights of the model are updated through backpropagation.
This is repeated over many epochs to iteratively fit the weights to
the classification task. Figure 3 shows an outline of the network
architecture.

16. https://github.com/Diego999/pyGAT
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Fig. 3: A depiction of the novel GCN architecture is shown. First,
a GCN is trained for each “view” of the data, corresponding to a
specific tractography algorithm. The GCNs share weights, and the
resulting features are pooled for each vertex. This composite graph is
then used to train a multi-head graph attention network, which assigns
a weight (i.e., “attention”) to the feature computed at each vertex. The
weight assigned to each vertex is used to compute a weighted sum of
the features, yielding a single feature vector for graph classification.

Methods

Our data is downloaded from the Parkinson’s Progression Markers
Initiative (PPMI)!7 database. We download 243 images, consisting
of 96 aMRI images and 140 diffusion images. The images are
from 20 individuals (each subject had multiple visits to the clinic
and data from multiple image modalities). Among the images,
117 are from the Parkinson’s Disease (PD) group and 30 are from
healthy controls (HC). We preprocessed our data using the pipeline
described above. We ran this preprocessing using a Google cloud
virtual machine with 96 CPU cores over the course of several days.

Following preprocessing, we constructed the shared adjacency
matrix and trained the model on the dMRI signals, which totaled
to 588 (147 dMRI acquisitions x 4 tractography algorithms) N
x N connectivity matrices. We calculated the adjacency matrix
using each node’s 20 nearest neighbors. To account for the class
imbalance between PD and HC images, we use a bagging method.
On each of five iterations, all the images from the HC group were
combined with an equally-sized subset from the PD group. All of
the images were used at least once during training, and the overall
performance measures were averaged across training folds.

Using caution to prevent any forms of data leakage, we
used a roughly 80/20 train-test split, wherein we ensured all
data from the same subject was used as only training or testing
data. To assess the performance of our GCN model, we first
trained a number of baseline models on the features constructed
from the diffusion data. These models include k-nearest neighbor,
logistic regression, ridge regression, random forest, and support
vector machine (SVM, with both linear and polynomial kernels)
from scikit-learn; we also trained a fully-connected neural
network (fcNN) and a 4-channel convolutional neural network
(CNN) using PyTorch. Finally, we compare our model to the
“siamese multi-view” GCN (sMVGCN) used in [ZHC18]. This
network utilizes diffusion and anatomical MRI data and trains on
pairs of image data to predict whether the pairs are from the same
or different classes. The data is also from the PPMI data set and
uses the PD and HC classes during classification. This was the
closest model to ours that we found in the literature.

Except for the multi-channel CNN, we trained each model on
the features from each tractography algorithm individually, and
averaged the results. We calculated the overall accuracy, F1 score,
and area under the ROC curve (AUC) as our performance mea-
sures. The default parameters were used for the scikit-learn

17. https://www.ppmi-info.org

models. The fcNN was a three-layer network with two hidden
layers. The first layer had 128 ReLU units; the second had 64. For
the CNN, a single convolutional layer was used, containing 18
filters of size 3; stride of 1 was used. Max pooling with a kernel
size of 2 and stride of 2 was used to feed the features through
two fully-connected layers before the final output. The first fully-
connected layer reduced the 18x57x57-dimension input - where
57 is the original input width and height of 115 halved via max
pooling - to 64 ReLU hidden units. For both neural networks,
softmax activation was applied to the outputs and negative log
likelihood was used as the loss function (i.e., cross entropy).
Again for both models, learning rate was set to 0.01 and dropout
of 0.5 was used between fully-connected hidden layers. These
parameters coincide with the default parameters of the graph
convolutional network class we used, and are commonly used in
the literature. We used a validation set to find the optimal number
of epochs to train each network for. We tested 40, 80, 100, 140,
200, and 400 epochs for each model and found that 140 worked
best for the fcNN, and 100 for the CNN.

We trained the graph convolutional network (GCN) on the
same bagged subsets of data for comparison purposes. The only
difference is that the features are md to the vertices of the
adjacency matrix before training. We used a validation set to
tune the model parameters. We tested with or without dropout
(set to 0.5 when used), with or without weight decay (set to Se-4
when used), the number of hidden units for the first GCN layer
(8,16,32), the number of "heads" or individual attention weights
(2,4,6,8), and the number of epochs (same options as for the fcNN
and GCN). We found that dropout of 0.5, weight decay of Se-4,
8 hidden units, 8§ attention heads, and 80 epochs worked best for
our model. The results from training the GCN are also included in
Table 1.

Results

The results from training the diffusion data on baseline models,
and the combined diffusion and anatomical data on the GCN
are included in Table 1. We report accuracy, F1-score, and AUC
for each model; these numbers are averaged across five training
iterations using subsets of the data to account for class imbalance.
Subsequently, we analyze the attention weights from the GCN
model. Each node of the adjacency matrix was assigned an
attention weighting corresponding to that node’s importance in
determining the overall class of the graph. Since each node of the
adjacency matrix corresponds to an anatomical brain region, we
could interpret the magnitude of each node’s attention weight as
the relative importance of a brain region for distinguishing the
PD vs. HC classes. We compiled the attention weights from each
training iteration and determined the 16 brain regions with the
highest weights. The names and relative importance assigned to
these regions are shown in Figure 4.

Discussion and Conclusion

From the results on the baseline models, we can see that the
features generated from the diffusion MRI data are suitable for
distinguishing the PD vs. HC classes. For example, the relatively
high performance of the SVM models demonstrate that the fea-
tures are roughly linearly separable. Furthermore, we see from the
improved performance of the GCN model that the incorporation
of anatomical data improves the capacity for the data to be
modeled. Of the 16 highest-weighted regions according to the
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Fig. 4: The 16 regions with highest attention weighting across all
training iterations are shown. "L" and "R" indicate regions on the
left or right hemisphere, respectively. "post.”, "ant.", "sup.", "mid.",
"rost.", "caud.”, and "trans." indicate posterior, anterior, superior,

middle, rostral, caudal, and transverse, respectively.

Model Accuracy F1-Score AUC
(%)

k-Nearest Neighbor 63.66% 0.636 0.646
Logistic Regression 75.72% 0.749 0.839
Ridge Regression 85.54% 0.883 0.500
Random Forest 77.77% 0.765 0.782
SVM (linear kernel) 87.66% 0.873 0.894
SVM (polynomial ker-  87.02% 0.899 0.887
nel)

Fully-Connected NN 83.98% 0.854 0.881
Convolutional NN 85.33% 0.900 0.908
Graph  Convolutional  92.14% 0.953 0.943
NN

TABLE 1: The results from our testing of the baseline algorithms
on the features constructed from the diffusion data alone, and our
graph convolutional network (GCN) which additionally incorporates
anatomical information. The results are averaged across five training
iterations, which use subsamples of the data to ensure class balance.

GAT attentions layers, 9 coincide with lateral or contralateral
regions identified by [ZHC18] as significantly contributing to the
distinction between PD and HC classes. All but two of the regions
listed in Figure 4 were from the left hemisphere, whereas the
majority of regions in [ZHC18] were from the right hemisphere.
We aren’t sure why this may be, but the stronger identification
of left hemispheric regions aligns with asymmetries found by
[CMD™"16], wherein the left hemisphere is more significantly
affected in early-stage PD.

Due to the time required to construct the pipeline, and the sub-
stantial time and compute resources required for each additional
image, we used a relatively small data set. The models showed
signs of overfitting during training, due to increasing performance
on the training data after improvement with the testing data had
stopped. We feel that reproduction with a larger dataset may

PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

mitigate this issue and improve the robustness of our initial results.

We would also like to see future studies incorporate both
diffusion and functional MRI data. We investigated the use of
the C-PAC preprocessing software to generate features from func-
tional MRI (fMRI) data, and we believe these features could be
incorporated into our model. Additional anatomical information
such as the volume of each region could also be incorporated,
and even metadata such as age or genetic information could be
added to each node of an image to encourage class separation.
These points reflect our use of graph convolutional networks for
multimodal neuroimage analysis, as the format allows for the
combination of multiple forms of data in an efficient and intuitive
manner. All of these points were beyond the scope of the current
experiment, and are possibilities for future research.

We have made the code for our pipeline available on GitHub.
Included in the repository are the parameters we used to download
our data from PPMI, so that researchers with access to the
database might download similar data for reproduction. Processing
this data is very technical; there are multiple ways of doing so
and our pipeline is surely capable of being improved upon. For
example, we utilized all 115 brain regions returned by Freesurfer’s
segmentaion. Instead, [ZHC18] selectively utilize only 84 of the
regions. By confining the number of regions, e.g., to only those
with clinical significance to PD, we may see improvements in
performance and interpretability.

We have presented here a complete pipeline for preprocessing
multi-modal neuroimage data, applied to real-world data aimed at
developing image biomarkers for Parkinson’s disease research. We
propose a novel graph-based deep learning model for analysing
the data in an interpretable format. Our focus in this paper was to
explicitly delineate the steps we took and implement sound data
analysis techniques, so as to enable reproducibility in the field. To
this end, we hope to help bridge the gap between neuroscience
research and advanced data analysis.
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pyjanitor: A Cleaner API for Cleaning Data

Eric J. Ma¥*, Zachary Barry*, Sam Zuckerman, Zachary Sailer’®

+
Abstract—The pandas library has become the de facto library for data 2) Removing unnecessary columns,
wrangling in the Python programming language. However, inconsistencies in 3) Adding a column of data,
the pandas application programming interface (API), while idiomatic due to 4) Log-transforming a column,
historical use, prevent use of expressive, fluent programming idioms that enable 5) Filtering the log-transformed column,
self-documenting pandas code. Here, we introduce pyjanitor, an open 6) Dropping rows that have null values,

source Python package that extends the pandas API with such idioms. We
describe its design and implementation of the package, provide usage examples
from a variety of domains, and discuss the ways that the py janitor project
has enabled the inclusion of first-time contributors to open source projects.

7) Adding a column that is the mean of each sample’s group.

To do this with the pandas API, one might write the following
code.

Index Terms—data engineering, data science, data cleaning import pandas as pd
import numpy as np

. import re
Introduction P

Data preprocessing, or data wrangling, is an unavoidable task in df = pd.DataFrame(...)
data science. It is a common experience amongst data scientists
. .. def clean_name (x):
thaF data wranghng can occupy up to. 80% of t.helr time [nyt] WMnCustom function to sanitize column name. """
[Wic14]. Part of this time is spent defining modelling approaches, FIXES = [(r"[\% /:,2'(O\N.=]1", "_"), (r"['""1", "")]
and part of this time is writing code that executes the sequence for search, replace in FIXES:
of transformations on raw data that wrangle it into the necessary x = re.sub(search, re}?la(,:e’ x)
X return x.lower () .replace ( , ')

shape for downstream modelling work.

In the Python ecosystem, pandas is the de facto tool for data df = ¢

df

manipulation. This is because it provided an API for manipulating
tabular data when conducting data analysis. This API was notice-

# clean column names
.rename (columns=clean_name)

ably missing from the Python standard library and NumPy, which, # remove column
prior to pandas emergence, were the primary tools for data -drop ('column_name_14", axis='columns')

. . . 41 transform
analysis in Python. Hence, through the Dat aF rame object and its #aézfgﬁi sror
interfaces, pandas provided a key API that enabled statisticians, ’ column_name_13=lambda x: np.logl0 (x['column_name 13'])
data scientists, and machine learners to wrangle their data into )
a usable shape. That said, there are inconsistencies in the pandas # ddfOP ()“*i values

. 1. . . . .dropna

API which, thougb now are idiomatic due tq hls.to.rlcal luse, prevent 4 Filter based on column value
the use of expressive, fluent [flu] programming idioms" that enable .query ("column_name_13 < 3")

self-documenting data science code. )

# add a colu
coll3_means = df.groupby('group') .mean() ['column_name_ 13"']
A case in point is the following elementary sequence of data df = df.join(coll3 means, rsuffix='_mean', on='group')

preprocessing operations:

n that is the mean of each sample's group.

Idiomatic Inconsistencies of pandas

By using py janitor, end-users can instead write code that reads
1) Standardizing column names to  snake-case much closer to the plain English description.
(spelled_like_this, rather than Spelled! import pandas as pd
Like! This?), import numpy as np
import janitor

« Corresponding author: ericmajinglong @ gmail.com

# Novartis Institutes for Biomedical Research df = ¢
§ Jupyter Project pd.DataFrame (.. .)
.clean_names ()

Copyright © 2019 Eric J. Ma et al. This is an open-access article distributed .remove_column ('column name 14')
under the terms of the Creative Commons Attribution License, which permits .transform_column ('column_name_13', np.logl0)
unrestricted use, distribution, and reproduction in any medium, provided the .query ('column_name_13 < 3')
original author and source are credited. .dropna ()

1. Fluent interfaces, as a term, were first coined in 2006, and describe a .groupby_agg (
programming pattern allowing code to more closely resemble written prose. by="group",

Method chaining is the most common way to achieve this. agg_column_name="column_name_13",
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new_column_name="column_name_13_mean",
agg="mean",

)

This is the API design that pyjanitor aims to provide to
pandas users: common data cleaning routines that can be mix-
and-matched with existing pandas API calls. This is in keeping
with Line 7 of the Zen of Python, which states that "Readability
counts"; pyjanitor thus enables data scientists to construct
their data processing code with an easily-readable sequence of
meaningful verbs. By providing commonly-usable data processing
routines, we also save time for data scientists and engineers,
allowing them to accomplish their work more efficiently.

History of pyjanitor

pyJjanitor started as a Python port of the R package janitor,
which provides the same functionality to R users. The initial
goal was to explicitly copy the janitor function names while
engineering it to be compatible with pandas.DataFrames,
following Pythonic idioms, such as the method chaining provided
by some pandas class methods. As the project evolved, the scope
broadened, to provide a defined language for data processing
as an extension on pandas DataFrames, including submodules
with functions specific for bioinformatics, cheminformatics, and
finance.

Architecture

pyjanitor relies completely on the pandas extension
API  (https://pandas.pydata.org/pandas-docs/stable/development/
extending.html), which allows developers to create functions that
behave as if they were native pandas.DataFrame class meth-
ods. The only requirement here for such functions is that the first
argument to it be a pandas.DataFrame object:

def data_cleaning_function(df, xxkwargs):

# Aata cleaninag fiincrions
# data cleaning functions go here

return df

In order to reduce the amount of boilerplate required,
pyJjanitor also makes heavy use of pandas_flavor [pf],
which provides an easy-to-use function decorator that handles
class method registration. As such, to extend the pandas API
with more instance-method-like functions, we only have to dec-
orate the custom function, as illustrated in the following code
sample:

import pandas_flavor as pf

@pf.register dataframe_method

def data_cleaning_function(df, xxkwargs):

# data cleaning operations go here

return df
pandas—flavor has functionality that warns, at runtime,
whether a Dat aF rame attribute has been overwritten by a custom
function. Our test suite allows us to catch this issue before
committing contributed code to the library.

Underneath each data cleaning function, we are free to use
both the imperative and functional APIs. What is exposed, then, is
a functional and fluent API for the end-user.

Thanks to the pandas.DataFrame.query () APIL sym-
bolic evaluations are generally available in pyjanitor for
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filtering data. This enables us to write functions that do filtering of
the DataFrame using a verb that might match end-users’ intuitions
better. One such example is the .filter_on('criteria')
method, illustrated in the opening example.

Design

Inspired by the dplyr world, py janitor functions are named
with verb expressions. This, as mentioned earlier, this helps with
readability. Hence, if we want to "clean names", the end user can
call on the . clean_names () function/class method. If the end
user wants to "remove all empty rows and columns", they can
call on . remove_empty (). As far as possible, function names
are expressed using simple English verbs that are understandable
cross-culturally and well-documented, to ensure that this API is
inclusive and accessible to the widest subset of users possible.

Where domain-specific verbs are used, we strive to match the
mental models and vocabulary of domain experts. One example
comes from the biology submodule, where the join_fasta
function allows a bioinformatics-oriented user to add in a column
of sequences based on FASTA accession numbers that are keys for
sequence values in a FASTA-formatted file [PL88].

Keyword arguments are also likewise named with verb ex-
pressions where relevant. For example, if one wants to preserve
and record the original column names before cleaning, one
can add the preserve_original keyword argument to the
.clean_names method:

(
af
.clean_names (

preserve_original=True,
remove_special=True,

)

In order to adhere to a functional programming paradigm, no
operations that change the original DataFrame are allowed. Hence,
if the internal implementation of a function results in a mutation
of the original DataFrame, we explicitly make a copy of the
DataFrame first, though we also generally try to avoid double-
copying as well. This decision, which was made after a fairly
extensive discussion on our issue tracker, balances functional
design principles and pragmatic considerations when dealing with
potentially large dataframe objects.

A final design choice we made was to explicitly disallow
overriding or duplicating existing DataFrame class methods. The
goal here is to extend pandas, rather than replace its API, and
we have turned down user requests to do so.

Documentation

Full API Documentation for pyjanitor is available on ReadThe-
Docs [doc].

An examples gallery, which contains Jupyter notebooks that
showcase how to use py janitor, is also part of the documenta-
tion.

Development

The reception to pyjanitor has been encouraging thus far.
Newcomer contributors to open source have made their first
contributions to pyjanitor, and experienced software devel-
opers have also chipped in. Many contributors are data scientists
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themselves, who are also seeking cleaner APIs to help them get
their work done. There is a salient lesson here: with open source
tools, savvy users can help steer development in a direction that
they need, and we would encourage other contributors to join in
too.

As with most open source software development, maintenance
and new feature development are entirely volunteer driven. Users
are invited to post feature requests on the source repository issue
tracker, but are more so invited to contribute an implementation
themselves to share. To date, 31 contributors have made pull
requests into py janitor, and we look forward to further contri-
butions being made at the SciPy conference sprints.

In the spirit of being beginner-friendly, new contributions to
the pyjanitor library are encouraged to solve one and only one
specific problem first, before we figure out how to either (1) gen-
eralize the function use case, or (2) generalize the implementation.

As an example, the commit history for clean_names ()
follows this pattern. The initial implementation manually listed out
every character to be replaced by an underscore, in a DataFrame
with a single column level. A later pull request extended the
implementation to multi-level columns, and the current improved
version uses regex string replacement to concisely express the
cleaning operation. Most notably, each of these contributions were
made by first-time open source contributors.

For the long-term health of the package, we are on the lookout
for underrepresented contributors who would like to help maintain
the package long-term as well. A code of conduct document, and
a community guidelines document, are also on our development
roadmap.

Other Related Tools

When developing pyjanitor, we originally set out to port
janitor (the R package) to Python, providing compatibility
with pandas DataFrames in a style compatible with Pythonic
idioms (e.g. method chaining). While development was under
way, we also found the Python alternatives described below,
and found them to either (a) be lacking active development, (b)
inventing a new pipe-like operator, (c) be restricted to dplyr verbs,
and/or (d) lacking a robust community of developers. Hence, the
development of pyjanitor was, and still is, oriented towards
solving these problems.

For the convenience of our readers, we list our assessment of
related tools below.

janitor [jan]: This is the original source of inspiration for
pyJjanitor, and the original creator of janitor is aware
of pyjanitor’s existence. A number of function names in
janitor have been directly copied over to pyjanitor and
re-implemented in a pandas-compatible syntax.

dplyr [dplb]: The dplyr R package can be considered as "the
originator" for verb-based data processing syntax. janitor the
R package extends dplyr. It is available for use by Python users
through rpy2; however, its primary usage audience is R users.

pandas-ply [pan]: This is a tool developed by Coursera, and
aims to provide the dplyr syntax to pandas users. One advan-
tage that it has over py janitor is that symbolic expressions can
be used inside functions, which automatically get parsed into an
appropriate lambda function in Python. However, it is restricted to
the dplyr verb set.

dplython [dpla]: Analogous to pandas-ply, dplython
also aims to provide the dplyr syntax to pandas users, but just
like pandas-ply, it is restricted to dplyr verbs.
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dfply [dfp]: This is the most actively-developed, pandas-
compatible dplyr port. Its emphasis is on porting over the
piping syntax to the pandas world. From our study of its source
code, in principle, every function there can be wrapped with
pandas-flavor’s .register_dataframe_method dec-
orator, thus bringing the most feature-complete implementation
of dplyr verbs to the pandas world. It does, however, re-
implement a number of pandas functions using dplyr names.
This makes it distinct from the pyjanitor project, where extension,
rather than replacement, of existing pandas functionality is
generally encouraged. Whether the developers are interested in
collaboration remains to be discussed.

plydata [ply]: Like the others mentioned before, plydata
also aims to provide the dplyr-style data manipulation grammar
to pandas. It also provides a pipe-like operator (>>), and features
integration with plotnine, a grammar of graphics plotting
library for the Python programming language.

kadro [kad]: Kadro uses a  wrapper around
pandas.DataFrame objects to provide dplyr-style syntax.

pdpipe [pdp]: pdpipe provides a language for creating data
preprocessing pipelines that are turned into Python callables,
through which a DataFrame can be passed. Its design choice is to
create fluent pipelines as pre-declared functions that are chained,
rather than as methods that are attached onto a DataFrame. This
distinction separates py janitor and pdpipe.

Limitations of pyjanitor

A current technical limitation of pyjanitor is the inability
to symbolically parse expression strings to perform column-wise
transformations. An example of a desired API might be:
df = (

pd.DataFrame (...)

.mutate (

expression="column_name_12 + column_name_13",
new_column_name="summation"

)

As of now, because symbolic parsing is unavailable, this fluent and
declarative syntax that is available to dplyr users is unavailable
to pyJjanitor users. We would welcome a contribution that
enables this, perhaps using the pat sy package.

Extensions beyond pyjanitor

pyJjanitor does not aim to be the all-purpose data cleaning
tool for all subject domains. Apart from providing a library of
generally useful data manipulation and cleaning routines, one
can also think of the project as a catalyst project for other
specific domain applications. Following the verb-based grammar,
one may imagine even more specific domain terms. Hence we
have developed domain-specific submodules with a view towards
encouraging their further development as independent packages.

For example, in our chemistry submodule, we have the
following functions implemented that aid in cheminformatics-
oriented data science tasks:

e smiles2mol (df, col_name): to convert a column
of smiles into RDK:it [rdk] mol objects.

e mol2graph(df, col_name): to converta column of
mol objects into NetworkX [HSS08] graph objects.

In our biology submodule, convenience functions exist to
accomplish the following tasks:
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e Jjoin_fasta(df, file_name, id_col,
col_name): create a column that contains the string
representation of a biological sequence, by "joining" in a
FASTA file, mapping the string to a particular column that
already has the sequence identifiers in it.

The dependencies required for their usage are optional at
install-time, and we provide instructions for end-users to install
the relevant packages if they are not already installed locally.
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Codebraid: Live Code in Pandoc Markdown

Geoffrey M. Poore**

Abstract—Codebraid executes code blocks and inline code in Pandoc Mark-
down documents as part of the document build process. Code can be exe-
cuted with a built-in system or Jupyter kernels. Either way, a single document
can involve multiple programming languages, as well as multiple independent
sessions or processes per language. Because Codebraid only uses standard
Pandoc Markdown syntax, Pandoc handles all Markdown parsing and format
conversions. In the final output document produced by Pandoc, a code chunk
can be replaced by a display of any combination of its original Markdown source,
its code, the stdout or stderr resulting from execution, or rich output in the case
of Jupyter kernels. There is also support for programmatically copying code or
output to other parts of a document.

Index Terms—reproducibility, dynamic report generation, literate programming,
Python, Pandoc, Project Jupyter

Introduction

Scientific and technical documents are increasingly written with
software that allows a mixture of text and executable code, such
as the Jupyter Notebook [KRKP'16], knitr [YX15], and Org-
mode Babel [SDI11], [SDDDI12]. Writing with such tools can
enhance reproducibility, simplify code documentation, and aid in
automating reports.

This paper introduces Codebraid, which allows executable
code within Pandoc Markdown documents [JG19], [JM19]. Code-
braid is developed at https://github.com/gpoore/codebraid and
is available from the Python Package Index (PyPI). It allows
Markdown code blocks like the one below to be executed during
the document build process. In this case, the “.cb.run” tells
Codebraid to run the code and include the output.

" {.python .cb.run}
print ("Running code within xMarkdown!x"

The final document contains the code’s output, interpreted as if it
had been entered directly in the original Markdown source:

Running code within Markdown!

A document using Codebraid can be converted from Mark-
down into any of the many formats supported by Pandoc, such as
HTML, Microsoft Word, LaTeX, and PDF. Codebraid delegates all
Markdown parsing and format conversions to Pandoc, so it does
not introduce any special restrictions on what is possible with a
Pandoc Markdown document. This close integration with Pandoc
also means that Codebraid can be extended in the future to work
with additional document formats beyond Markdown.

x Corresponding author: gpoore @uu.edu
£ Union University

Copyright © 2019 Geolffrey M. Poore. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Codebraid includes a built-in code execution system. It can
also use Jupyter kernels [KRKP'16] to execute code. The first
code block that is executed with a given language can specify a
kernel. In the example below, the “. cb.nb” tells Codebraid to
run the code and provide a “notebook™ display that shows both
code and output, while “jupyter_kernel” specifies a kernel.

" {.python .cb.nb Jjupyter_kernel=python3}
from sympy import =
init_printing()
x = Symbol ('x")
integral = Integral (Ex* (-xxx2), (X%,
display (integral)
integral.doit ()

-00, 00))

Because a Jupyter kernel was used to run the code, the result
includes rich output in the form of rendered LaTeX math, just as
it would in a Jupyter notebook:

from sympy import =

init_printing()

x = Symbol ('x")

integral = Integral (Ex* (-xxx2), (X%,

display (integral)
integral.doit ()
© 2
/exdx
VT

The next section provides an example of the document build
process with Codebraid. This is followed by an overview of Code-
braid features and capabilities. Finally, the Comparison considers
Codebraid in the context of knitr, Pweave, Org-mode Babel, and
the Jupyter Notebook.

-00, 00))

Building a simple Codebraid document

A simple Pandoc Markdown document that runs code with Code-
braid is shown below.

“{.python .cb.run name=partl}
varl = "Hello from xPython!«"
var2 = f"Here is some math: $27°8={2xx8}S$."

" {.python
print (varl)
print (var2)

.cb.run name=part2}

If this were a normal Pandoc document, converting it into a
format such as reStructuredText could be accomplished by running

pandoc —-from markdown —--to rst file.md
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Using Codebraid to execute code as part of the document con-
version process is simply a matter of replacing pandoc with
codebraid pandoc:

codebraid pandoc —--from markdown —--to rst file.md

The codebraid executable is available from the Python Pack-
age Index (PyPI); development is at https://github.com/gpoore/
codebraid. By default, code is executed with Codebraid’s built-in
code execution system. This can easily be swapped for a Jupyter
kernel, as shown in the Introduction and discussed in greater detail
in Jupyter kernels.

When this codebraid pandoc command is executed, the
original Markdown shown above is converted into Codebraid-
processed Markdown:

Hello from xPython!x

Here is some math: $278=256$.

This processed Markdown is then converted into the final reStruc-
turedText, rendering as

Hello from Python! Here is some math: 28 = 256.

By default, the output of code executed with cb. run is in-
terpreted as Markdown. It is possible to show the output verbatim
instead, as discussed later.

In this example, the code is simple enough that it could be
executed every time the document is built, but that will often not
be the case. By default, Codebraid caches all code output, and
code is only re-executed when it is modified. This can be changed
by building with the flag ——no-cache.

Pandoc code attribute syntax

Pandoc Markdown defines an attribute syntax for inline code and
code blocks. Codebraid uses this to designate which code blocks
should be executed and provide options. Code attributes have the
general form

{#id

.classl .class2 keyl=valuel key2=value2}

If code with these attributes were converted into HTML, #1id be-
comes an HTML id for the code, anything with the form .class
specifies classes, and space-separated key-value pairs provide
additional attributes. Although key-value pairs can be quoted with
double quotation marks, Pandoc allows most characters except the
space and equals sign unquoted. Other output formats such as
LaTeX use attributes in a largely equivalent manner.

Pandoc uses the first class to determine the language name
for syntax highlighting, hence the . python in the example in the
last section. Codebraid uses the second class to specify a command
for processing the code. All Codebraid commands are under a cb
namespace to prevent unintentional collisions with normal Pandoc
attributes. In the example, cb . run indicates that code should be
run, stdout should be included and interpreted as Markdown, and
stderr should be displayed in the event of errors. If a Jupyter kernel
were in use, rich output such as plots would also be included.
Finally, the name keyword is used to assign a unique name to each
piece of code. This allows the code to be referenced elsewhere in
a document to insert any combination of its Markdown source,
code, stdout, stderr, and rich output (for Jupyter kernels).

Creating examples

The example in Building a simple Codebraid document was actu-
ally itself an example of using Codebraid. This paper was written
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in Markdown, then converted to reStructuredText via Codebraid
with Pandoc. Finally, the reStructuredText was converted through
LaTeX to PDF via Docutils [DG16]. The two code blocks in the
example were only entered in the original Markdown source of
this paper a single time, and Codebraid only executed them a
single time. However, with Codebraid’s copy-paste capabilities, it
was possible to display the code and output at other locations in
the document programmatically.

The rendered output of the two code blocks is shown at the
very end of the earlier section. This is where the code blocks were
actually entered in the original Markdown source of this paper,
and where they were executed.

Recall that both blocks were given names, partl and part2.
This enables any combination of their Markdown source, code,
stdout, and stderr to be inserted elsewhere in the document. At
the beginning of the earlier section, the Markdown source for the
blocks was shown. This was accomplished via

" {.cb.paste copy=partl+part2 show=copied_markup}

The cb.paste command inserts copied data from one or more
code chunks that are specified with the copy keyword. Mean-
while, the show keyword controls what is displayed. In this case,
the Markdown source of the copied code chunks was shown. Since
the cb.paste command is copying content from elsewhere, it
is used with an empty code block. Alternatively, a single empty
line or a single line containing an underscore is allowed as a
placeholder.

Toward the end of the earlier section, the verbatim output
of the Codebraid-processed Markdown was displayed. This was
inserted in a similar manner:

" {.cb.paste copy=partl+part2 show=stdout:verbatim}

The default format of stdout is verbatim, but this was
specified just to be explicit. The other option is raw (interpreted
as Markdown).

Of course, all Markdown shown in the current section was
itself inserted programmatically using cb.paste to copy from
the earlier section. However, to prevent infinite recursion, the next
section is not devoted to explaining how this was accomplished.

Other Codebraid commands

The commands cb.run and cb.paste have already been
introduced. There are three additional commands.

The cb.code command simply displays code, like normal
inline code or a code block. It primarily exists so that normal
code can be named, and then accessed later. cb.paste could be
used to insert the code elsewhere, perhaps combined with code
from other sources via something like copy=codel+code?2. It
would also be possible to run the code elsewhere:

" {.cb.run copy=codel+code2}

When copy is used with cb.run, or another command that
executes code, only code is copied, and everything proceeds as
if this code had been entered directly in the code block.

The cb.expr command only works with inline code, unlike
other commands. It evaluates an expression and then prints a string
representation, which is interpreted as Markdown. For example,
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"2%%128° {.python .cb.expr}

produces
340282366920938463463374607431768211456

As this demonstrates, Pandoc code attributes for inline code
immediately follow the closing backtick(s). While this sort of a
“postfix” notation may not be ideal from some perspectives, it is
the cost of maintaining full compatibility with Pandoc Markdown
syntax.

Finally, the cb . nb command runs code and provides a “note-
book” display. For inline code, cb.nb is like cb.expr except
that it displays rich output or verbatim text. For code blocks,
cb.nb displays code followed by verbatim stdout. If there are
errors, stderr is also included automatically. When Codebraid is
used with a Jupyter kernel, rich outputs such as plots are included
as well. This was demonstrated in the Introduction.

Display options

There are two code chunk keywords that govern display, show and
hide. These can be used to override the default display settings
for each command.

show takes any combination of the following options:
markup (display Markdown source), code (display code
being executed), stdout, stderr, and none. There is
also rich_output when a Jupyter kernel is used to ex-
ecute code. Multiple options can be combined, such as
show=code+stdout+stderr. Code chunks using copy can
employ copied_markup to display the Markdown source of the
copied code chunk. When the cb.expr command is used, the
expression output is available via expr. Using show completely
overwrites the existing display settings.

The display format can also be specified with show. For
stdout, stderr, and expr, there are three formats: raw (in-
terpreted as Markdown), verbatim, or verbatim_or_empty
(verbatim if there is output, otherwise a space or empty line). For
example, show=stdout:raw+stderr:verbatim. While a
format can be specified for markup and code, only the
default verbatim is permitted. For rich_output, the
output representation (MIME type) can be selected. Thus,
show=rich_output : png selects a PNG image representation.

hide takes the same options as show, except that none is re-
placed by a1l and formats are not specified. Instead of overriding
existing settings like show, hide removes the specified display
options from those that currently exist.

Codebraid code execution system

Codebraid currently provides two options for executing code:
a built-in code execution system which is used by default and
Jupyter kernels. Jupyter kernels are demonstrated in the next
section. This section describes the built-in system, which currently
supports Python 3.5+, Julia, Rust, R, Bash, and JavaScript. Any
combination of these languages can be used within a single
document. While the built-in system currently lacks Jupyter kernel
features like rich output, it is nearly identical to extracting the
code from a document, concatenating it, and executing it via the
standard interpreter or compiler. As a result, it has low overhead
and produces the same output as would have been generated by a
separate source file.
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Overview

The code from each code chunk is inserted into a template before
execution. The template writes delimiters to stdout and stderr at
the beginning of each code chunk. These delimiters are based
on a hash of the code to avoid the potential for collisions. Once
execution is complete, Codebraid parses stdout and stderr and uses
these delimiters to associate output with individual code chunks.
This system is a more advanced variant of the one I created
previously in PythonTeX [GMP15].

By default, code must be divided into complete units. For
example, a code block must contain an entire loop, or an entire
function definition. (This restriction can be relaxed with the code-
chunk keyword complete; see Incomplete units of code later.)
If a code chunk is not complete (and this is not indicated), then
the incomplete code will interfere with writing the delimiters.

To address this, each individual delimiter is unique, and is
tracked individually by Codebraid. If incomplete code interferes
with the template to produce an error, Codebraid can use any
existing stderr delimiters plus parsing of stderr to find the source
and generate an appropriate error message. If the code does not
produce an error, but prevents a delimiter from being written
or causes a delimiter to be written multiple times or not at the
beginning of a line, this will also be detected and traced back.
Under normal conditions, interfering with the delimiters without
detection requires conscious effort.

Adding languages

Adding support for additional languages is simply a matter of cre-
ating the necessary templates and putting them in a configuration
file. Basic language support can require very little, essentially just
code for writing the delimiters to stdout and stderr. For example,
Bash support is based on this three-line template:

printf "\n{stdout_delim}\n"

printf "\n{stderr_delim}\n" >&2
{code}

The Bash configuration file also specifies that the file extension
. sh should be used, and provides another four lines of template
code to enable cb.expr. So far, the longest configuration file,
for Rust, is less than fifty lines—counting empty lines.

Stderr

Because code is typically inserted into a template for execution,
if there are errors the line numbers will not correspond to those
of the code that was extracted from the document, but rather to
those of the code that was actually executed. Codebraid tracks line
numbers during template assembly, so that executed line numbers
can be converted into original line numbers. Then it parses stderr
and corrects line numbers. An example of an error produced with
cb.nb with Python is shown below. Notice that the line number
displayed is correct.

var = 123
print (var, flush=True)
var += "a"
123
Traceback (most recent call last):
File "source.py", line 3, in <module>
var += "a"
TypeError: unsupported operand type(s) for +=:
'int' and 'str'
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Since line numbers in errors and warnings correspond to those
in the code entered by the user, and since anything written to stderr
is displayed by default next to the code that caused it, debugging
is significantly simplified. In many cases, this even applies to
compile errors for a language like Rust.

Jupyter kernels

Using a Jupyter kernel instead of the built-in code execution
system is as simple as adding jupyter_kernel=<name> to
the first code chunk for a language (or, as discussed later, to the
first code chunk of a named session):

"7 {.python .cb.run jupyter_kernel=python3}
$matplotlib inline

import numpy as np

from matplotlib import pyplot as plt

T {.python .cb.run}
np.linspace (0, 2*np.pi)
for n in range(-1, 2):
plt.plot(x, np.sin(x + nxnp.pi/4))
plt.grid()

X =

Notice that jupyter_kernel was only needed (and only al-
lowed) for the first code chunk. The second code chunk is still
using the same language (. python), so it shares the same kernel.
This Markdown results in a plot, just as it would within a Jupyter
notebook. Because cb . run was used rather than cb . nb, code is
not displayed and only the plot is shown:

100 A
075 A
050 +
025 1
0.00 +
—0.25
—0.50

—0.75 1

LA

o 1 2 3 4 5 B
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The built-in code execution system allows multiple languages
within a single document. This is also possible when Jupyter
kernels are used instead. A single document can involve multiple
kernels. Multiple independent sessions for the same kernel type
are also possible when jupyter_kernel is combined with
session (described in the next section). Of course, kernel
features like IPython magics [[DT19a] are fully functional as well.

Advanced code execution

Ideally, executable code should be arranged within a document
based on what is best for the reader, rather than in a manner
dictated by limitations of the tooling. Several options are provided
to maximize the flexibility of code presentation.

Incomplete units of code

By default, Codebraid requires that code be divided into complete
units. For example, a code block must contain an entire loop, or
an entire function definition. Codebraid’s built-in code execution
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system can detect the presence of an incomplete unit of code be-
cause it interferes with stdout and stderr processing, in which case
Codebraid will raise an error. Attempting to run an incomplete
unit of code with a Jupyter kernel will also result in an error.

The complete keyword allows incomplete units of code.
While this increases the flexibility of code layout, it also means
that any output will not be shown until the next complete code
chunk.

The Markdown for a somewhat contrived example that demon-
strates these capabilities is shown below, along with its output.
While this example uses Codebraid’s code execution system,
exactly the same result is obtained by using a Jupyter kernel.

" {.python .cb.run complete=false}
for n in range(1l1l):

o

if n & 2 ==

" {.python .cb.run}
if n < 10:
print (f"{n}, ", end="")
else:
print (£"{n}")

0,2,4,6,8,10

Sessions

By default, all code for a language is executed within a single
default session, so variables and data are shared between code
chunks. It can be convenient to separate code into multiple
sessions when several independent tasks are being performed,
or when a long calculation is required but the output can easily
be saved and loaded by separate code for visualization or other
processing. The session keyword makes this possible. Session
names are restricted to valid Python identifiers. For example,

" {.python
import json
result = sum(range (100_000_000))
with open ("result.json", "w") as f:

json.dump ({"result": result}, f)

.cb.run session=long}

Sessions work with both Codebraid’s built-in code execution
system and Jupyter kernels. For example, it is possible to have
multiple independent sessions with a python3 kernel within a
single document.

All sessions are currently executed in serial. In the future,
support for parallel execution may be added.

Outside main ()

Codebraid’s built-in code execution system runs code by inserting
it into a template. The template allows stdout and stderr to be
broken into pieces and correctly associated with the code chunks
that created them. For a language like Python under typical
usage, complete eliminates the few limitations of this approach.
However, the situation for a compiled language with a main ()
function is more complex.

Codebraid includes support for Rust. By default, code is
inserted into a template that defines a main () function. Thus,
a code block like

" {.rust .cb.run}
let x = "Greetings from *Rust!*";
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println! ("{}", x);

can run to produce
Greetings from Rust!

In some situations, it would be convenient to completely
control the definition of the main () function and add code
outside of main (). The outside_main keyword makes this
possible. All code chunks with outside_main=true at the
beginning of a session are used to overwrite the beginning of
the main () template (everything before main ()), while any
chunks with outside_main=true at the end of the session
are used to overwrite the end of the main () template (everything
after main ()). If all code chunks have out side_main=true,
then all of Codebraid’s templates are completely omitted, and all
output is associated with the final code chunk. The example below
demonstrates this option.

""" {.rust .cb.run outside_main=true}

fn main() {
use std::fmt::Write as FmtWrite;
use std::io::Write as IoWrite;
let x = "Rust says hello. Again!";
println! ("{}", x);

Rust says hello. Again!

Working with external files

Though Codebraid is focused on embedding executable code
within a document, there will be times when it is useful to
interact with external source files. Since Codebraid’s built-in code
execution system processes code with a programming language’s
standard interpreter or compiler, normal module systems are fully
compatible; for example, in Python, import works normally.
Of course, this is also true when working with Jupyter kernels.
Codebraid provides additional ways to work with external files
via the include_f1ile option.

When include_file is used with the cb . code command,
an external source file is simply included and displayed. It is
possible to include only certain line ranges using the additional
option include_lines, or only part of a file that matches a
regular expression via include_regex. For example,

" {.markdown .cb.code include_file=poore.txt
include_regex="# Working.*?,"}

includes the original Markdown source for this paper, and then
uses a regular expression to display only the first few lines of this
current section on working with external files:

# Working with external files

Though Codebraid is focused on embedding executable
code within a document,

Since the cb.code command is including content from else-
where, it is used with an empty code block. Alternatively, a single
empty line or a single line containing an underscore is allowed as
a placeholder.

This example included part of a file using a single regular
expression. There are also options for including everything starting
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with or starting after a literal string or regular expression, and for
including everything before or through a literal string or regular
expression.

The include_file option works with commands that exe-
cute code as well. For instance,

" {.python .cb.run include_file=code.py}

would read in the contents of an external file “code.py” and then
run it in the default Python session, just as if it had been entered
directly within the Markdown file.

Comparison

To put Codebraid in context, this section provides a comparison
with knitr, Pweave, Org-mode Babel, and the Jupyter Notebook.
The comparison focuses on the default features of each program.
Extensions for these programs and additional programs with
similar features are summarized in the Appendix.

knitr

knitr [YX15] provides powerful R evaluation in Markdown, La-
TeX, HTML, and other formats. It was inspired by Sweave [FL02],
which allows R in LaTeX. The reticulate [AUT " 19] and JuliaCall
[CL19] packages for R have given knitr significant Python and
Julia capabilities as well, including the ability to convert objects
between languages. knitr is commonly used with the RStudio IDE,
which provides a two-panel source-and-output preview interface
as well as a notebook-style mode with inline display of results.

While knitr provides superior support for R, Codebraid focuses
on providing more capabilities for other languages. knitr runs
all R, Python, and Julia code in language-specific sessions, so
data and variables are shared between code chunks. For all other
languages, each code chunk is run in a separate process and there
is no such continuity. Codebraid’s built-in code execution system
is designed to allow any language to share a session between
multiple code chunks, and Jupyter kernels provide equivalent
capabilities. R, Python, and Julia are limited to a single shared
session each with knitr. Codebraid allows multiple sessions for
all supported languages. This allows independent computations
to be divided into separate sessions and only re-executed when
necessary.

Once code is executed, Codebraid and knitr provide similar
basic features for displaying the code and its output. knitr has
more advanced options for formatting output, such as customizing
plot appearance, converting plots into figures with captions, or
combining plots into an animation.

The two programs take different approaches to extracting code
from Markdown documents. knitr uses the custom R Markdown
[RSt18] syntax to designate code that should be executed. It
extracts inline code and code blocks from the original Markdown
source using a preprocessor, then inserts the code’s output into
a copy of the document that can subsequently be processed with
Pandoc. Because the preprocessor is based on simple regex match-
ing, it does not understand Markdown comments and will run code
in a commented-out part of a document. Writing tutorials that
show literal knitr code chunks can involve inserting empty strings,
zero-width spaces, line breaks, or Unicode escapes to avoid the
preprocessor’s tendency to execute code [YX19], [Hov17]. With
Codebraid, Pandoc is used to convert a Markdown document
into Pandoc’s abstract syntax tree (AST) representation. Code
extraction and output insertion are performed as operations on the
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AST, and then Pandoc converts the modified AST into the final
output document. This has the advantage that Pandoc handles all
parsing and conversion, at the cost of running Pandoc multiple
times.

Pweave

Pweave [MP16] is inspired by Sweave [FL02] and knitr [YX15],
with a focus on Python in Markdown and other formats like
LaTeX and reStructuredText. Pweave uses a custom Markdown
syntax similar to knitr’s for designating code blocks that should be
executed, with many similar features and options. It also extracts
code from Markdown documents with a simple preprocessor. Code
is executed with a single Jupyter kernel. Any kernel can be used;
the default is python3. Rich output like plots can be included
automatically.

Like knitr, Pweave provides some more advanced options
for display formatting that Codebraid lacks, primarily related to
figures. Codebraid has advantages in three areas. Code execution is
more flexible since it allows multiple Jupyter kernels per document
and multiple independent sessions per kernel, in addition to the
built-in code execution system. Since Codebraid uses Pandoc for
all Markdown parsing, it avoids the limitations of a preprocessor.
Codebraid also provides a broader set of display capabilities,
including the ability to programmatically copy and display code
or its output into other parts of a document.

Org-mode Babel

Babel [SD11], [SDDDI12] allows code blocks and inline code
in Emacs Org-mode documents to be executed. Any number of
languages can be used within a single document. By default, each
code chunk is executed individually in its own process. For many
interpreted languages, it is also possible to run code in a session so
that data and variables persist between code chunks. In those cases,
multiple sessions per language are possible. Any combination of
code and its stdout can be displayed. Stdout can be shown verbatim
or interpreted as Org-mode, HTML, or LaTeX markup. For some
languages, such as gnuplot, graphical output can also be captured
and included automatically.

Babel can function as a meta-programming language for Org
mode. A code chunk can be named, and then a later code
chunk—potentially in a different language—can access its output
by name and perform further processing. Similarly, there are
literate programming capabilities that allow a code chunk to copy
the source of one or more named chunks into itself, essentially
serving as a template, before execution.

Codebraid is like a Markdown-based Babel with additional
code execution capabilities but without some of the meta-
programming and literate programming options. Codebraid allows
sessions for all languages, not just for some interpreted languages.
It provides broad support for rich output like plots through Jupyter
kernels. Stderr can also be displayed. While Codebraid currently
lacks a system for passing output between code chunks, it does
provide some literate-programming style capabilities for code
reuse.

Jupyter Notebook

The Jupyter (formerly IPython) Notebook [KRKP ™ 16] provides a
browser-based user interface in which a document is represented
as a series of cells. A cell may contain Markdown (which is
converted into HTML and displayed when not being edited), raw
text, or code. Code is executed by language-specific backends,
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or kernels. Well over one hundred kernels are available beyond
Python, including Julia, R, Bash, and even compiled languages
like C++ and Rust [Jup19c]. Jupyter kernels are often used with
the Jupyter Notebook, but they can also function as a standalone
code execution system.

A Jupyter Notebook can only have a single kernel, and thus
only a single primary programming language with a single session
or process. This means that dividing independent computations
into separate sessions or processes is typically not as straightfor-
ward as it might be in Org-mode Babel or Codebraid. However,
the interactive nature of the notebook often reduces the impact of
this limitation, and can actually be a significant advantage. Code
cells can be run one at a time; a single code cell can be modified
and run again without re-executing any previous code cells.

Some kernels include support for interacting with additional
languages. The IPython kernel [IDT19b] has $%$script and
similar “magics” [IDT19a] that allow single cells to be executed
in a subprocess by another language. PyJulia [JIdt19] and rpy2
[LGrc16] provide more advanced magics that allow an IPython
kernel to interact with a single Julia or R session over a series of
cells (see [MB18b] for examples).

While Codebraid lacks the Jupyter Notebook’s interactivity, it
does have several capabilities not present in the default Notebook.
A Codebraid document can involve multiple Jupyter kernels, as
well as multiple independent sessions per kernel. It can execute
both code blocks and inline code; the Jupyter Notebook is limited
to executing code in code cells. Code layout is more flexible with
Codebraid because a code chunk can contain an incomplete unit of
code, such as part of a loop or part of a function definition. This is
possible even when working with Jupyter kernels. Codebraid also
provides more flexible display options. It is possible to show any
combination of code, stdout, stderr, or rich output in any order,
and to select which form of rich output (MIME type) is shown.
Code or its output can be copied programmatically, so code can
be executed at one location in a document and its output displayed
elsewhere.

Conclusion

Codebraid provides a unique and powerful combination of features
for executing code embedded in Pandoc Markdown documents.

« Both code blocks and inline code can be executed.

« Code blocks are not required to contain complete units of
code, like a complete loop or function definition.

e A single document can use multiple languages and multi-
ple independent sessions per language. Any language can
share a session between multiple code chunks. Indepen-
dent computations can be divided into separate sessions
and only re-executed when necessary.

o Code can be executed with the built-in system, or with
Jupyter kernels which provide rich output such as plots.

¢ A code chunk can display any combination of its Mark-
down source, code, stdout, stderr, and rich output.

o It is easy to reuse code and its output programmatically
with the paste functionality. It is also possible to include all
or part of an external source file for display or execution.

o Because only standard Pandoc Markdown syntax is used,
all Markdown parsing and document conversion can be
delegated to Pandoc, and there are no issues with prepro-
cessors that do not fully support Markdown syntax.
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There are several logical avenues for further development.
One of the original motivations for creating Codebraid was to
build on my previous work with PythonTeX [GMP15] to create
a program that could be used with multiple markup languages.
While Codebraid has focused thus far on Pandoc Markdown,
little of it is actually Markdown-specific. It should be possible
to work with other markup languages supported by Pandoc, such
as LaTeX; all that is required is that Pandoc parses key-value
attributes for some variant of a code block. Pandoc has recently
added Jupyter notebooks to its extensive list of supported formats.
Perhaps at some point it will be possible to convert a Codebraid
document into a Jupyter notebook, perform some exploratory
programming for a single session of a single language, and then
convert back to Markdown.

Codebraid’s caching system could also be improved in the
future. Currently, caching is based only on the code that is
executed. Adding a way to specify external dependencies such
as data files would be beneficial.

APPENDIX

The Comparison focuses on the default features of knitr, Pweave,
Org-mode Babel, and the Jupyter Notebook. This appendix sum-
marizes extensions for these programs and additional programs
with similar features.

knitr extensions

Though knitr does not include any support for Jupyter kernels,
the knitron [FH16] and ipython_from_R [MW 18b] packages have
demonstrated that this is technically feasible.

Software similar to Pweave

The Comparison includes Pweave [MP16] because it is one of
the most capable knitr-like systems for other languages. There are
several other similar programs.

Weave.jl [MP17], by the creator of Pweave, provides similar
features for executing Julia code. It uses Julia to manage code
execution rather than a Jupyter kernel.

knitpy [Kat18] describes itself as a port of knitr to Python.
It uses knitr-style Markdown syntax, and provides code-block
options to control basic code and output display. Other knitr-style
options are not supported. Code is executed in a single Jupyter
IPython kernel. stitch [TA16] is similar, drawing inspiration from
knitr and knitpy. Compared to knitpy, it lacks options for cus-
tomizing output display but has options for customizing figure
display.

Knitj [JH19] is another Jupyter kernel-Markdown integration.
Options for controlling display are contained in special comments
in the first line of code within a code block, rather than in the code
block’s Markdown attributes. It focuses on producing HTML and
includes efficient live preview capabilities.

There are also some comparable tools for reStructuredText.
nb2plots can convert an ipynb notebook file into reStructuredText
for Sphinx [MB18a]. When Sphinx builds the document, the code
is still executed and plots are automatically included, so the live
code and rich output of the notebook are not lost. It is possible to
customize display by hiding code. The reStructuredText can also
be converted to a Python source file or ipynb when that is desired.
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The Jupyter Sphinx Extension [Jupl9b] provides a
jupyter—execute directive for running code in a Jupyter ker-
nel. By default, code is executed within a single kernel, providing
continuity. It is also possible to switch to a different kernel or
switch to a different session using the same kernel type. Code and
output (including rich output like plots) are displayed by default,
but there are options for hiding code or output, or reversing their
order. All code for a given Jupyter session can be converted into a
script or a Jupyter notebook.

Org-mode Babel extensions

Packages like ob-ipython [GS17] and emacs-jupyter [NN19] al-
low Jupyter kernels [KRKP " 16] instead of Babel’s built-in code
execution system. These add the capability to display error mes-
sages or rich output like graphics. The Emacs IPython Notebook
[JMM19] takes a different approach by providing a complete
Jupyter Notebook client in Emacs.

Jupyter Notebook extensions and related software

Some more general approaches to working around the limitation
of one kernel per notebook are provided by the BeakerX polyglot
magics [TSOS18], which support bidirectional autotranslation of
data between languages, and the Script of Scripts (SoS) kernel
[BP19], which acts as a managing kernel over multiple normal
kernels.

It is possible to execute inline code within Markdown cells
with the Python Markdown extension [Jup18c]. This treats Mark-
down cells as {{expression}}-style templates so long as
inline code is outside LaTeX equations. The extension also sup-
ports notebook export to other document formats with nbconvert
[Jup19a] via a bundled preprocessor.

The Comparison does not consider hiding code or output
in documents derived from Jupyter notebooks because this is
possible with nbconvert [Jup19a] as well as extensions and other
programs. Hiding code or output in exported documents is possible
on a notebook-wide basis by configuring nbconvert with the
TemplateExporter exclude options. It is also possible at the
individual cell level by adding a tag to a cell (View, Cell Toolbar,
Tags, then “Add tag”) and then configuring nbconvert to use
the desired TagRemovePreprocessor with a given tag. An
alternative is to use extensions with their provided preprocessors
or templates [Jup18a], [Jup18b], or employ a more comprehensive
tool like Jupyter Book [LH19] that defines a set of tags for display
customization.

The Comparison does not cover the Jupyter Notebook’s JSON-
based ipynb file format because there are multiple ways to work
around its limitations. There are special diffing tools for ipynb files
such as nbdime [MSA15]. It is also possible to save notebooks
as Markdown files instead, or convert them to source code with
Markdown in comments:

o Jupytext [MW18a], [MWtJT19] can convert Jupyter note-
books into Markdown or R Markdown (knitr), or into
scripts in which code cells are converted into code while
Markdown cells are converted into intervening comments.
These formats can also be converted into Jupyter note-
books.

« notedown [AO16] can convert between Markdown and
ipynb, and can also work with R Markdown documents.

o Pandoc [JM19] can convert to or from ipynb files. Note-
books, including cells along with their attributes, can be
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represented as standard Pandoc Markdown. podoc [CR18]
is an earlier program for converting between ipynb and
Pandoc’s AST. It builds on the prior ipymd [CR16].

o The Hydrogen package [Hyd19] for the Atom text editor
provides conversion between ipynb and source code plus
comments. When such a source file is edited, Hydrogen
can connect to a Jupyter kernel to display rich output inline
within the editor. Similar capabilities are provided by the
Python extension for VS Code [Mic19].

Of the programs listed above, Jupytext, notedown, and podoc
provide ContentsManager subclasses for the Jupyter Note-
book that allow it to seamlessly use Markdown as a storage

format.
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Solving Polynomial Systems with phcpy

Jasmine Otto*™*, Angus Forbes*, Jan Verschelde®

Abstract—The solutions of a system of polynomials in several variables are
often needed, e.g.: in the design of mechanical systems, and in phase-space
analyses of nonlinear biological dynamics. Reliable, accurate, and comprehen-
sive numerical solutions are available through PHCpack, a FOSS package for
solving polynomial systems with homotopy continuation.

This paper explores new developments in phcpy, a scripting interface for
PHCpack, over the past five years. For instance, phcpy is now available on-
line through a JupyterHub server featuring Python2, Python3, and SageMath
kernels. As small systems are solved in real-time by phcpy, they are suitable
for interactive exploration through the notebook interface. Meanwhile, phcpy
supports GPU parallelization, improving the speed and quality of solutions
to much larger polynomial systems. From various model design and analysis
problems in STEM, certain classes of polynomial system frequently arise, to
which phcpy is well-suited.

Introduction

The Python package phcpy [Verl4] provides an alternative to
the command line executable phc of PHCpack [Ver99] to solve
polynomial systems by homotopy continuation methods. In the
phcpy interface, Python scripts replace command line options and
text menus, and data persists in a session without temporary files.
This also makes PHCpack accessible from Jupyter notebooks,
including a JupyterHub server available online [Pascal].

phepy takes as input a list of polynomials in several vari-
ables, with complex-valued floating-point coefficients. Homotopy
methods connect this given system to a ’start system’ with known
solutions. A homotopy is a family of polynomial systems where
one of the variables is considered as a parameter. Polynomial
homotopy continuation combines the application of homotopy and
continuation methods, which extend the convergence of Newton’s
method from local to global, to solve polynomial systems.

Numerical continuation methods track the solution paths, de-
pending on the parameter, originating at the known solutions to
the solutions of the given system. phcpy is also able to represent
the numerical irreducible decomposition of the system’s solution
set, which yields the positive dimensional solution sets containing
infinitely many points, in addition to the isolated solutions.

The focus of this paper is on the application of new technol-
ogy to solve polynomial systems, in particular, cloud computing
[BSVY15] and multicore shared memory parallelism accelerated
with graphics processing units [VY15]. Our web interface offers
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phepy in a SageMath [Sage], [SJ05] kernel or in a Python kernel
of a Jupyter notebook [KIul6].

Although phcpy has been released for only five years, three
instances in the research literature of symbolic computation,
geometry and topology, and chemical engineering (respectively)
mention its application to their computations.

e The number of embeddings of minimally rigid graphs
[BELT18].

« Roots of Alexander polynomials [CD18].

o Critical points of equilibrium problems [SWMI16].

The package phcpy is in ongoing development. At the time of
writing, this paper is based on version 0.9.5 of phcpy, whereas
version 0.1.5 was current at the time of [Verl4]. An example
of these changes is that the software described in [SVWO03] was
recently parallelized for phepy [Verl8].

A Scripting Interface for PHCpack

The mission of phcpy is to bring polynomial homotopy continua-
tion into Python’s computational ecosystem.

The package phcpy wraps the shared object files of a compiled
PHCpack, which makes the methods more accessible without
sacrificing their efficiency. First, the wrapping transfers the im-
plementation of the many available homotopy algorithms in a
direct way into Python modules. Second, we do not sacrifice the
efficiency of the compiled code. Scripts replace the input/output
movements and interactions with the user, but not the computa-
tionally intensive algorithms.

Numerical algebraic geometry [SVWO05] was introduced in
1995 as a pun on numerical linear algebra. PHCpack prototyped
the first algorithms to compute a numerical irreducible decomposi-
tion of the solution set of a polynomial system. The package phcpy
aims to bring the algorithms of numerical algebraic geometry into
the computational ecosystem of Python.

Related Software

PHCpack is one of three FOSS packages for polynomial homotopy
computation currently under development. Of these, only Bertini
2 [Bertini2.0] also offers Python bindings, although it is not
GPU-accelerated and does not export the numerical irreducible
decomposition, among other differences. Version 1.4 of Bertini is
described in [BHSW13].

HomotopyContinuation.jl [HCJL] is a standalone package for
Julia, presented at ICMS 2018 [BT18].

NAG4M?2 [NAG4M?2] is a package for Macaulay?2 (a standard
computational algebra system [M2]), which can also act an inter-
face to PHCpack or Bertini. As described in [Ley11], it provided
the starting point for PHCpack’s Macaulay2 bindings [GPV13].
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User Interaction
Online Access

The first area of improvement that phcpy brings is in the interac-
tion with the user.

With JupyterHub [JUPH], we provide online access [Pascal]
to environments with Python and SageMath kernels pre-installed,
both featuring phcpy and tutorials on its use (per next section).
Since Jupyter is language-agnostic, execution environments in
several dozen languages are possible. Our users can also run code
in a Python Terminal session. As of the middle of May 2019,
our web server has 146 user accounts, each having access to our
JupyterHub instance. Our server is available for public use, after
creating a free account.

In our first design of a web interface to phc, we developed
a collection of Python scripts (mediated through HTML forms),
following common programming patterns [Chu06]. This design is
described in Chapter 6 of [Yul5]. For the user administration of
our JupyterHub, we refreshed this first web interface, retaining the
following architecture.

MySQLdb [MSDB] does the management of user data, in-
cluding a) names and encrypted passwords, b) generic, random
folder names to store data files, and c) file names with polynomial
systems they have solved. With the module smtplib, we defined
email exchanges for an automatic 2-step registration process and
password recovery protocol.

A custom JupyterHub Authenticator connects to the existing
MySQL database and triggers a SystemdSpawner that isolates the
actions of users to separate processes and logins in generic home
folders. The email account management prompts were hooked to
new Tornado RequestHandler instances, which perform account
registration and activation in the database, as well as password re-
covery and reset. Each such route serves HTML forms seamlessly
with the JupyterHub interface, by extending its Jinja templates.

Code Snippets

Learning a new API is daunting enough without also being a
crash course in algebraic geometry. Therefore, the user’s manual
of phcpy [PHCPY] begins with a tutorial section using only the
blackbox solver phcpy.solver.solve (system, ...).In
this API, system is a list of strings representing polynomials,
terminated by semicolons, and containing as many variables as
equations.

The code snippets from these tutorials are available in our
JupyterHub deployment, via the snippets menu provided by nbex-
tensions [JUP15]. This menu suggests typical applications to guide
the novice user. The screen shot in Fig. 1 shows the code snippet
reproduced below.

PHCpy > blackbox solver >

# solving trinomials
# > solvin
£

g a specific

case

rom phcpy.solver import solve

f = ["x"2xy"2 + 2¥xx - 1;°',
sols = solve (f)
for sol in sols: print (sol)

'X"2%y"2 — 3xy + 1;']

The first solution of the given trinomial can be read as
(0.48613... + 0.0i, 0.34258... - 0.0i), where the imaginary
part of x_0 is exactly zero, and that of y_O negligibly small.
Programmatically, these can be accessed using either solve (f,
dictionary_output=True), or equivalently by parsing
strings through [phcpy.solutions.strsol2dict (sol)
for sol in solve(f)].
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Z Jupyter code_snippet Last Checkpoint: 4 minutes ago (autosaved)

File  Edit View Inset  Cell Kemel Help  PHCpy
+ < @ B solving trinomials »  solving arandom case
representations of isolated solutions » | solving a specific case
reproducible runs with fixed seeds » | 4 solution se £ = ['x"2+y°2 + 2tx - 1;', 'x'24y"2 - 34y + 1;']
£rom phopy.solver import solve
shared memory parallelism » ‘ « families of ¢ so1s - solve()
foot counting methods » | < Schubert o7 20t n sole: print sol =
In [1]: £ = [ Newton's method and deflation » | < Newton polytopes
from
sols  eduation and variable scaling » | ¢ the extension module
for sol in sols: print sol
PHCv2.4.64 released 2019-01-21 works!
total degree : 16
2-homogeneous Bezout number : 8
with with partition : { x }{ y }
general linear-product Bezout number : 8
based on the set structure :
{xHxHyHy}
{xMHxHyHy}
mixed volume : 4
stable mixed volume : 4
t: 1. 0.
m: 1

the solution for t :

x : 4.86132470489966E-01 0.00000000000000E+00

y ¢ 3.42578353006690E-01 -2.28597478256455E-100

== err : 3.499E-17 = rco : : 4.857E-17 =

Fig. 1: The code snippet for the blackbox solver.

Direct Manipulation

One consequence of the Jupyter notebook’s rich output is the
possibility of rich input, as explored through ipywidgets [[PYW]
and interactive plotting libraries. The combination of rich input
with fast numerical methods makes surprising interactions possi-
ble, such as interactive solution of Apollonius’ Problem, which is
to construct all circles tangent to three given circles in a plane.

The tutorial given in the phcpy documentation was
adapted for a demo accompanying a SciPy poster in 2017,
whose code [APP] will run on our JupyterHub (by copying
apollonius_d3.ipynb and apollonius_d3. js to one’s
own user directory).

This system of 3 nonlinear constraints in 5 parameters for
each of 8 possible tangent circles can be solved interactively by
our system in real-time (Fig. 2). Although any of the 8 tangent
circles could have nonzero imaginary part in their x/y position or
radius, depending on input coefficients (input circles), such circles
are not rendered. Thanks to its rich output capabilities, Jupyter is
a suitable environment for mapping algebraic inputs to the planar
geometric objects they represent (a data binding) through D3.js
[D3].

Fig. 2: Tangent circles calculated by phcpy in response to user
reparameterization of the system.

This approach makes use of the real-time solution of small
polynomial systems, demonstrating the low latency of phcpy. It
complements static input conditions by investigating their con-
tinous deformation, especially across singular solutions (which
PHCpack handles more robustly than naive homotopy methods).
Singular solutions of polynomial systems are handled by defla-
tion [LVZ06], which restores quadratic convergence of Newton’s
method by the addition of sufficiently many higher order deriva-
tives to the original system.

Solving Polynomial Systems

Our input is a list of polynomials in several variables. This input
list represents a polynomial system. By default, the coefficients of
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the polynomials are considered as complex floating point numbers.
The system is then solved over the field of complex numbers.

For general polynomial systems, the complexity of the solution
set can be expected to grow exponentially in the dimensions (num-
ber of polynomials and variables) of the system. The complexity
of computing all solutions of a polynomial system is #P-hard. The
complexity class #P is the class of counting problems. Formulating
instances of polynomial systems that will occupy fast computers
for a long time is not hard.

Polynomial Homotopy Continuation

By computing over the field of complex numbers, we exploit the
continuity of the solution set as a function of the coefficients
of the polynomials in the system. These numerical algorithms,
called continuation methods, track solution paths defined by a one
parameter family of polynomial systems (the homotopy). Homo-
topy methods take a polynomial system as input, and construct
a suitable embedding of the input system into a family which
contains a start system with known solutions.

We say that a homotopy is optimal if for generic instances
of the coefficients of the input system no solution paths diverge.
Even as the complexity of the solution set is very hard, the problem
of computing the next solution, or just one random solution, has
a much lower complexity. phcpy offers optimal homotopies for
three classes of polynomial systems:

1) dense polynomial systems
A polynomial of degree d can be deformed into a product
of d linear polynomials. If we do this for all polynomials
in the system (as in [VC93]), then the solutions of the
deformed system are solutions of linear systems. Contin-
uation methods track the paths originating at the solutions
of the deformed system to the given problem.

2) sparse polynomial systems
A system is sparse if relatively few monomials appear
with nonzero coefficient. The convex hulls of the ex-
ponent vectors of the monomials that appear are called
Newton polytopes. The mixed volume of the tuple of
Newton polytopes associated with the system is a sharp
upper bound for the number of isolated solutions. Polyhe-
dral homotopies ([HS95], [VVC94]) start at solutions of
systems that are sparser than the given system and extend
those solutions to the solutions of the given problem.

3)  Schubert problems in enumerative geometry
The classical example is to compute all lines in 3-space
that meet four given lines nontrivially. Homotopies to
solve geometric problems move the input data to special
position, solve the special configuration, and then deform
the solutions of the special problem into those of the
original problem. Such homotopies were introduced in
[HSS98].

All classes of homotopies share the introduction of random
constants.

For its fast mixed volume computation, the software incorpo-
rates MixedVol [GLWO05] and DEMiCs [MTOS8]. High-precision
double double and quad double arithmetic is performed by the
algorithms in QDIlib [HLBO1].

Speedup and Quality Up
The solution paths defined by polynomial homotopies can be
tracked independently, providing obvious opportunities for parallel
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execution. This section reports on computations on our server, a
44-core computer.

An obvious benefit of running on many cores is the speedup.
The quality up question asks the following: if we can afford to
spend the same time, by how much can we improve the solution
using p processors?

We illustrate the quality up question on the cyclic 7-roots
benchmark problem [BF91]. The online SymPy documentation
[SymPyDocs] uses the cyclic 4-roots problem to illustrate its
nonlinsolve method.

The function defined below returns the elapsed performance of
the blackbox solver on the cyclic 7-roots benchmark problem, for
a number of tasks and a precision equal to double, double double,
or quad double arithmetic.

def qualityup (nbtasks=0,

mn

precflag='d"'):

Runs the blackbox solver on a system.
default uses no tasks and no mult

The elapsed performance is returned.
nnn

The iprecision.

from phcpy.families import cyclic

from phcpy.solver import solve

from time import perf_ counter

c7 = cyclic(7)

tstart = perf_counter()

s = solve(c7, verbose=False, tasks=nbtasks, \
precision=precflag, checkin=False)

return perf_counter() - tstart

The function above is applied in an interactive Python script,
prompting the user for the number of tasks and precision, This
scripts runs in a Terminal window and prints the elapsed perfor-
mance returned by the function. If the quality of the solutions
is defined as the working precision, then to answer the quality
up question, one considers how many processors are needed to
compensate for the overhead of the multiprecision arithmetic.

Although cyclic 7-roots is a small system for modern com-
puters, the cost of tracking all solution paths in double double
and quad double arithmetic causes significant overhead. The script
above was executed on a 2.2 GHz Intel Xeon E5-2699 processor in
a CentOS Linux workstation with 256 GB RAM and the elapsed
performance is in Table 1.

precision d dd qd
elapsed perform. 5.45 42.41 604.91
overhead factor 1.00 7.41 110.99

TABLE 1: Elapsed performance of the blackbox solver in double,
double double, and quad double precision.

Table 2 demonstrates the reduction of the overhead caused by
the multiprecision arithmetic by multitasking.

tasks 8 16 32
dd 7.56 5.07 3.88
qd 96.08 65.82 44.35

TABLE 2: Elapsed performance of the blackbox solver with 8, 16, and
32 path tracking tasks, in double double and quad double precision.

Notice that the 5.07 in Table 2 is less than the 5.45 of
Table 1: with 16 tasks we doubled the precision and finished
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the computations in about the same time. The 42.41 and 44.35
in Table 2 are similar enough to state that with 32 instead of 1
task we doubled the precision from double double to quad double
precision in about the same time.

The data in Table 2 is visualized in Fig. 3. The interpolation
allows us to estimate running times for a number of tasks different
from the measured run times. To answer the original quality up
question, one could interpolate between the sizes of working
precision to answer the following quality up question. If we can
afford to spend the same time as on one path tracking task, then
how many extra decimal places can we gain with p path tracking
tasks?
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Fig. 3: Interpolated elapsed performances.

Precision is a crude measure of quality. Another motivation for
quality up by parallelism is to compensate for the cost overhead
caused by arithmetic with power series. Power series are hybrid
symbolic-numeric representations for algebraic curves.

Positive Dimensional Solution Sets

Solving a system has evolved in meaning, from computing ap-
proximations of all its isolated solutions, to finding the numerical
irreducible decomposition of the solution set. The numerical irre-
ducible decomposition includes not only the isolated solutions, but
also the representations for all positive dimensional solution sets.
Such representations consist of sets of generic points, partitioned
along the irreducible factors.

To illustrate this expanded sense of a ’solution’, we consider
the twisted cubic, known in algebraic geometry as the first non-
trivial space curve. We use this example to illustrate two different
representations of this space curve:

1) In a witness set construction, the given polynomial equa-
tions are augmented with as many generic hyperplanes as
the dimension of the solution set. The solutions which sat-
isfy the system and the augmented equations are generic
points. As the degree of the twisted cubic is three, we find
three points on a random plane intersecting the cubic.
pols = ['xxy - z;', '"x"2 = y;']
from phcpy.sets import embed
from phcpy.solver import solve

embp = embed (3, 1, pols)
sols = solve (embp, verbose=False)
print ('#generic points :', len(sols))
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The above snippet constructs the embedding for the
equations that define the twisted cubic. The solutions of
this embedding represent the curve. Moving the added
plane and tracking the solution paths starting at the three
generic points will provide many more samples of the
curve.

2) A series expansion for the solution starts its development
at some point(s) in a coordinate hyperplane. In this
hyperplane, the curve intersects the solution set at some
point(s). For a simple example as the twisted cubic, the
series development defines an exact solution after the
initial term. Consider the snippet:
pols = ['xxy — z;', 'x"2 - y;']

from phcpy.maps import solve_binomials

maps = solve_binomials (3, pols, \
puretopdim=True)

for sol in maps:
print (sol)

The output of the above snippet is

J)y xtlxx1",
*tlxx3",
'

Ty = (1403) xt1xx27, \
'dimension = 1', \

['x - (1
z = (

legree

Q

which corresponds to the parametric respresentation
(t,¢%,¢%) of the twisted cubic.

Many interesting polynomial systems have isolated solutions
and positive dimensional solution sets. We consider again the
family of cyclic n-roots problems, now for n = 8§, [BF94]. While
for n =7 all roots are isolated points, there is a one dimensional
solution curve of cyclic 8-roots of degree 144. This curve decom-
poses in 16 irreducible factors, eight factors of degree 16 and eight
quadratic factors, adding up to 8 x 16+ 8 x 2 = 144.

Consider the following code snippet.
from phcpy.phcpy2c3 import py2c_set_seed
from phcpy.factor import solve

from phcpy.families import cyclic
py2c_set_seed(201905091) #

for a

reproducible run

c8 = cyclic(8)

sols = solve (8, 1, c8, verbose=False)

witpols, witsols, factors = sols[1]

deg = len(witsols)

print ('degree of solution set at dimension 1 :', deg)
print ('number of factors : ', len(factors))

_, l1isosols = sols[0]

print ('number of isolated solutions :', len(isosols))

The output of the script is

degree of solution set at dimension 1 144

number of factors : 16

number of isolated solutions 1152

This numerical output is the essence of the blackbox solver for
positive dimensional solution sets [Ver18].

Survey of Applications

We consider some examples from various literatures which apply
polynomial constraint solving. The first two examples use phcpy
in particular as a research tool. The remaining three are broader
examples representing current uses of numerical algebraic geom-
etry in other STEM fields.

Rigid Graph Theory

The conformations of proteins [LML14], molecules [EM99], and
robotic mechanisms (discussed further below) can be studied by
counting and classifying unique mechanisms, i.e. real embeddings
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of graphs with fixed edge lengths, modulo rigid motions, per
Bartzos et al. [BELT18].

Consider a graph G whose edges e € Eg each have a given
length d,. A graph embedding is a function that maps the vertices
of G into D-dimensional Euclidean space (especially D = 2 or 3).
Embeddings which are ’compatible’ are those which preserve G’s
edge lengths. The number of unique mechanisms is thus a function
of G and d. An upper bound over all 4 and G with k vertices
(yielding lower bounds for graphs with n > k vertices, unless
the upper bound is infinite) can be computed. In particular, the
Cayley-Menger matrix of d [LLMM14] (i.e., the squared distance
matrix with a row and column of 1s prepended, except that its
main diagonal is Os) is an algebraic system, proportional to the
mixed volume. Certain of its square subsystems characterize the
mechanism in terms of these bounds on unique mechanisms.

Bartzos et al. implemented, using phcpy, a constructive
method yielding all 7-vertex minimally rigid graphs in 3D space
(the smallest open case) and certain 8-vertex cases previously
uncounted. A graph G is generically rigid if, for any given edge
lengths d, none of its compatible embeddings (into a generic
configuration such that vertices are algebraically independent) are
continuously deformable. G is minimally rigid if removing any
one of its edges yields a non-rigid mechanism.

phcpy was used to find edge lengths with maximally many
real embeddings, exploiting the flexibility of being able to specify
their starting system. This sped up their algorithm by perturbing
the solutions of previous systems to find new ones.

Many iterations of sampling have to be performed if the
wrong number of real embeddings is found; in each case, a
different subgraph is selected based on a heuristic implemented
by the DBSCAN class of scikit—-learn (illustrating the value
of a scientific Python ecosystem). The actual number of real
embeddings is known from an enumeration of unique graphs
constructed by Henneberg steps in, for instance, SageMath.

Model Selection & Parameter Inference

It is often useful to know all the steady states of a biological
network, as represented by a nonlinear system of ordinary dif-
ferential equations, with some conserved quantities. These two
lists of polynomials (from rates of change of form x = p(x), by
letting ¥ = O; and from conservation laws of form ¢ =Y x; by
subtracting ¢ from both sides) have a zero set which is a steady-
state variety, that can be explored numerically via polynomial
homotopy continuation.

Parameter homotopies were used by Gross et al. [GHR16]
to perform model selection on a mammalian phosphorylation
pathway, determining whether the kinase acts processively (i.e.
adding more than one phosphate at once, which it does not
in vitro). Their analysis validated experimental work showing
processivity in vivo. In doing so, they obtained >50x speedup
over non-parameter homotopies (for running times in minutes, not
hours) on systems tracking 20 paths.

Critical Point Computation

Polynomial homotopy continuation has also been adapted to the
field of chemical engineering to locate critical points of mul-
ticomponent mixtures [SWM16], i.e., temperature and pressure
satisfying a multi-phase equilibrium.

A remarkable variety of systems of constraint also take on
polynomial form, or can be approximated thereby, in various
sciences. Diverse problems in the analysis of belief propagation
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(in graphical models) [KMC18], hyperbolic conservation laws (in
PDEs) [HHS13], and vacuum moduli spaces (in supersymmetric
field theory) [HHM13] have been addressed using polynomial
homotopy continuation.

Algebraic Kinematics

We have discussed an application of numerical methods to count-
ing unique instances of rigid-body mechanisms. In fact, kine-
matics and numerical algebraic geometry have a close historical
relationship. Following Wampler and Sommese [WS11], other
geometric problems arising from robotics include analysis of
specific mechanisms e.g.,:

e Motion decomposition - into assembly modes (of indi-
vidual mechanisms) or subfamilies of mechanisms (with
varying mobility);

« Mobility analysis - degrees of freedom of a mechanism
(sometimes exceptional), sometimes specific to certain
configurations (e.g., gimbal lock);

« Kinematics - effector position given parameters (forward
kinematics), and vice versa (inverse kinematics, e.g. used
in computer animation);

o Singularity analysis - detection of situations where the
mechanism can move without change to its parameters
(input singularity), or the parameters can change without
movement of the mechanism (output singularity);

« Workspace analysis - determining all possible outputs of
the mechanism, i.e.: reachable poses;

...as well as the synthesis of mechanisms that can reach certain
sets of outputs, or that can be controlled by a certain input/output
relationship.

Fig. 4 illustrates a reproduction of one synthesis result in
the mechanism design literature [MW90]. Given five points, the
problem is to determine the length of two bars so their coupler
curve passes through the five given points.
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Fig. 4: The design of a 4-bar mechanism.

This example is part of the tutorial of phcpy and the scripts
to reproduce the results are in its source code distribution. The
equations are generated with sympy [SymPy] and the plots are
made with matplotlib [HunO7].

Continuation homotopies were developed as a substitute for
algebraic elimination that was more robust to special cases, yet
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still tractable to numerical techniques. Research in kinematics
increasingly relies on such algorithms [WS11].

Systems Biology

Whether a model biological system is multistationary or oscil-
latory, and whether this depends on its rate constants, are all
properties of its steady-state locus. Following the survey of Gross
et al. [GBH16] regarding uses of numerical algebraic geometry in
this domain, one might seek to:

« determine which values of the rate and conserved-quantity
parameters allow the model to have multiple steady states;

« evaluate models with partial data (subsets of the x;) and
reject those which don’t agree with the data at steady state;

o describe all the states accessible from a given state of the
model, i.e. that state’s stoichiometric compatibility class
(or basin of attraction);

o determine whether rate parameters of the given model are
identifiable from concentration measurements, or at least
constrained.

For large real-world models in systems biology, these ques-
tions of algebraic geometry are only tractable to numerical meth-
ods scaling to many dozens of simultaneous equations.

Conclusion

From these examples, we see that polynomial homotopy continua-
tion has wide applicability to STEM fields. Moreover, phcpy is an
accessible interface to the technique, capable of high performance
whilst producing certifiable and reproducible results.
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Optimizing Python-Based Spectroscopic Data
Processing on NERSC Supercomputers

Laurie A. Stephey**, Rollin C. Thomas*, Stephen J. Bailey®

Abstract—We present a case study of optimizing a Python-based cosmology
data processing pipeline designed to run in parallel on thousands of cores using
supercomputers at the National Energy Research Scientific Computing Center
(NERSC).

The goal of the Dark Energy Spectroscopic Instrument (DESI) experiment
is to better understand dark energy by making the most detailed 3D map of the
universe to date. Over a five-year period starting this year (2019), around 1000
CCD frames per night (30 per exposure) will be read out from the instrument and
transferred to NERSC for processing and analysis on the Cori and Perlmutter
supercomputers in near-real time. This fast turnaround helps DESI monitor
survey progress and update the next night’'s observing schedule.

The DESI spectroscopic pipeline for processing these data is written almost
exclusively in Python. Using Python allows DESI scientists to write very readable
and maintainable scientific code in a relatively short amount of time, which is
important due to limited DESI developer resources. However, the drawback is
that Python can be substantially slower than more traditional high performance
computing languages like C, C++, and Fortran.

The goal of this work is to improve the performance of DESI's spectro-
scopic data processing pipeline at NERSC while satisfying their productivity
requirement that the software remain in Python. Within this space we have
obtained specific (per node-hour) throughput improvements of over 5x and 6x on
the Cori Haswell and Knights Landing partitions, respectively. Several profiling
techniques were used to determine potential areas for improvement including
Python’s cProfile and line_profiler packages, and other tools like Intel VTune and
Tau. Once we identified expensive kernels, we used the following techniques: 1)
JIT-compiling hotspots using Numba and 2) restructuring the code to lessen
the impact of calling expensive functions. Additionally, we seriously considered
substituting MPI parallelism for Dask, a more flexible and robust alternative,
but have found that once a code has been designed with MPI in mind, it is
non-trivial to transition it to another kind of parallelism. We will also show initial
considerations for transitioning DESI spectroscopic extraction to GPUs (coming
in the next NERSC system, Perlmutter, in 2020).

Index Terms—NumPy, SciPy, Numba, JIT compile, spectroscopy, HPC, MPI,
Dask

Introduction

DESI is the Dark Energy Spectroscopic Instrument [noae]. Though
dark energy is estimated to comprise over 70 percent of our
universe, it is not currently well-understood [PRO3], [MWW13].
Many experiments, including DESI, are seeking to uncover more
information about the nature of dark energy. The goal of the DESI
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Fig. 1: A photograph of the Mayall telescope (large dome in the center
of the image), where the DESI instrument has been installed, on Kitt
Peak, Arizona.

experiment is, over 5 years, to map 30 million galaxies and use
spectroscopically obtained redshift data to measure their distances.
The statistical properties of this 3D galaxy map will help shed
light on the physical nature of dark energy and its role in the
evolution of the universe. An image of the Mayall telescope, on
Kitt Peak, Arizona, where the DESI instrument is installed, is
shown in Figure 1.

In fall 2019 DESI will begin sending batches of CCD images
nightly to the National Energy Research Scientific Computing
Center (NERSC) for data processing. Each exposure contains the
data from 5000 galaxies, quasars, stars, and reference calibrators,
routed by fiber optic cables from the telescope to 10 spectrographs
with 3 CCDs (red, blue, and infrared) and 500 spectra each. This
means that each exposure contains 30 individual images (with
each exposure totaling about 6 GB). DESI expects to collect over
30 exposures in a typical night, resulting in over 1000 images.

A small subset of example data are shown in Figure 2 with 21
spectra distributed horizontally and different wavelengths of light
dispersed vertically. This image represents less than one millionth
of the DESI data obtained per night. Most spectra look the same
since all fibers see the same night sky. The slight excess in the
middle of the leftmost fiber is the signal from a distant galaxy.
Even though this is faint compared to the sky background, this
example is in the brightest 15% of galaxies that DESI will observe.

Compared to prior galaxy redshift surveys, DESI will observe
fainter, more distant objects at lower signal-to-noise, necessitating
more sophisticated algorithms to optimally extract the signal
from the data. This requires a full 2D modeling of the data,
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Wavelength

Spectral Fibers

Fig. 2: Example DESI data showing spectra from 21 of the 5000 fibers
distributed horizontally, with wavelengths dispersed vertically. Most
spectra look the same since they all see the same sky background light.
The slight excess of light in the middle of the leftmost spectrum is the
signal from a distant galaxy.

fitting multiple spectra and wavelengths simultaneously using the
"spectroperfectionism" algorithm [BS10], which is only computa-
tionally feasible due to a divide-and-conquer technique. This case
study focuses on this spectral extraction part of the data processing
pipeline since it is the algorithmically most expensive step; it
includes eigenvalue decomposition, special function evaluation,
and all the necessary bookkeeping required to manage the spectral
data in each exposure.

The overarching goal of this work is to speed up the DESI
experiment’s Python spectroscopic data processing pipeline on the
Cori supercomputer’s KNL partition at NERSC. NERSC [noag]
is the largest Department of Energy computing facility in terms
of number of users (7000) and scientific output [noal]. Cori is
NERSC'’s current flagship supercomputer, a Cray XC40 with a the-
oretical peak performance of 28 PF, comprised of approximately
20 percent Intel Haswell nodes and 80 percent manycore Intel
Knights Landing (KNL) nodes.

Achieving good performance with the manycore KNL nodes
has proven difficult for many science teams. Because the Haswell
nodes are "easier" to use (i.e. applications often run faster on them
out of the box), they are increasingly crowded. For this reason
NERSC established a program called NESAP (NERSC Exascale
Science Applications Program, [noah]) to help science teams tran-
sition successfully to the KNL nodes. NESAP provides technical
expertise from NERSC staff and vendors like Intel and Cray to
science teams to improve the performance of their application
on the Cori KNL partition and prepare for the manycore future
of high-performance computing (HPC). NESAP’s goal is to help
move a large fraction of the NERSC workload from the Haswell
to the KNL partition; this will ease queue wait times and help
increase job throughput for all users.

Achieving optimal Python performance on KNL is especially
challenging due its slower clock speed and difficulty taking ad-
vantage of the KNL AVX-512 vector units (which is not possible
in native Python). A more detailed discussion of the difficulties
of extracting Python performance on KNL can be found in
[RTD*17]. This case study is borne out of DESI’s participation
in the NERSC NESAP program.

Despite these difficulties, DESI requested that their code
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should not be re-written in another language like C due to their
own limited developer resources. They did consider both Cython
[noad] and Numba [noai] as options for improving performance,
but after some initial testing they found that both delivered
approximately equivalent speedups for their specific test cases.
Citing Numba’s ease of use, automatic compilation, and ability to
gracefully fall back to non-compiled code, they requested that NE-
SAP proceed with Numba-based optimizations where necessary.

In what follows we will present a case study that describes how
a Python image processing pipeline was optimized without rewrit-
ing the code in another language like C for increased throughput
of 5-7x on a high-performance system. We will describe our
workflow of using profiling tools to find candidate kernels for
optimization and we will describe how we used just in time
compiling to speed up these kernels. We will also describe our
efforts to restructure the code to minimize the impact of calling
expensive kernels. We will compare parallelization strategies using
MPI and Dask, and finally, we will discuss a preliminary study for
moving the DESI code to GPUs.

Profiling the Code

Our first step in this study was to use profiling tools to determine
places in the DESI code where it was worthwhile to target
our optimization efforts. We made heavy use of tools designed
especially for Python. In general our process was to start with the
simplest tools and then, when we knew what we were looking for,
use the more complex tools.

We should note that we profiled the DESI code on both Cori
Haswell and KNL nodes. There were some minor differences in
the relative time spent in each kernel between the two architec-
tures, but overall the same patterns were present on both Haswell
and KNL.

cProfile

Python’s built-in cProfile package [noaa] was the first tool we used
for collecting profiling data. We found cProfile simple and quick
to use because it didn’t require any additions or changes to the
DESI code. cProfile can write data to a human-readable file, but
we found that using either Snakeviz [noaq] or gprof2dot [Fon19]
to visualize the profiling data was substantially more clear and
useful.

An example of data collected using cProfile and visualized
with gprof2dot is shown in Figure 3. We prefer gprof2dot to
Snakeviz visualizations because they are static images instead of
browser-based. This makes them easier to store, share, quickly
view, and embed in papers and talks. If you prefer accessing the
cProfile data interactively, and clicking on a function to see all of
its children, for example, Snakeviz can provide this functionality.
However, we found the several extra steps required to use Snake-
viz, and the difficulty storing and sharing the visualizations, made
it less appealing than gprof2dot.

Examining the visualized cProfile data allowed us to identify
expensive kernels in the DESI calculation. In Figure 3, the func-
tions are color-coded according to how much total time is spent in
each of them. In this example, the function t raceset accounts
for approximately 37 percent of the total runtime and was a good
candidate for optimization efforts.

Information like that shown in Figure 3 is nevertheless incom-
plete in that it can only provide detail at the function level. From
these data alone it was difficult to know what specifically in the
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Fig. 3: This is an example image created from data collected using cProfile and visualized using gprof2dot [Fonl9]. This profile was obtained

from an early stage in the NESAP optimization effort.

function "traceset” was so time-consuming. Once we had a list of
expensive kernels from our cProfile/gprof2dot analysis, we started
using the line_profiler tool.

line_profiler

line_profiler [Ker19] is an extremely useful tool which provides
line-by-line profiling information for a Python function. However,
this more detailed information comes at a cost: the user must
manually decorate functions that he or she wishes to profile. For
a small code this exercise might be trivial, but for the many
thousand line DESI code 1) hand-decorating every function would
have been extremely time-consuming and 2) searching through
the line_profiler output data to find expensive functions would
have also been cumbersome and potentially error-prone. For this
reason we recommend starting with cProfile and then moving to
line_profiler once the user has identified a few key functions of
interest.

Once decorated, line_profiler provides a great deal of infor-
mation for each line of the function, including how many times
each line was invoked and the total amount of time spent on each
line. An example of line_profiler output for the function xypix is
shown in Figure 4. This information was vital to our optimization
efforts because it could point to functions that were particularly
expensive, such as numpy’s legval or scipy’s er £. Once we had
this information, we could make decisions about how to reduce the
time spent in these functions, either by speeding up the functions
themselves through JIT compiling, or by restructuring the code
to make the functions either less expensive or avoid calling them
as often. We will describe these approaches in the sections that
follow.

Together, cProfile and line_profiler were sufficient for almost
all of the performance optimization work in this case study.
However, because the DESI extraction code is an MPI code, these
profiling tools do have some limitations. Both of these tools can be
used to collect data for each MPI rank, but visualizing and using

Fig. 4: Here is a sample output window from line_profiler [Ker19] for
the function "xypix". The clear, human-readable output files produced
by line_profiler are a very nice feature.

the information in a meaningful way is challenging, especially
when there are 68 outputs from a KNL chip, for example.

VTune and Tau

Once we reached the point where we wanted to investigate 1) each
individual MPI rank and 2) whether all ranks were appropriately
load-balanced, we needed more powerful profiling tools like Intel
VTune [adm] and Tau [noar]. While VTune is a very powerful
general tool for studying code, we found that it was difficult to get
the information we wanted in a clear, understandable format. For
example, VTune would often display extremely low-level informa-
tion that obfuscated the higher-level Python calls we were trying
to investigate. We found gprof2dot and Snakeviz visualizations
easier to navigate than the VTune GUIL We ultimately found
the Tau profiler more useful and well-suited for our application,
although we should note that we required the help of the Tau
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Fig. 5: A sample Tau [noar] output for the DESI spectral extraction
code on a Haswell processor (which has 32 ranks). It is clear from
this output that only 20 of the ranks are being utilized. This motivated
the restructure to allow parallelization of subbundles, rather than
bundles, which could more flexibly utilize the whole processor’s
resources.

developers to build it. (Tau works best when it is built for the type
of application you will profile. In our case it was a Python MPI
code running on a Cray system, all of which are configurations that
Tau supports.) Though building a profiling tool from scratch was
non-trivial, it was also very possible with the help of the Tau team.
Once built, Tau provided clear information about how each MPI
rank was occupied and how each rank compared to the others. A
sample Tau output window is shown in Figure 5. These profiling
data were obtained while the DESI frame was parallelized over
bundles which left 12 of the 32 Haswell ranks unoccupied. It is
clear from this Tau visualization that we were not making good
use of processor resources.

Just-in-time (JIT) Compilation with Numba

The first major approach to achieve speedups in this work has
been to focus on making expensive functions run more quickly.
To achieve this, we have used Numba [LPS15], a just-in-time
compiler for Python.

We used Numba for three functions that, through
profiling, we identified as expensive. These functions
were 1) numpy .polynomial.legendre.legval
[noaj], 2) [noao], and 3)
scipy.special.hermitenorm [noap], which henceforth
we will refer to as legval, erf, and hermitenorm.

legval was perhaps the most straightforward of these three
to JIT compile. Unlike Python, Numba requires that all variables
and arrays cannot change type, nor can they change size (e.g.
this information must be known prior at compile time). This
necessitated several small changes to the 1egval algorithm to
put it in the form required by Numba. Several other lines of the
function that performed type checking were removed. This placed
the onus on the developer to make sure the correct types are
supplied, which was acceptable for us. The original and modified
legval functions are shown in Figure 6.

The two scipy functions were also somewhat challenging to
implement in Numba. At the time of this writing, Numba does not

scipy.special.erf
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yet support directly compiling scipy functions. This meant that
we needed to extract the core part of these scipy functions and
mold them into a form that Numba would accept. For scipy erf,
this meant translating the Fortran source code into Python. For
scipy hermitenorm, which was fortunately already in Python,
algorithmic changes similar to those we made in legval were
necessary to ensure all variables were a constant type and size.

We should note that we tried to cache the compiled Numba
functions with the cache=True option to save time, but with
larger numbers of MPI ranks, we found that this sometimes caused
a data race between the Numba caches written by each rank. To
avoid this problem we considered using ahead of time (AOT)
instead of JIT compiling but since implementing this change was
somewhat awkward, for now we have removed the cache=True
setting and will consider using AOT in the future.

Restructuring the Code

Restructuring the code was the second major optimization strategy
we used. In the three subsections that follow, we will describe
three types of restructuring efforts that we have completed or will
soon complete. In the first restructure, we have altered the code to
process smaller matrices at a time to reduce the performance hit
we take in the scipy.linalg.eigh function. In the second
restructure, we have changed the code to avoid calling an ex-
pensive function, numpy .polynomial.legendre.legval.
In the third restructure, which is currently in progress, we are
changing the structure of parallelism to divide the problem by
subbundle rather than by bundle. This restructure doesn’t itself
provide a performance boost, but it does provide substantially
increased flexibility for the DESI code.

Implement Subbundles

Profiling data indicated that when matrix sizes were large,
scipy.linalg.eigh, a key part of the spectroperfectionism
extraction, was extremely slow. This is not surprising because
Jacobi eigenvalue algorithms scale as O(n®) [PTV'92]. One
recommendation from an Intel Dungeon session (a collaborative
hack session between NESAP teams and Intel engineers) was
to reduce the number of fibers processed at a time. This meant
dividing a single bundle of 25 fibers into 6 smaller groups known
as subbundles. By computing the eigenvalues of more, but smaller,
covariance matrices, DESI was able to reduce their computation
time. It is important to mention that DESI can only use this
type of approach because they have been careful to design their
experiment so as to minimize crosstalk between individual fibers,
which results in a sparse covariance matrix. We will also note that
there was nothing magical about the number 6; anywhere from 2
to 10 subbundles provided a similar performance increase on both
KNL and Haswell. While this strategy was successful on CPUs,
we will revisit this strategy in the section "Does it Make Sense to
Run DESI Code on GPUs".

Add Cached 1egval Values

Another outcome from the Intel Dungeon session was the rec-
ommendation to restructure the code to avoid calling legval.
The problem with legval wasn’t just that it was an expensive
function; rather, it was also contributing to a large fraction of the
total runtime because it was called millions of times for each CCD
image in the DESI spectral extraction calculation. Worse, legval
was called with scalar values even though it was able to handle
vector inputs.
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(A) def legval(x, c, tensor=True): (B)

¢ = np.array(c, ndmin=1, copy=0)

if c.dtype.char in '?bBhHiIlLqQpP':
¢ = c.astype(np.double)

if isinstance(x, (tuple, list)):
x = np.asarray(x)

if isinstance(x, np.ndarray) and tensor
¢ = c.reshape(c.shape + (1,)*x.ndim)

if len(c) == 1:
cd = clo]
cl=190
elif len(c) == 2:
cd = clo]
cl = c[1]
else:
nd = len(c)
c0 = c[-2]
cl = c[-1]
for i in range(3, len(c) + 1):
tmp = c@
nd =nd -1
c@ = c[-i] - (clx(nd - 1))/nd
cl = tmp + (cl#xx(2%nd - 1))/nd
return c@ + cl*x

import numba
@numba. jit(nopython=True,cache=False)
def legval_numba(x, c):
nd=1len(c)
ndd=nd
xlen = x.size
c@=c[-2]*np.ones(xlen)
cl=c[-1]*np.ones(xlen)
for i in range(3, ndd + 1)

tmp = c@

nd =nd -1

nd_inv = 1/nd

c@ = c[-i] - (c1l#(nd - 1))*nd_inv

cl = tmp + (clsx*(2%nd - 1))*nd_inv
return c@ + cl*x

Fig. 6: (A) The official numpy . polynomial.legendre.legval function. Profiling data indicated that this was an expensive function. To
conserve space the docstring has been removed. (B) Our modified 1egval function that was much faster than its original numpy counterpart.
Note the removal of the type checking and the addition of the np. ones array to instruct Numba about the sizes of each array (and prevent

them from changing during every iteration.)

This restructuring required us to modify several major func-
tions and redefine some of the bookkeeping that keeps track of
which data corresponds to which part of the image on the CCD.
Prior to the restructure, profiling data indicated that legval was
called approximately 7 million times per frame with scalar values.

The code was restructured so that legval was now called
800,000 times per frame. Of course this is still a large number, but
it is almost an order of magnitude fewer times than the original
implementation. The calculated values were stored as key-value
pairs in a dictionary. We then modified the part of the code that
previously calculated 1egval to instead look up the required
values stored in the dictionary.

Parallelize over Subbundles Instead of Bundles

Desipte these optimizations, the DESI code still has several known
issues: poor load-balancing and rigid requirements for job sizes (9
nodes for KNL and 19 Nodes for Haswell, for example). We are in
the process of addressing these issues and thought that our efforts
were worth mentioning.

The goal of parallelizing over subbundles, rather than bundles,
is to restructure the code to divide the spectral extraction into
smaller, more flexible pieces. This will relax the previous require-
ment that each frame be divided into 20 bundles, which is an
awkward number for NERSC hardware (and a restrictive condition
in general). When completed, the 500 spectra will be more evenly
doled out to 32 processors (about 16 spectra each) or 68 processors
(about 7 spectra each). This means that all processors can be used
for any given job size, not just for a carefully chosen job size.
However, like the other restructuring efforts, we have found that
implementing this change is nontrivial.

Additionally, this refactor will help improve load balancing.
Since the processing time differs for the three types of DESI
frames (blue, red, and infrared), prior to the refactor, the pro-
cessors assigned to the blue frames finished before the infrared
frames, wasting both valuable processor resources and time. In

this new design, frame types will be grouped together so processor
time is not wasted.

Optimization Results

How effective were all these different optimization efforts we just
described? The most straightforward benchmark is one in which
raw runtime (and hopefully speedup) is measured. In this case, we
measured the time to complete the processing of a single DESI
frame on a single Edison, Cori Haswell, and Cori KNL node. In
Figure 7 we show how each optimization affected the single frame
runtime. The optimizations are plotted chronologically against the
overall runtime of the frame on each architecture.

Figure 7 shows that the first few changes we made had the
largest overall impact: the later optimizations exhibited some
diminishing returns. Over the course of this work the runtime
for a single frame was decreased from 4000 to 525 seconds for
KNL, from 862 to 130 seconds for Haswell, and from 1146
to 116 seconds for Ivy Bridge (the processor architecture on
NERSC’s now retired Edison system). The overall increases in
raw speed varied between 7-10x for each architecture. One major
goal of the NESAP program was to reduce the DESI runtime on
KNL to below the original Edison Ivy Bridge benchmark, which
is indicated by the red dotted line. Once we implemented our
legval cache fix, we achieved this goal.

A more informative benchmark for DESI is specific processing
throughput, stated in frames processed per node-hour. Measuring
this quantity makes it clear how much of DESI’s computing allo-
cation is needed to complete a given amount of processing. Higher
specific throughput indicates more effective use of computing
resources. We measure this benchmark using a full exposure (30
frames), instead of a single frame. We also measure on either
19 or 9 nodes for Haswell and KNL, respectively, due to the
limitations we described earlier (in the Parallelize over Subbundles
Instead of Bundles subsection). Though a single exposure is still
a relatively small test because DESI expects to collect 30 or more
exposures per night (approximately 1000 frames), it much more
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Fig. 7: The single-node speedup achieved on Intel Ivy Bridge,
Haswell, and KNL architectures throughout the course of this study.
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Fig. 8: This figure shows the improvement over the course of this
study in the DESI spectral extraction specific throughput.

closely approaches the real DESI workload than the single frame
benchmark. One feature encoded in this benchmark which is not
captured in the speed benchmark is the increasingly important
role that MPI overhead begins to play in multi-node jobs, which
is a real factor with which DESI will have to contend during
its large processing runs. The frames per node-hour results are
plotted in Figure 8. While the increases in specific throughput we
have obtained are more modest than the raw speedup, these values
are a more accurate representation of the actual improvements in
DESI’s processing capability. For this reason we emphasize that
we were able to achieve a 5-7x specific throughput increase instead
of the (more exciting but less meaningful) 7-10x in raw processing
speed.

It is worth mentioning that using Numba allowed us to make
notable improvements specifically on KNL, which was of course
the main goal of this study. For legval in particular, shown in
Figure 6, we found that JIT compiling this function provided 15x
speedup on KNL vs only 5x speedup on Haswell. This additional
speedup on KNL was because Numba was able to target the
KNL AVX-512 vector units. We therefore strongly recommend
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Fig. 9: Types of optimization efforts performed in this study and their
resulting incremental specific throughput improvements on Intel Ivy
Bridge, Haswell, and Knights Landing architectures. These optimiza-
tions are listed in chronological order.

investigating Numba to any developer trying to optimize Python
code to run on a system with vectorization capabilities.

Finally, in Figure 9 we summarize the incremental specific
throughput improvements we obtained throughout this study on
Edison Ivy Bridge, Cori Haswell, and Cori KNL. The code
optimizations are plotted in chronological order. Perhaps these
results are the most generally instructive. First, they demonstrate
that the restructuring-based optimizations were more valuable than
the JIT-based optimizations. For example, the overall speedup
of adding the legval cached values was approximately 1.7x,
although this was also the most difficult of all the optimizations
implemented in this study. In contrast, our relatively painless
JIT compiled optimizations were not as effective in terms of
speedup, averaging between a factor of 1.1-1.5x improvement.
The takeaway from these results might be that if a developer has
enough time, the larger, more complex restructuring optimizations
may be extremely worthwhile. The flip side is that if the developer
has limited time, small fixes like JIT compiling can still provide
reasonable gains without a major time investment.

Alternatives to MPI?

A few problems with the current MPI implementation of the DESI
spectral extraction code prompted us to take a step back and
consider if newer frameworks like Dask [noaf] would be a better
solution for parallelization within DESI. The reason we considered
Dask, and not Apache Spark or similar frameworks, was 1)
because converting to Dask would require a less extreme refactor
and 2) the Dask adpatations would not preclude smaller-scale users
from running DESI processing routines on their laptops, which
would have been the case with Spark.

The first problem we hoped to address was the relative inflex-
ibility of the division of work between bundles' . The second was
the issue of resiliency: if a node goes down, it will take the entire
MPI job with it’ . An additional feature we liked about Dask is
the ability to monitor Dask jobs in real time with their Bokeh
status page. We thought Dask seemed promising enough that it
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was worth taking a careful look at what it would mean to replace
the DESI MPI with Dask.

Dask is a task-based parallelization system for Python. It is
comprised of a scheduler and some number of workers which
communicate with each other via a client. Dask is more flexible
than traditional MPI because it can start workers and collect their
results via a concurrent futures API. It should be noted that this
is also possible in MPI with dynamic process management, but
since Cray does not yet support dynamic process management
under the Slurm workload manager, we haven’t been able to try it
at NERSC.

During this process, we discovered that it is non-trivial to
convert a code already written in MPI to Dask, and it would likely
be difficult to convert from Dask to MPI as well. (It would likely
be easier to convert from dynamic process management MPI to
Dask, but the DESI spectral extraction code is not written with
this APIL.)

One major difference between MPI and Dask is the point
at which the decision of how to divide the problem occurs. In
MPI since all ranks are generally passing over the code, dividing
the data and performing some operation on it in parallel can be
done on the fly. In Dask, however, the scheduler needs to know
in advance which work to assign to workers. This means that
the work must already be divided in sensible way. Collecting the
information required for Dask-style parallelism in advance would
have required a substantial restructuring on the order of what was
performed for legval, if not more ambitious. At this point we
decided that if the DESI code had been written from the start
with Dask-type parallelism in mind using Dask would have been
a good choice, but converting existing MPI code into Dask was
unfortunately not a reasonable solution for us.

Does it Make Sense to Run DESI Code on GPUs?

Because HPC systems are becoming increasingly heterogeneous,
it is important to consider how the DESI code will run on future
architectures. The next NERSC system Perlmutter [noak] will
include a CPU and GPU partition that will provide a large fraction
of the system’s overall FLOPS, so it is pertinent to examine if
and how the DESI code could take advantage of these accelerated
nodes.

Since GPUs are fundamentally different from CPUs, it may
be necessary to rethink much of the way in which the DESI
spectral extraction is performed. At the moment, each CCD frame
is divided into 7200 overlapping subregions such that each matrix
to solve is typically 400x400 elements. Though this division
of a larger frame into smaller pieces makes sense for CPU
architectures, it may not be optimal for GPU architectures. In
fact for GPUs often the opposite is true: the programmer should
give the GPU as much work as possible to keep it occupied; thus
it may be beneficial to operate on a smaller number of larger
matrices. Additionally, it may be necessary to change the code
so that the matrices are both constructed and solved on the GPU
to bypass inefficient subregion bookkeeping, which is currently
interleaved between constructing and solving the matrices, and
avoid expensive data transfer. This means that helping the DESI
extraction code run efficiently on GPUs could require a major

1. Although this is currently being addressed in the subbundle division
restructure.

2. This is not an issue in Dask, in which dead workers can be seamlessly
revived while the calculation continues.
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—— Cori KNL
101{|— CoriVolta
0
— ]
5 10
E
=]
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2 10
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102 10% 10*
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Fig. 10: Data from performing an eigh matrix decomposition of
various sizes on Edison Ivy Bridge, Cori Haswell, Cori KNL, and
Cori Volta. We used CuPy to perform eigh on the Volta GPU.

restructuring to better adapt the problem for the capabilities of the
hardware.

Preliminary testing is underway to give some indication of
what we might expect from a major overhaul. From profiling
information we expect that the scipy.linalg.eigh function
will constitute a larger part of the workload as matrix sizes in-
crease. We have measured the runtime of scipy.lialg.eigh
and cupy.linalg.eigh [noac] as an initial test case on Cori
Haswell, KNL, and the new Cori Volta GPUs. (We could not make
these measurements on Edison Ivy Bridge because it has now been
decommissioned.) Figure 10 shows the eigh runtime for various
sizes of positive definite input matrices. These data show that for
larger matrix sizes (above approximately 1000) the Volta begins
to outperform the CPUs. However, these data do not include any
possible gains from a divide-and-conquer approach (which has
proven very successful for DESI). Investigating this strategy is
near-term future work.

This eigh study is just the first of many planned GPU
experiments. DESI has additional matrix preparation steps, book-
keeping, and special function evaluations (like 1egval) which
also constitute a large part of their total workload. At this time it is
unclear which of these might perform well on the GPU and make
the relatively expensive host to device data transfer worthwhile.
We will perform many experiments to evaluate how well each of
these are suited to the GPU (or perhaps not suited to the GPU) as
future work.

We should note that one of the major conclusions of this
case study has been that large restructuring efforts have been
worthwhile for DESI. If indeed we choose to embark upon another
major restructure for GPUs, what is the best approach? As we
have detailed above, we have had reasonably good success with
Numba, which also supports GPU offloading. Other options are
CuPy [noab], which aims to be a drop-in replacement for NumPy,
pyCUDA [noam], and pyOpenCL [noan]. How best to support
GPU offloading without having to fill the DESI code with distinct
CPU and GPU blocks, and additionally to avoid being tied to a
particular vendor, is still an open question for us.

Conclusions and Future Work

Over the course of this work, we have achieved our goal of
speeding up the throughput of the DESI spectral extraction code
on NERSC Cori Haswell and KNL processors by a factor of
5-7x without rewriting their Python code in another language.
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DESI will process its data at NERSC both in semi-realtime and
additionally, it will reprocess all of its data each year (at least)
with the latest pipeline version. At the start of this work, the
final data processing would have taken 33 million CPU hours.
The work presented in this study has reduced that to 6.5 million
hours, making much more efficient use of the resources available
at NERSC, thus benefitting both the DESI project and also the
many other users who share the NERSC systems. Additionally,
this algorithm speedup lets DESI process a night’s data in a matter
of hours instead of days, enabling the ability to use one night
of data as feedback to the survey operations the following night.
This results in more efficient survey operations, reducing the time
to completion.

Our strategy was as follows: we employed profiling tools,
starting with the most simple tools (cProfile + gprof2dot) and
progressing as necessary to more complex tools (line_profiler
and Tau), to get an idea of which kernels are most expensive
and what types of structural changes could help improve runtime
and flexibility. We used Numba to JIT compile several expensive
functions. This was a relatively quick way to obtain some speedup
without changing many lines of code. We also made larger
structural changes to avoid calling expensive functions and also to
increase the flexibility and efficiency of the parallelism. In general
these larger structural changes were more complex to implement,
as well as more time consuming, but also resulted in the biggest
payoff in terms of speedup.

We considered changing the parallelism strategy from MPI to
Dask, but ultimately found that changing an existing code is non-
trivial due to the fundamentally different strategies of dividing
the workload, and decided to continue using MPI. Work is in
progress to address two remaining issues: load-balancing and
inflexible job size. Finally, we are now investigating how the
DESI code could run effectively on GPUs by since the next
NERSC system Perlmutter will include a large CPU and GPU
partition. Exploratory studies for how the DESI code can be
optimized are being performed using scipy.linalg.eigh
and cupy.linlg.eigh as a test case now and will continue
as future work.
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A Real-Time 3D Audio Simulator for Cognitive
Hearing Science

Mark Wickert™*

http://www.youtube.com/watch?v=dhRUe-gz690

Abstract—This paper describes the development of a 3D audio simula-
tor for use in cognitive hearing science studies and also for general 3D
audio experimentation. The framework that the simulator is built upon is
pyaudio_helper, which is a module of the package scikit-dsp-comm.
The simulator runs in a Jupyter notebook and makes use of Jupyter widgets
for interactive control of audio source positioning in 3D space. 3D audio has
application in virtual reality and in hearing assistive devices (HAD) research and
development. At its core the simulator uses digital filters to represent the sound
pressure wave propagation path from the sound source to each ear canal of a
human subject. Digital filters of 200 coefficients each for left and right ears are
stored in a look-up table as a function of azimuth and elevation angles of the
impinging sound’s source.

Index Terms—Head-related impulse response (HRIR), Head-related transfer
function (HRTF), binaural hearing, virtual reality, audiology, hearing assistive
devices (HAD),

Introduction

In cognitive hearing science binaural hearing models how sound
pressure waves arrive at either ear drum, at the end of the ear
canal, or in the case of typical measurements, at the entry to the
ear canal, both as a function of the arrival angle in 3D (azimuth
and elevation) and radial distance. A tutorial on 3-D audio can be
found at [HCI]. This leads to the need for the head related impulse
response (HRIR) (time-domain) or head-related transfer function
(HRTF) (frequency domain) for a particular human subject. Tra-
ditionally human subjects are placed in an anechoic chamber with
a sound source placed at e.g. one meter from the head and then
moved relative the subject’s head over a range of azimuth and
elevation angles, with the HRIR measured at each angle. The
3D simulator described here uses a database of HRIR’s from the
University of California, Davis, originally in the Center for Image
Processing and Integrated Computing (CIPIC), [CIPICHRTF], to
describe a given subject. In the pyaudio_helper application
the HRIR at a given angle is represented by two (left and right ear)
200 coefficient digital filters that the sound source audio is passed
through. Here the data base for each subject holds 25 azimuth and
50 elevation angles to approximate continuous sound source 3D
locations.
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Obtaining individual HRTFs is a challenge in itself and the
subject of much research.

In a related research project deep learning is being investigated
as a means to fit a human subject to the CIPIC HRTF database of
subjects, based on 27 upper torso anthropometrics (measurements)
of the subject. As a simple solution, we can also consider using a
simple spherical head model, and its corresponding HRTF, which
makes use of spherical harmonics to solve for the sound pressure
magnitude and phase at any location on the sphere surface. A
frequency sweep of magnitude and phase is then inverse Fourier
transformed to obtain the HRIR. The ultimate intent of the simula-
tor is to serve as a clinical tool for blind sound source localization
experiments. Human subjects will be exposed to several different
HRIR models, where at least one model is a personalized fit based
on deep learning using anthropometrics and/or a finite element
wave equation solution using a 3D rendering of the subject’s
shoulders and head. 3D rendering of a subject can be obtained
using photogrammetry, which estimates three-dimensional coor-
dinates of points on an object from a collection of photographic
images taken from different positions.

3D Geometry

To produce a synthesized 3D audio sound field, we start with
a geometry where the center of the coordinate frame is the
intersection between the subject’s mid-sagittal or vertical median
plane and the line connecting the left and right ear canals. This is
referred to as being head-centered. The coordinate systems used
in this paper are shown in Figure 1. The primary head-centered
system has cartesian coordinates labeled (x,y,z) and associated
cylindrical coordinates (ryy,@az,h,) (black labels in Figure 1).
The cylindrical coordinates will be used in Jupyter notebook apps
presented later as the interface for GUI controls to conveniently
position the audio source about a subject’s head. A secondary
head-centered system, used by CIPIC, has cartesian coordinates
labeled (xi,x2,x3) and associated spherical coordinates (r,¢,6)
(purple labels in Figure 1). The first coordinate system is motivated
by [Fitzpatrick], and its usage is explained in detail in the section
FIR Filter Coefficient Set Selection. The second system is referred
to by CIPIC as the interaural-polar coordinate system (IPCS),
which is used to index into the HRIR filter pairs which produce
the right and left audio outputs.

The 3D audio rendering provided by the simulator developed
in this paper relies on the 1250 HRIR measurements taken using
the geometrical configuration shown in Figure 2. A total of 45
subjects are contained in the CIPIC HRIR database, both human



78

Sound
9 Source
The (y, z) axis define the
midsagittal or vertical
median plane

¢azimu[h

Two coordinate systems

o 3D audio apps cylindrical coordinate system:
(%,0,2) & (r.0,..h,)

o CIPIC interaural-polar coordinate system (IPCS):

(x,,X,,X,) < (r,0,0)

Fig. 1: The primary head-centered coordinate system, (x,y,z), used in
the 3D audio simulator, along with the secondary system, (x,x2,x3)
used by CIPIC via IPCS and spherical coordinates (r,¢,0).

and the mannequin KEMAR (Knowles Electronics Manikin for
Auditory Research) [CIPICHRTF]. For subject 165 in particular,
the left-right channel HRIR is shown in Figure 3, for a particu-
lar cylindrical coordinate system triple (ry,hy, @q;). Figure 3 in
particular illustrates two binaural cues, interaural level difference
ILD and interaural time difference ITD, that are used for accu-
rate localization of a sound source. With ¢,, = 130° we see as
expected, the impulse response for the right ear arriving ahead of
the left ear response, and with greater amplitude.

Fig. 2: The CIPIC audio source locations, effectively on a 1 m radius
sphere, used to obtain 1250 HRIR measurements for each of 45
subjects (only the right hemisphere locations shown).

Real-Time Signal Processing

In this section we briefly describe the role real-time digital signal
processing (DSP) plays in implementing the 3D audio simulator.
A top level block diagram of the 3D audio simulator is shown in
Figure 4. For an audio source positioned at (x,y,z) relative to the
head center, the appropriate HRIR right and left channel digital
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Fig. 3: Example right/left HRIR plots for a particular arrival angle
pulled from CIPIC for subject 165.

filter coefficients are utilized along with gain scaling to account
for radial distance relative to 1 m and a parallax correction factor.
Gain scaling and parallax correction, are taken from [Fitzpatrick],
and are explained in more detail in the following section of this
paper.

To implement the filtering action we use the
pvaudio_helper framework [Wickert] of Figure 5, which
interfaces to the audio subsystem of a personal computer.
The framework supports real-time signal processing, in
particular filtering using core signal processing functions of
scipy.signal [ScipySignal]. The 200 coefficients of the right
and left HRIR are equivalent to the coefficients in a finite impulse
response (FIR) digital filter which produce a discrete-time output
signal or sequence yg[n]/y.[n] from a single audio source signal
x[n]. All of the signals are processed with at a sampling rate of
fs =44.1 kHz, as this is rate used in forming the CIPIC database.
In mathematical terms we have the output signals that drive

M

yrlr] = Gr) brx[n—m] (1
m=0
M

yin] = Gi Z brx[n—m) 2)
m=0

where Gg and Gy, are right/left gain scaling factors that take into
account the source distance relative to the 1 m distance used in the
CIPIC database and by and by, are the right/left HRIR coefficient
sets appropriate for the source location.
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Fig. 4: Real-time DSP filtering with coefficients determined by the
audio source (x,y,z) location.

To produce real-time filtering with pyaudio_helper re-
quires [Wickert] (i) create an instance of the DSP_io_stream
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Fig. 5: The pyaudio_helper framework for real-time DSP in the
Jupyter notebook.

class by assigning valid PC audio input and output device ports
to it, (ii) define a callback function to process the input signal
sample frames into right/left output sample frames according to
(1), and (iii) call the method interactive_stream () to start
streaming. All of the code for the 3D simulator is developed in
a Jupyter notebook for prototyping ease. Since [Wickert] details
steps (i)-(iii), in the code snippet below we focus on the key
filtering expressions in the callback and describe the playback of
a geometrically positioned noise source via headphones:

def callback(in_data, frame_length, time_info,

status) :
global
#***************************xxxxxxxxx***********
# DSP operations here:
# 7 Kemar HRIR left and right channel
# at the sound source location in
# ical coordinates mapped to cartesian
# tes from GUI sliders
# it to both filters comes by first
# 1ing x_left & x_right channels or here
# input white noise
x_mono = Gain.valuex5000+randn (frame_length)

subj.cart2ipcs (r_xz_plane.valuexsin (pi/180+ \
azimuth.value), #x
y_axis.value, #ty
r_xz_plane.value* \
cos (pi/180* \
azimuth.value)) #z

# Filter a frame of samples and save initial

# conditions for the next frame

y_left, zi_left = signal.lfilter (subj.coeffl,
1,subj.tLxx_mono,
zi=zi_left)

y_right, zi_right = signal.lfilter (subj.coeffR,

1,subj.tR+xx_mono,
zi=zi_right)

F ok ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

# Convert ndarray back to bytes
return y.tobytes (), pah.pyaudio.paContinue

# Create a ss_mapping2CIPIChrir object

# SUBJECT 20, 21 (KEMAR SM ears),

# & 165 (KEMAR LG ears)

# subject_200, 201 is 8.75 cm, 10 cm sphere
subj = ss_mapping2CIPIChrir ('subject 165")

# Initialize L/R filter initial conditions
zi_left = signal.lfiltic(subj.coeffl, 1, [0]
zi_right = signal.lfiltic(subj.coeffR,1,[0])

# Create a IO stream object and start streaming

DSP_IO = pah.DSP_io_stream(callback, 0,1,
frame_length=1024,
£fs=44100, Tcapture=0)

DSP_TIO.interactive_stream (0, 2)

# Show Jupyter widgets

widgets.HBox ([Gain, r_xz_plane,azimuth,y_axis])
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FIR Filter Coefficient Set Selection

To finally render 3D audio requires selection of the appropriate
right/left filter coefficient set, and if needed range correction. For
the special case of the source on the 1 m CIPIC reference sphere,
we simply pick the coefficient set that lies closest to the desired
IPCS angle pair (¢, 6).

For the more typical case of the source range, r =
V/x2+y2+72 # 1, more processing is required. The approach
taken here follows the methodology of [Fitzpatrick] by using the
primary cartesian coordinates of Figure 1 to additionally perform
parallax correction and source range amplitude correction. At
distance r from a point source the sound wave energy diverges by
1/r2, so in terms of wave amplitude we include a scale factor of
1/r. Here the inverse distance correction also takes into account
the fact that the entry to the ear canal is offset from the head
center by the mean head radius R. The second correction factor is
parallax, which is graphically depicted in Figure 6 for the special
case of a source in the horizontal plane and directly in front of
the head. Both corrections are addressed in detail in [Fitzpatrick].
For a source not on the unit sphere, sound parallax requires an
adjustment in the HRIR coefficients, unique to the right and left
ears. If we extend rays from the right and left ears that pass
through the sound source location and then touch the unit sphere,
the required azimuth values will be shifted to locations on either
side of the true source azimuth. The corresponding HRIR values
where these rays contact the unit sphere, respectively, perform the
needed parallax correction. The actual database entries utilized are
those that are closest to the intersection points.

A, B, and C are possible 1 m CIPIC
source locations with ray reference
intersections on 1 m sphere sphere For A choose

HRIR filters
here

the proper HRIR filter choices

Left
ear

il
i For B choose For C choose
Ré%pt both HRIR HRIR filters

filters here here

Fig. 6: Parallax correction geometry for three possible source loca-
tions in the horizontal plane: A <1 m, B=1m, and C > 1 m, directly
in front of the head.

The class ss_mapping2CIPIChrif () takes the
source location, (x,y,z), and wusing the single method
cart2ipcs(self, x,y,z), produces the parallax corrected
right and left HRIR filter coefficients and range amplitude scaling
factors. The code is listed below:

class ss_mapping2CIPIChrir (object) :
A class for sound source mapping to the CIPIC
HRIR database

CIPIC uses the interaural polar coordinate
system (IPCS). The reference sphere for the
head-related transfer function (HRTF)

measurements/head-related impulse response
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(HRIR) measurements has a 1lm radius.

Mark Wickert June 2018

def _ init_ (self,sub_foldername,

head_radius_cm = 8.75):

mwn

Object instantiation

The default head radius is 8.75 cm
# Store the head radius in meters
self.head_radius = head_radius_cm/100

# Store the HRIR 200 tap FIR filter coef sets

self.subject = sub_foldername

hrir_ LR = io.loadmat ( self.subject + \
'"/hrir_final.mat')

self.hrirlL = hrir_ LR['hrir_1"]

self.hrirR = hrir_LR['hrir_ r'"]

# Create LUTs for the azimuth and elevation
# values. This will make it easy to quantize
# a given source location to one of the

# available HRIRs in the database.

self.Az_LUT = np.hstack(([-80,-65,-55],
np.arange (-45,45+5,5.0),
[55,65,801))
self .E1_LUT = -45 + 5.625%np.arange(0,50)

# Initialize parameters

self.tR = 1 # place source on unit sphere
self.tL = 1 # directly in front of listener
self.elRL = 0

self.azR = 0

self.azL = 0

self.AzR_idx 0

self.AzL_idx = 0

self.E1RL_idx = 0

# Store corresponding right and left ear FIR
# filter coefficients

self.coeffR = self.hrirR[0,0, :]

self.coeffl = self.hrirL[0,0, :]

def cart2ipcs(self,x,y,z):

mown

Map cartesian source coordinates (x,y,z) to
the CIPIC interaural polar coordinate system
(IPCS) for easy access to CIPIC HRIR. Parallax
error is also dealt with so two azimuth values
are found. To fit IPCS the cartesian
coordinates are defined as follows:

(0,0,0) <-—-> center of head.

(1,0,0) <--> unit vector pointing outward from
the right on a line passing from
left to right through the left
and right ear (pinna) ear canals

(0,1,0) <--> unit vector pointing out through
the top of the head.

(0,0,1) <--> unit vector straight out through
the back of the head, such that

a right-handed coordinate system 1is

formed.

Mark Wickert June 2018, updated June 2019

mown

source at (x,y,z) on a line connecting the
right or left ear canal entry point to the
unit sphere.

¥ R W K

# The right ear (pinna) solution
aR = (x-self.head_radius) % + y**2 + z*%2
bR = 2+self.head_radius* (x-self.head_radius)

First solve for the parameter t, which is used
to describe parametrically the location of the
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cRL = self.head_radius**2 - 1

# The left ear (pinna) solution

al = (xt+self.head_radius)«*2 + y*#2 + z%#*2
bL = -2+self.head_radius+ (x+self.head_radius)

# Find the t values which are also the gain
# values to be applied to the filter.
self.tR = max ((-bR+np.sqrt (bR**2-4+aR+cRL)) \
/(2%aR),
(-bR-np.sqgrt (bRx+x2-4xaR+«cRL) )/ (2*aR))
self.tlL = max((-bL+np.sqrt (bLx+2-4+aLxcRL)) \
/ (2+al),
(-bL-np.sqgrt (bLx+2-4xaL+cRL) )/ (2xaL))
# Find the IPCS elevation angle and mod it
elRL = 180/np.pi*np.arctan2(yl,-z1)
if elRL < -90:
elRL += 360
self.elRL = elRL
self.azR = 180/np.pi* \
np.arcsin(np.clip(self.head_radius\
+ self.tR# (x1l-self.head_radius),
-1,1))
self.azL = 180/np.pi* \
np.arcsin(clip(-self.head_radius\
+ self.tL+ (x1l+self.head_radius),
-1,1))
# Find closest database entry in Az & EIl
self.AzR_idx = np.argmin((self.Az_LUT \
— self.azR) *x*2)
self.AzL_idx = np.argmin((self.Az_LUT \
— self.azl) +x*2)
self.EIRL_idx = np.argmin((self.E1_LUT \
— self.elRL) **2)
self.coeffR = self.hrirR[self.AzR_idx,
self.E1RL_1idx, :]
self.coeffl. = self.hrirL([self.AzL_idx,
self.E1RL_idx, :]

Inthe __init__ method all the right left filter coefficients for
the chosen subject database entry are copied into class attributes
and look-up tables (LUTs) are populated in terms of IPCS angles
to ease selecting the needed right/left filters. Note in particular the
scale factors self.tR and self.tL are the inverse distance
wave amplitude correction factors representing Gg and Gy, in (1)
and (2), respectively.

3D Audio Simulator Notebook Apps

For human subject testing and general audio virtual reality experi-
ments, two applications (apps) that run in the Jupyter notebook
were created. The first allows the user to statically locate an
audio source in space, while the second creates a time-varying
motion audio source. For human subject tests the static source is
of primary interest. Both apps have a GUI slider interface that
use the cylindrical coordinates described in Figure 1 to control the
position the source.

Static Sound Source

The first and foremost purpose of the 3D audio simulator is to
be able to statically position an audio source and then ask a
human subject where the source is located (localization). This is a
cognitive experiment, and can serve many purposes. One purpose
in the present research is to to see how well the HRIR utilized in
the simulator matches the subject’s true HRIR. As mentioned in
the introduction, an ongoing study is to estimate an individualized
HRIR using deep machine learning/deep learning. The Jupyter
Widgets slider interface for this app is shown in Figure 7

Dynamic Sound Source Along a Trajectory

From a virtual reality perspective, we were also interested in giv-
ing a subject a moving sound source experience via headphones.
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# Create a ss_mapping2CIPIChrir object

# SUBJECT 20, 21 (KEMAR sm), & 165 (KEMAR LG) available now

subject = ss_mapping2CIPIChrir('subject 165')

# Initialize L/R filter initial conditions

zi_left = signal.lfiltic(subject.coeffL,1,[0])

zi_right = signal.lfiltic(subject.coeffR,1,[0])

# Create a IO stream object and start streaming

DSP_IO = pah.DSP_io_stream(callback,0,1,frame_length=1024,
fs=44100,Tcapture=0)

DSP_IO.interactive stream(0,2)

widgets.HBox([Gain,r_xz_plane,azimuth,y axis])

Start Streaming Stop Streaming

Status: Stopped

Gain r_xz (m) az (deg) h_y (m)

0.20 1.00 190.00 0.00

Fig. 7: Jupyter notebook for static positioning of the audio test source.

In this case we consider an orbit like sound source trajectory. The
trajectory as shown in Figure 8, is a circular orbit with parameters
of roll, pitch, and hight, relative to the ear canal centerline. The
Jupyter Widgets slider interface for this app is shown in Figure 9.

Sound Source Trajectory (CCW)

1.0 T y
A Listeners
+
0.5 1 i Head
\< l\
§ 0.0 period
z T X
—0.57
-1.07

-1.0
-0.5
0.0

*('77) 0.5 0.5 l\({\\

1.0 1.0

Fig. 8: The sound source trajectory utilized in the dynamic sound
source app.

Spherical Head Model as a Simple Reference HRIR

In blind testing of human subjects it is also of interest to offer
other HRIR solutions, e.g., the [KEMAR] mannequin head or a
simple spherical head [Duda] and [Bogelein]. In this section we
consider a spherical head model with the intent of using the results
of [Duda] to allow the construction of a CIPIC-like database entry,
that can be used in the 3D audio simulator described earlier in this

paper.

General Pressure Wave Solution

As a starting point, the acoustics text [Beranek], provides a
solution for the resultant sound pressure at any point in space
when a sinusoidal plane wave sound pressure source impinges

81

# Create a ss_mapping2CIPIChrir object

# SUBJECT 20, 21 (KEMAR sm), & 165 (KEMAR LG) available now

subject = ss_mapping2CIPIChrir('subject 165')

# Initialize L/R filter initial conditions

zi_ left = signal.lfiltic(subject.coeffL,1,[0])

zi _right = signal.lfiltic(subject.coeffR,1,[0])

# Create a IO stream object and start streaming

DSP_IO = pah.DSP_io_stream(callbackTraj,0,1,frame_length=1024,
fs=44100,Tcapture=0)

DSP_IO.interactive_stream(0,2)

widgets.HBox([Gain T,Period T,r xz_T,theta_roll T,theta pitch T,h_y T])

Start Streaming Stop Streaming

Status: Stopped

Gain Period (s) r_xz (m) roll (deg)  pitch (deg) h_y (m)

0.48 1.50 1.00 0.00 0.00 0.00

Fig. 9: Jupyter notebook for setting the parameters of a sound source
moving along a trajectory with prescribed motion characteristics.

upon a rigid sphere of radius R, centered at the coordinate system
origin. Rotationally symmetric spherical coordinates, r and 6 are
appropriate here. First consider the incident plane wave p;(r,0),
in the expansion

i 6) = o ¥ (— i)' @n+ 1) ju(kr) By(cos 6), 3)
n=0

where 6; is the incidence angle between the plane wave and
measurement point, P,(x) is the nth-order Legendre polynomial,
Jn(x) is the nth-order spherical Bessel function of the first kind,
k=2nf/c is the wavenumber, with f frequency in Hz and
¢ = 344.4 m/s the propagation velocity in air. We set the incident
wave complex pressure pp = 1£0° for convenience.

Finally, solve for the scattered wave, ps(r,6;), by applying
boundary conditions, see [Beranek] for details. The resultant wave
is the sum of the incident and scattered waves as given below:

ﬁ(rvei)

Pi(r,6;) + ps(r, 6:)

Y (=)"(2n+1)Py(cos 6;)
n=0

+/
jnlhr) — 2
hy”’ (kR)
where j/,(x) is the spherical Bessel function of the first kind
derivative, hﬁ,z)(kr) is the nth-order spherical Hankel function
of the second kind, and h;1(2) (kr) is the corresponding deriva-
tive. Figure 10 shows the pressure magnitude at 2000 Hz for
R =28.75 cm, for the plane wave traveling along the 4z — axis. For
plotting convenience, the axes z and w = /x% 4 y? are cylindrical
coordinates, as the sphere has axial symmetry. To be clear z and w
are related to the original spherical coordinates of the math model
by r = vVw?+z% and cos 6; = z/vVw? + 72.
The calculations required to evaluate (4), and thus create
the plot of Figure 10, conveniently make use of functions in
scipy.special. This is shown in the code listing below:

(kr) @

def pS(w, z, £,

mn

R = 0.0875, N = 50):

Scattered field from a rigid sphere

w = radial comp in cylind coord
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Resultant Pressure Magnitude: f=2000 Hz, R=8.75 cm

z (cm)

-10 0

w=yx2+y? (cm)

Fig. 10: The resultant sound pressure wave magnitude in cylindrical
coordinates 7 and w, due to scattering of a plane wave from a rigid
sphere.

z = axial comp in cylind coord

f = frequency in Hz

R = sphere radius in m

N = summation upper boundary

p_polar = pressure in Pa for p0O = 1 Pa

Mark Wickert November 2018

mown

p_ 0 =1
k = 2xpi/(344.4/f)
p_polar = zeros((len(z),len(w)),

dtype=complex128)
for n,wn in enumerate (w) :
for m,zm in enumerate(z) :
r = sqgrt(zm**2 + wnxx2)
cos_theta = zm/sqgrt (zm++2 + wnx=*2)
for kk in range (N+1):
if r <= R:
p_polar[m,n] = 0.0
else:
p_polar[m,n]
(2xkk+1) * \
special.spherical_jn (kk,
k+R, True) /spherical_hn2 (kk,
kxR, True) +* spherical_hn2 (kk,
kxr) * \
special.lpmv (0, kk, cos_theta)

+= p_0x (-17) »*kk *\

return -p_polar

def spherical_hn2(n,z,derivative=False) :
""" Spherical Hankel Function 2nd Kind
return special.spherical_jn(n,z,deriv=False) \
-13 % special.spherical_yn(n,z,
derivative=False)

mnn

The use of R = 8.75 cm is motivated by the standard head radius
discussed in [Duda]. It is interesting to note that there is a bright
spot on the back side (6; = 180°) due to constructive interference
between the waves traveling around either side of the sphere.

HRTF on the Sphere Surface

In signal processing, the transfer function, H(f) = |H(f)|e/“H(f),
is a ratio of two complex numbers as a function frequency in Hz.
In the denominator we have the magnitude and phase (angle) of
the sinusoidal signal input to a system and in the numerator we
have the magnitude and phase of the corresponding output signal
(measurement point on the sphere or ultimately the ear canal). For
the case of the HRTF the output is the sound pressure magnitude
and phase at the entrance to the right and left ear canals. In the case
of the CIPIC database the location of the source is at a particular
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azimuth and elevation on a 1 m sphere centered over the head.
The HRTF of a sphere is defined more generally as the output can
be any point on the surface of the sphere. The input location is
generally at some distance » from the center of the sphere.

In [Duda] the HRTF is defined as the ratio of the sound
pressure on the surface of the sphere divided by the pressure at
the sphere center, given that the sphere is not present:

o (2)
. L y Jm_(kr)
H(6;,f,1,R) = ek ’;)(ZnJr1)Pn(cose,)h;(2)(kR), r>R
)

where 6; is the angle of incidence between the source and
measurement point, f is the operating frequency in Hz, r is the
distance from the source to the center of the sphere, and once
again R is the sphere radius. Recall also that the wave number k
contains f.

Formally this transfer function definition should include the
propagation delay time from the source location r to the sphere
center, but this is a linear phase of the form exp(—j27fr/c) that
can be dealt with as a time shift once the inverse Fourier transform
is used to obtain the HRIR. Later we set r = 1 m to match the
CIPIC source location relative to the head center.

An efficient algorithm for the calculation of (5) is presented in
[Duda], requiring no special functions as a result of using special
function recurrence relationships. The Python implementation,
shown below, also incorporates an error threshold for terminating
the series approximation:

def HRTF_sph(theta, £,
threshold =

R = 0.01, c = 344.4,

mmnn

HRTF calculation for a rigid sphere with source
r meters from the sphere center

Coded from pseudo-code to Python by Mark Wickert

Reference: Appendix A of J. Acoust.
Vol. 104, No. 5, November 1998 R. O. Duda and
W. L. Martens: Range dependence of the response
of a spherical head model.

mn

Soc. Am.,

x = np.cos (thetanp.pi/180)

mu = (2 » np.pi » £ x R)/c

rho = r/R

zr = 1/(1j » mu » rho)

zR = 1/(13 * mu)

Qr2 = zr

Qrl = zr = (1 - zr)

QR2 = zR

QR1 = zR * (1 - zR)

P2 =1

Pl = x

summ = 0

term = zr/(zR * (zR - 1))

summ += term

term = (3 % x % zr * (zr — 1) )/ \
(zR = (2 = zR * (zR - 1) + 1))

summ += term;
oldratio = 1
newratio = np.abs (term)/np.abs (summ)

m = 2
while (oldratio > threshold) or \
(newratio > threshold):
Qr = —(2 + m — 1) » zr = Qrl + Qr2
QR = = (2 » m — 1) * zR = QR1 + QR2
P = ((2 »m~- 1) » x % \
PL - (m - 1) % P2)/m
term = ((2 * m + 1) = P % Qr)/((m + 1) \

* zR *» QR — QRI1)
summ += term
m += 1
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Qr2 = Qrl

Qrl = Qr

QR2 = QR1

QOR1 = QR

P2 = P1

PlL =P

oldratio = newratio

newratio = np.abs(term)/np.abs (summ)
# conjugate to match traveling wave convention
H = np.conj((rho * np.exp(-1j * mu) * summ)/\
(13 » mu))
return H

HRIR on the Sphere Surface

The next step is to calculate the impulse response () correspond-
ing to H(f) via the inverse Fourier transform of the HRTF. Since
we are working with digital (discrete-time) signal processing,
the inverse discrete Fourier transform (IDFT) is used here, as
opposed to the Fourier integral. We take samples of the HRTF
at uniformly spaced frequency samples, Af, running from 0 to
one half the CIPIC sampling rate, f; = 44.1kHz. This makes
h(t) — h(n/ fs) = h[n] in the Python implementation shown below:

def freqr2imp (H,win_att = 100):

wnn
Transform the frequency response of a real
impulse response system back to the impulse
response, with smoothing using a window
function.

Mark Wickert,

mwn

May 2019

Nmax = len (H)
if win_att ==

h = np.fft.irfft (H)
else:
W = signal.windows.chebwin (2+Nmax,
win_att, sym=True) [Nmax:]
h = np.fft.irfft (H+W)
return h

R =
20) :

def compute_HRIR(theta_deg, r = 1.0,

fs = 44100, roll_factor =

0.0875,

wnn
HRIR for rigid sphere at incidence angle
theta_deg, distance r and radius R using
sampingrate fs Hz

Mark Wickert, June 2019
fs = 44100
Nfft = 2x%10
df = fs/Nfft
f = np.arange(df, fs/2,df)
df = fs/Nfft
f = np.arange (df, fs/2,df)
HRTF = np.zeros(len(f),dtype=np.complexl28)
for k, fk in enumerate (f):
HRTF [k] = HRTF_sph (theta_deg, fk,r=r,R = R)
# Set DC value to 1
HRTF = np.hstack (([1],HRTF))
f = np.hstack (([0],£))
HRIR = freqr2imp (HRTF,win_att=100)

# Scale HRIR so the area is unity

GO = 1/ (np.sum(HRIR)*1/fs)

t = np.arange (len (HRIR)) /fs+x1000
return t, np.roll (GO+xHRIR,roll_factor)

We choose Af to obtain at least 100 samples on [0, f;/2],
so that when np.fft.irfft() is employed, the full
real impulse response length will be 200. The function
freq2imp() also includes frequency domain windowing, via
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signal.windows.chebwin () to provide some smoothing to
the discrete-time approximation. In Figure 11 we show a collection
of HRIR plots, created using HRTF_sph (), for the source 1 m
away from the center of a 8.75 cm radius sphere.

' ® Pressure wave arriving 1m
| away from 8.75cm radius
\ rigid sphere

|

® Fixed time delay removed
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Fig. 11: Using the spherical harmonics formulation of [Duda] to
obtain the HRTF and then the HRIR as a function of sound source
incidence angle from 0° to 180°.

Building a CIPIC Database Entry

To finally create a CIPIC-like database entry for a spherical head,
we have to relate the angle of incidence in the HRTF expression
(5) to the angle of arrival of an audio source on the CIPIC 1 m
sphere of Figure 2, relative to right and left ear canal entries at
¢, = £80° (a set back of +100° from the front). The problem
is depicted in Figure 12. This problem turns out to be a familiar
analytic geometry problem, that of finding the angle between two
3D vectors passing through the origin, e.g.

- =

S R

9*“ = C0571 =
|ST[R]

Sk = Xgsin Qg + zs cos Qg (6)
where R is the vector to the right ear canal with angle ¢z, assumed
to lie in the horizontal plane, and § is the vector to the source of
length 1 m with primary coordinate system components (xs, ys,Zzs)
as defined in Figure 1. A similar relation holds for the left ear canal
entry.

We need to fill the database using the CIPIC angle of ar-
rival source grid using the secondary (ICPS) coordinate system.
The coordinate conversion between xs and z; and the IPCS is
Xg = rsin GC]p]C and g = —rcos (bCIPIC COS 9(:[])[(:, so with r =1 the
angle of incidence formula (6) in final form is

9@ =sin GCIPIC sin ¢R — COs ¢CIPIC Cos GCIPIC Cos ¢R (7)

and similarly for the left ear canal.

The steps for producing the HRIR filter pair over 1250 IPCS
angle pairs is summarized in Figure 13.

Finally putting this all together, code was written in a
Jupyter notebook to generate a CIPIC-like database entry, using
scipy.io to write a MATLAB mat file, e.g., subject_200
is a spherical head, with no ears (pinna), containing two HRIR
arrays:
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R S
cos og‘R = ? : ? Approximate ear
‘ ‘ | ‘ canal locations on

sphere at ¢ =+80°in
the horizontal plane
(£100° set-back from

front)

e X

PR - -
o, = -80

sphere

Fig. 12: Solving for the angle between the source and a ray extending
from the right and left ears, also showing a set back of the ear canal
by £100° from the from the font of the head.

Sphere R
radius *
Calc

From CIPIC (60e>|  Caie | %%| wmme |72 cae Al
Source Grid | ¢, Sphere over using
Ear Canal —» Incidence /€l0, £/2)

Angles {Zf —»| Angles 9"_ usiné I (/F) CongluF:Q —>h =

SC| HRTF sph | © ’

Fig. 13: A block diagram depicting the steps involved in calculating
the HRIR right and left channel impulse responses, hg[n] and hy|n],
starting from CIPIC source angles, (Ocipic,9cipic), ear canal set-
back angles, (9r, 1), and the sphere radius R.

io.whosmat ('subject_200/hrir_final.mat"')

[("hrir_17,
('"hrir_r"',

(25, 50,
(25, 50,

200),
200),

'double'),
'double')]

An example HRIR plot, similar to Figure 3, is shown in Figure 14.

Subject HRIR for Source ¢, =130",h =0,r,, =1m

—— Right
1.01 Left

0.0 1

Amplitude

—0.5

—-1.0 1

0 25 50 75 100 125 150 175 200
Time (ms)

Fig. 14: Example right/left HRIR plots for a particular arrival angle
pulled from the CIPIC-like database entry created for a radius 8.75
cm sphere.

Casual listening tests with a coarse fit human subject from
CIPIC and the simple spherical model, indicate both similarities
and differences. Coarse localization is similar between the two,
but the spherical model seems sterile, that is the sound seems un-
natural. The fact that coarse localization is present is an indication
that the database is correct. Additional testing is planned.

PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Conclusions and Future Work

Development of the real-time signal processing aspect of the
3D audio simulator was a relatively simple task. This is a
perfect application for the pyaudio_helper code module of
scikit-dsp-comm. Working through the details of the co-
ordinate transformations, and gain and parallax corrections on
the geometry side, was a more complex undertaking. Likewise,
working with the spherical head model calculations, first in the
frequency domain (HRIR), and then the time domain (HRIR), was
the most complex. The fact that recursions can be used to evaluate
the needed special functions for sound pressure on the surface of a
sphere, makes the generation of a CIPIC-like database entry take
only a few minutes of compute time.

Informal testing of human subjects has gone well. Precise
localization experiments using the static app have not been at-
tempted just yet, as a formal pool human subjects has yet to
be gathered. The virtual reality aspects of the dynamic app have
received many positive comments from informal testing with those
interested in 3D audio.

For future research, this simulator will be used to evaluate
personalized HRIR fitting to human subjects, based on their upper
torso anthropometrics. For the case of the spherical head, it is of
interest to consider alternative HRIR grids. The 1 m radius 1250
point grid of angle pairs is no longer a limitation. For close range
sound localization a different grid of angle pairs and with r <1 m,
can be used. This would make filter switching on the real-time
DSP side of things finer grained, and hence more natural.

The Jupyter notebooks used in the analysis and development
of this paper can be found on GitHub [3D_Audio]. This will give
open access to anyone interested in trying out the simulator.
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An intelligent shopping list based on the application of
partitioning and machine learning algorithms

Nadia Tahiri®*, Bogdan Mazoure*, Vladimir Makarenkov®

Abstract—A grocery list is an integral part of the shopping experience of many
consumers. Several mobile retail studies of grocery apps indicate that potential
customers place the highest priority on features that help them to create and
manage personalized shopping lists. First, we propose a new machine learning
model written in Python 3 that predicts which grocery products the consumer
will buy again or will try to buy for the first time, and in which store(s) the
purchase will be made. Second, we introduce a smart shopping template to
provide consumers with a personalized weekly shopping list based on their
shopping history and known preferences. As the explanatory variables, we used
available grocery shopping history, weekly product promotion information for a
given region, as well as the product price statistics.

Index Terms—Machine Learning, Prediction, Long short-term memory, Convo-
lutional Neural Network, Gradient Tree Boosting, Fi, Python, Sklearn, Tensor-
flow

Introduction

A typical grocery retailer offers consumers thousands of promo-
tions every week to attract more consumers and thus improve
its economic performance [TTR16]. The studies by Walters and
Jamil (2002, 2003) ([WJ02] and [WJ03]) report that about 39%
of all items purchased during a grocery shopping are weekly
specials, and about 30% of consumers surveyed are very sensitive
to the product prices, buying more promotional items than regular
ones. With the recent expansion of machine learning methods,
including deep learning, it seems appropriate to develop a series
of methods that allow retailers to offer consumers attractive and
cost-effective shopping baskets, as well as to offer tools to create
smart personalized weekly shopping lists based on the purchase
history, known preferences, and weekly specials available in local
stores.

A grocery list is an integral part of the shopping experience
of many consumers. Such lists serve, for example, as a reminder,
a budgeting tool, or an effective way to organize weekly grocery
shopping. In addition, several mobile retail studies indicate that
potential customers place the highest priority on features that
help them to create and manage personalized shopping lists
interactively [NPS03] and [SZA16].
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Fig. 1: Screenshot of the MyGroceryTour.ca website for the postal
code H3T 1C8 in Montreal. The website has been created to test
our new machine learning model. It has been written in JavaScript,
Bootstrap, and Python.

Problem statement and proposal

In this section, we present the problem statement and describe the
considered machine learning architecture. First, by using a Cana-
dian grocery shopping database MyGroceryTour.ca' (see Figure
1), we partitioned consumers into classes based on their purchase
histories. Then, this classification was used at the prediction stage.
Since the real consumer data contained thousands of individual
articles, we regrouped the products by their categories. A principal
component analysis (linear and polynomial PCA [Jol11]) was first
carried out to visualize the raw data and select the number of
the main components to use when partitioning consumers into
classes. The application of efficient partitioning methods, such as
K-means [Jail0] and X-means [PM+00], allowed us to determine
the number of classes of consumers, as well as their distribution
by class. We used the Calinski-Harabazs cluster validity index
[CH74] to determine the number of cluster in K-means. The
Silhouette index [RPJ87] could be also used for this purpose.
Second, we developed a statistical model to predict which
products previously purchased by a given consumer will be present
in his/her next order. By using explanatory variables, such as
available grocery shopping histories, information on the current
promotions in stores of a given region, and commodity price

1. MyGroceryTour.ca
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statistics, we developed a machine learning model which is able
to:

i. Predict which groceries the consumer will want to buy
again or will try to buy for the first time, as well as in
which store(s) (within the area they usually shop in) the
purchase(s) will be made;

ii. Create a smart shopping list by providing the consumer
with a weekly shopping list, customized based on his/her
purchase history and known preferences.

This list also includes recommendations regarding the optimal
quantity of every product suggested. We also calculate the con-
sumer’s optimal weekly commute using the generalized travelling
salesman algorithm (see Figure 2).

An Fj statistics maximization algorithm [NCLC12] (see the
Statistics section), based on dynamic programming, was used
to achieve the objective (i). This will be of major interest to
retailers and distributors. A deep learning method [GBC16],
based on Recurrent Neural Networks (RNN) and Convolutional
Neural Network (CNN), both implemented using the TensorFlow
library [HLYX18], was used to achieve the objective (ii). Those
implementations can provide significant benefits to consumers.

Our prediction problem can be reformulated as a binary
prediction task. Given a consumer, the history of his/her previous
purchases and a product with its price history, predict whether
or not this product will be included in the grocery list of the
consumer. Our approach applies a generative model to process the
existing data, i.e., first-level models, and then uses the internal
representations of these models as features of the second-level
models. RNNs and CNNs were used at the first learning level and
forward propagation neural networks (Feed-forward NN) was used
at the second learning level.

Thus, depending on the user’s u and the user’s purchase history
(shop;—ps, h > 0), we predict the probability that the product i is
included in the current shopping basket ,; of u.

Dataset

In this section, we discuss the details of our synthetic and real
datasets, the latter obtained from our website MyGroceryTour.ca.

Features

To perform the prediction only the features we found to be
significant, such as distance, special rate, products, and store, were
considered. All features used in our study are presented below:

o user_id: the user ID. We anonymized all data used in our

study. user_id € {1---374}U{375--- 1,374}
—_—
reals generated

e order_id: unique number of the basket. order_id € Z

« store_id: unique number of the store. store_id € {1---10}

« distance: distance to the store. distance € R™

o product_id: unique number of the product. product_id =
49,684. We tested our model with 1,000 products only
(out of 49,684 products), which belonged to 5 out of the
24 available categories, i.e. Fruits-Vegetables, Pasta-Flour,
Organic Food, Beverages, and Breakfast; the rest of the
categories were not considered in our tests.

« category_id: unique category number for a product.
category_id € {1---24}

o reorder: the reorder is equal to 1 if the product has been
ordered by this user in the past, O else. reorders € {0,1}
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o special: discount percentage applied to the prod-
uct price at the time of purchase. special €
{[0%,15%], [15%,30%],[30%,50%], [50%, 100%]}

In total, we processed the data of 1374 users (i.e., consumers).
Among them, we had 374 real users and 1000 users whose
behaviour was generated following the distribution of real users
(see Figure 3) and the consumer statistics available in the report
by Statistics Canada (2017). The product categories were available
for each product. So, the product category was one of the explana-
tory variables used in the model. In total, we considered 5 (of
24) product categories. The current version of our model does not
allow a new product to be bought by the user (i.e., every user can
only buy products that were present in at least one of its previous
shopping baskets). The user IDs were not sequential because we
only considered real users having a sufficient number of previous
shopping baskets available (>50 baskets). The average basket size
was also used to predict the content of the current basket size for
each user.

Two types of features, categorical and quantitative variables,
were present in our data. Only the distance and special features
were quantitative variables, the rest of them were categorical. To
manage the categorical variables, we applied a hashing scheme
to deal with large scale categorical features. The hash function
takes into account the input and output vector length. We used
the LabelEncoder function of the scikit-learn package of Python
(version 3).

Consumer profile

According to Statistics Canada there exist 3 consumer profiles
(see [WJ03], [WJO02], and [TNTK16]). The first profile represents
consumers who buy only promotional items. The second profile
represents consumers who always buy the same products (with-
out considering promotions). Finally, the third profile represents
consumers who buy products whether they are in special or not.
On our model, we plan to consider this information and make
the prediction more personalized with respect to the consumer’s
profile.

Data Synthesis

Since the real dataset was not large enough to apply the appro-
priate machine learning methods, its size was increased by adding
simulated data following the distribution of real data. The original
dataset was composed of 374 users. It may be not enough to apply
an appropriate machine learning method, and 1000 simulated
users were added to our dataset. Thus, 72.7% of our data were
simulated (1000 out of 1374 user histories were simulated). Here,
we describe the simulated part of our dataset, and present in detail
the results of the simulation step. For store_id, we started with
an initial store and changed stores based on the proportion of
common products between baskets. If we assume that the store
coordinates are normally and independently distributed .4 (0, 62),
the distance between this store and the consumer home located at
the origin (0, 0) follows a Rayleigh distribution [KR05] with the &
parameter. Finally, we increased the value of the special random
variable. Its value has been drawn from a Boltzmann distribution
[AAR+18]. We made sure that the generated baskets followed the
same distribution that the original basket in terms of the basket
size (see Figure 3).
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Fig. 2: Screenshot of the MyGroceryTour.ca website displaying an optimal shopping journey calculated using the generalized travelling

salesman algorithm.
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Fig. 3: Difference in the basket size distribution between Baskets
generated in blue and Original baskets in red.

Preprocessing dataset

Initially, the data were saved in CSV files and stored in a
MySQL database taking 1.4 GB of disk space. Then, the data
were organized in a dataframe and processed using our Python
script. We launched the preprocessing data tasks on the servers
of Compute Canada. This step was carried out using 172 nodes
and 40 cores with an Intel Gold 6148 Skylake CPU(2.4 GHz), and
NVidia V100SXM2(16 GB of memory). We preprocessed the user
data, the product data, and the department data. The preprocessing
had a 48 hour limit and used 32 GB of the RAM memory.

Models

In this section, we present the workflow (see Figure 4) and the
models we used. The graphical representation of the workflow in

Predict next basket

4

N

Criteria F4

A P N A .

s e T s | N
LSTM NNMF
(products)

(products and users)

H

Fig. 4: The graphical illustration of the proposed model intended to
predict the content of the current grocery basket. At the first level of
the model the LSTM and NNMF networks were used. At the second
level of the model, the GBT model was applied. Finally, at the last
step we predicted the current grocery basket using Fj.

Figure 4 allowing one to predict the current consumer’s basket
using the three following models: LSTM, NNMF, and GBT (see
the next section).

Long short-term memory (LSTM) network

The LSTM [HS97] is a recurrent neural network (RNN) that has an
input, a hidden memory block, and an output layer. The memory
block contains 3 gate units namely the input, forget, and output
with a self-recurrent connection neuron [HS97].
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Fig. 5: This figure shows a chain-structured LSTM network. An LSTM
architecture contains the forget, learn, remember, and uses gates
that determine the importance of the input data. In the LSTM unit
represented in this figure, there are four different functions: sigmoid
(o), hyperbolic tangent (tanh), multiplication (x), and sum (+),
making it easier to update the weights during the backpropagation
process. Here X; denotes the input vector, H,_ is the previous cell
output, C;_1 is the previous cell memory, H; is the current cell output,
C; is the current cell memory. f; is the forget gate with sigmoid
function sigma, C; and I, corresponds to the input gate with tanh
function, and finally O; is the output gate with sigma function.

« Input gate learns what information is to be stored in the
memory block.

« Forget gate learns how much information from the mem-
ory block should be retained or forgotten.

e QOutput gate learns when the stored information can be
used.

Figure 5 illustrates the proposed architecture and summarizes
the details of our network model.

A combined RNN and CNN network was trained to predict
the probability that a given user will order a given product at each
timestep. A timestep was defined by the composition of the basket
and the store location on the map (see Figure 2). Here, RNN was
a single-layer LSTM and CNN was a 6-layer causal CNN with
dilated convolutions. The width of the CNN was equal to 1374
(i.e., the number of users), the height was equal to 8 (i.e., the
number of features), and the depth was equal to 100 (i.e., the
number of orders). The last layer was a fully-connected layer that
was making the final classification. The CNN network was used as
a feature extractor and the LSTM network as a sequential learner.

Overall characteristics of the neural networks used in our
project are as follow:

nn = rnn/(

reader=dr,

log_dir=os.path.join (base_dir,

'logs'"),
checkpoint_dir=os.path. join (base_dir,
'checkpoints'),
prediction_dir=os.path.join (base_dir,
'predictions'),

optimizer="adam',

learning_rate=.001,

lstm_size=512,

batch_size=64,

num_training_steps=300,
early_stopping_steps=10,
warm_start_init_step=0,
regularization_constant=0.0,
keep_prob=1.0,
enable_parameter_averaging=False,
num_restarts=2,
min_steps_to_checkpoint=100,
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Fig. 6: Decomposition of the user_id (u in Figure) by product_id
(p in Figure). The first matrix accounts for the products purchased
by the user (i.e. order count), whereas the second and the third
matrices account for the representations of the user and the product,
respectively.

log_interval=20,
num_validation_batches=4,

)

We considered the Adam optimizer which is a good default
implementation of gradient descent. The learning rate was equal
to 0.001 to control how long the weights should be updated in
response to the estimated gradient at the end of each batch. The
size of the hidden state of an LSTM unit was fixed to 512. Batch
size corresponds to the number of samples between updates of the
model weights. It was set to 64 during the training process. Also,
we set to 4 the number of validation batches. The Tensorflow
package was used to implement our rnn class that account for the
features described in the previous section. The rnn class structure
was organized using the four following functions: 1) constructor
function, 2) loss score function calculation, 3) getter function, and
4) output score function.

import TFBaseModel

class rnn (TFBaseModel) :
def _ init_ (self,
lstm_size,
dilations,

filter_widths,
skip_channels,
residual_channels,
*+xkwargs) :

def calculate_loss(self):
def get_input_sequences (self):

def calculate_outputs(self, x):

Non-negative matrix factorization (NNMF) network

Non-negative matrix factorization NNMF [LSO1] is a series of
algorithms in multivariate analysis and linear algebra in which
a matrix X is factorized into two matrices W and H having the
property that all three matrices have no negative elements. This
non-negativity makes the resulting matrices easier to utilize. We
factorize the matrix X (i.e. matrix of user_id by product_id) into
two matrices W (i.e. user_id) and H (i.e. product_id), so that the
matrix representation can be formulated as: X ~ WH (see Figure
6).

NNMF is a powerful machine learning method. It has been
proved that NNMF converse to at least a locally optimal solution
[LSO1]. NNMF is trained on the matrix of the user*product
counts.
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Gradient Boosted Tree (GBT) network

GBT [Fri02] is an iterative algorithm that combines simple pa-
rameterized functions with low performance (i.e. high prediction
error) to produce a highly accurate prediction rule. GBT utilizes
an ensemble of weak learners to boost performance; this makes
it a good candidate model for predicting the grocery shopping
list. It requires little data preprocessing and tuning of parameters
while yielding interpretable results, with the help of partial de-
pendency plots and other investigative tools. Further, GBT can
model complex interactions in a simple recommendation system
and be applied in both classification and regression with a variety
of response distributions, including Gaussian [Car03], Bernoulli
[CMW16], Poisson [PJ73], and Laplace [Tay19]. The composition
of the shopping history list is not complete in the sense that we
do not have the composition of the baskets for each user for all
weeks. Finally, missing values in the collected data can be easily
managed.

The data were divided into two groups (training and validation
sets) which comprised 90% and 10% of the data, respectively.
After simulating the dataset, the strategy used was to merge real
and simulated data and then split them into two groups (training
and validation sets). The test set was composed of both real and
simulated data. The final model included two neural networks and
a GBT classifier. Once trained, it was used to predict in "real time"
the content of the current grocery basket, based on the history of
purchases and the current promotions in neighbouring stores. In
fact, the "real time" does not mean "second-by-second", but rather
"day-by-day". We scheduled it using the crontab tool. Based on
the validation loss function, we removed the following parameters
from our input data: 1) LSTM Category and 2) LSTM size of the
next basket.

The last layer included a GTB classifier used to predict the
products that will be purchased during the current week. GBT
model was modelled using "by user" and "by order" frameworks.
The classifier contained two classes: 0 (i.e. the product will be
bought) and 1 (i.e. the product won’t be bought).

First level model (feature extraction)

Our goal was to find a diverse set of representations using neural
networks (see Table 1). Table 1 summarizes the top-level models
used by the algorithm. We described each type of model used for
every representation (e.g. Products, Category, Size of the basket,
and Users). We estimated the probability of the product; to be
included into the next basket order;; with orders;_j, where t
represents the current time, ¢ + 1 represents the next time, and
t — h represents all previous time periods (i.e. time history). We
decomposed the matrix {user,product} into two matrices, one
corresponding to the user and another to the product. We predicted
the probability to have the product; in the next order; |, taking
into account the purchase history of the current user. We used
an LSTM network with 300 neurons. Finally, we optimized the
size of the next order by minimizing the root mean square error
(RMSE).

Latent representations of entities (embeddings)

For each a € o7/, an embedding T : o/ — R? returns a vector
d-dimensionel. If &/ C Z, T is a matrix |&/| x d learned by
backpropagation. We represented in Table 2 all dimensions of each
model used.

Representation Description Type
i Predict P(product; € order; ) LSTM
Products with orders;_p,, h > 0. (300 neurons)
. . . LSTM
Categories Predict P(3i : product; | € category, ). (300 neurons)
Size Predict the size of the order;. (303' i;rli\fons)
Users X - T Dense
Products Decomposed Viuxp) = Wiuxa)H{jyxa) (50 neurons)

TABLE 1: Top-level models used. The figure shows the representation,
the description, and the type of products, the categories, the size of
baskets, and the matrix users/products.

Model Embedding Dimensions
LSTM Products Products 49,684 x 300
LSTM Products Categories 24 x50
LSTM Products Categories 50— 10
LSTM Products Users 1,374 x 300
NNMF Users 1,374 x 25
NNMF Products 49,684 x 25

TABLE 2: Dimensions of the representations learned by different
models at the first level of the model.

Second level model: Composition of baskets

The resulting basket was chosen according to the final reorga-
nization probabilities, selecting the subset of products with the
expected maximum Fj score, see [LEN14] and [NCLC12]. This
score is frequently used when the relevant elements are scarce.

) 2%1c TR()
7| Lic»(2VP(i) + FN(i) + FP(7)) |
where True Positive (TP) =1[| p(i)] = 1]I[R; = 1], False Negative
(FN) =1[|p(i)] = OI|R; = 1], False Positive (FP) =1[| p(i)] =
1JI[R; = 0] and R; = 1 if the product i was bought in the basket
p e P, else 0\ We used Ex [Fi (Y)] = L ex Fi (Y = y|x)P(X = x)

m@axEl,/e@ [Fi(2)] = rnyz,lxIEp/E

Statistics

Here, we present the results obtained using the proposed method.
The F-measure (see Equation 1) metric was used to evaluate the
performance of the method.

Statistical score

F-measure, or F, is a well-known and reliable evaluation statistic
(see [JOAOS]). The F; value of 1 means perfect accuracy.

2 x Precision x Recall
F —measure =F1 = reﬁlston eed €8
(Precision+ Recall)

Python Script

The final reorder probabilities were computed as the weighted av-
erage of the outputs from the second-level models. The final basket
was chosen by using these probabilities and selecting the product
subset with a maximum expected F1-score. In our implementation,
we used f1_optimizer implemented in F10ptimizer package. The
implementation of [NCLC12] is available in [F1Optimizer]. The
select_products function in Python script was the following:
1 from f1 optimizer import FlOptimizer
2
3 def select_products (x):

)

4 series = pd.Series|(
5
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Fig. 7: Embeddings of 20 random products projected into 2 dimen-
sions.

6 for prod in x['product_id'][x['label'] > 0.5:
7 if prod != 0:

8 true_products = [str(prod)].values]

9 else:

10 true_products = ['None'].values]
12 if true_products:
13 true_products = '
14 else:

15 true_products =

'.join(true_products)
'None'

17 prod_preds_dict = dict(zip(x['product_id'].values,
18 x['prediction'].values))
19 none_prob = prod_preds_dict.get (0, None)

20 del prod_preds_dict[0]

22 other_products =
23 other_probs =

np.array (prod_preds_dict.keys())
np.array (prod_preds_dict.values())

25 1dx = np.argsort (-lxother_probs)
26 other_products = other_products[idx]
27 other_probs = other_probs[idx]

29 opt = FlOptimizer.max_expectation (other_probs,
30 none_prob)

2 best_prediction = ['None'] if opt[l] else []
33 best_prediction += list (other_products|[:opt[0]])

35 if best_prediction:

3 predicted_products = ' '.join(map(str,

37 best_prediction))
3 else:

39 predicted_products = 'None'

41 series|['products'] = predicted_products
4 series['true_products'] = true_products

4 return true_products, predicted_products, opt[-1]

Results

Figure 7 illustrates PCA of 20 random products projected into
2 dimensions. These results show clearly the presence of the
cluster of products, including the Pasta sauce and Pasta group
articles. This embedding plot was generated with 20 random
products. Some trends can be observed here, but there are also
some exceptions, as it often happens with real data. In Table 2,
Pasta Group was included into the product Categories. In fact, this
result can help identify the consumer buying behaviour.

PCA was performed to visualize the clustering of 20 selected
products. It was used to show that some products are frequently
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Product F

Gogo Squeez Organic Apple Strawberry Applesauce  0.042057
Organic AppleBerry Applesauce on the Go 0.042057
Carrot And Celery Sticks 0.042057
Gluten Free Peanut Butter Berry Chewy 0.042057
Organic Italian Balsamic Vinegar 0.049325
Diet Cranberry Fruit Juice 0.599472
Purified Water 0.599472
Vanilla Chocolate Peanut Butter Ice Cream Bars 0.599472
Total 0% with Honey Nonfat Greek Strained Yogurt  0.590824
Total 0% Blueberry Acai Greek Yogurt 0.590824

TABLE 3: The average value of F\ for all products considered.

Product Number of baskets
Banana 6138
Strawberries 3663
Organic Baby Spinach 1683
Limes 1485
Cantaloupe 1089
Bing Cherries 891
Small Hass Avocado 891
Organic Whole Milk 891
Large Lemon 792
Sparkling Water Grapefruit 792

TABLE 4: The 10 most popular products included in the predicted
baskets. The top products were taken from a subset comprising 2% of
all available products.

bought together with the other products. Such a clustering was
not used explicitly in our model, by an artificial network model
is supposed to capture and take it into account implicitly in order
to provide a better prediction. F; in Figure 8 (a) shows that the
profiles of all promotions are similar. In the perspective, it would
be interesting to include in our model the product weight based
on some additional available statistics. For example, according to
Statistics Canada - 2017, only 5% of all specials had a rebate of
50% and larger, whereas 95% of them had a smaller rebate. The
use of theses weights could make the model more robust.

Figure 8 (b) indicates that all stores follow similar profiles in
our model.

This plot presents the distribution of the F1-score results with
respect to the promotions and stores. We can observe that the
distributions of the promotions and stores are very similar. Finally,
this plot suggests the absence of the bias for these two model
parameters. Figure 9 and Table 3 report the values of the Fj
metric for the products whose inclusion into the consumer’s basket
was either very easy or very hard to predict. The first group of
products includes the articles of restriction regimes such as diet
cranberry fruit juice, purified water, and total 0% blueberry acai
greek yogurt.

Table 3 presents only the products with the five highest and
the five lowest values of F_1 (the average, in this case, was taken
over all users who purchased these products).

We also evaluated the prediction quality of our model (see
Section ’Statistic scores’) using the sklearn metrics (see below):
from sklearn.metrics import make_scorer,

accuracy_score,

fl_score,
recall_score

The results reported in Table 5 suggest that a better model
accuracy was obtained when the original dataset of 374 real users
was enriched by 1,000 artificial users. The accuracy of 49% was
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Statistics Real Real and augmented
score data data
Accuracy 0.27 0.49
Precision 0.27 0.49

Recall 0.51 0.7
F-measure  0.22 0.37

TABLE 5: Statistical scores results obtained for real data, and for
real + artificial augmented data. The table clarifies the impact of
using augmented data instead in addition to the real ones.

obtained for the augmented dataset, compared to the accuracy of
27% for the original dataset.

Conclusions and Future Work

We analyzed grocery shopping data generated by the users of the
site MyGroceryTour.ca. We developed a new machine learning
model to predict which grocery products the consumer will buy
and in which store(s) of the region he/she will do grocery shop-
ping. We created an intelligent shopping list based on the shopping
history of each consumer and his/her known shopping preferences.
The originality of the approach, compared to the existing methods,
is that in addition to the purchase history we also considered the
promotions available, possible purchases in different stores, and
the distance between these stores and the consumer’s home.

We have modelled the habits of the MyGroceryTour.ca site
consumers using deep neural networks. Two types of neural
networks were applied at the learning stage: Recurrent neural
networks (RNN) and Forward-propagating neural networks (Feed-
forward NN). The value of the Fj statistic that represents the
quality of the model needs could be increased in the future by
considering additional explanatory features and product weights.
The constant influx of new data on MyGroceryTour will allow us
to improve the model’s results.

In the future, we plan to predict the grocery store that will be
visited next, and include the recommended product quantities in
the basket proposed to the user.
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Abbreviations

¢ CNN - Convolutional Neural Network

e GBT - Gradient Tree Boosting

e LSTM - Long Short-Term Memory

e ML - Machine Learning

e NN - Neural Networks

« NNMF - Non-Negative Matrix Factorization
¢ PCA - Principal Component Analysis

¢« RMSE - Root Mean Square Error

e RNN - Recurrent Neural Networks
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Parameter Estimation Using the Python Package
pymcmcstat

Paul R. Miles*, Ralph C. Smith**

Abstract—A Bayesian approach to solving inverse problems provides insight
regarding model limitations as well as the underlying model and observation
uncertainty. In this paper we introduce pymcmcstat, which provides a wide
variety of tools for estimating unknown parameter distributions. For scientists
and engineers familiar with least-squares optimization, this package provides a
similar interface from which to expand their analysis to a Bayesian framework.
This package has been utilized in a wide array of scientific and engineering prob-
lems, including radiation source localization and constitutive model development
of smart material systems.

Index Terms—Markov Chain Monte Carlo (MCMC), Delayed Rejection Adaptive
Metropolis (DRAM), Parameter Estimation, Bayesian Inference

Introduction

Many scientific problems require calibration of model parameters.
This process typically involves comparing a model with a set of
data, where the data either comes from experimental observations
or high-fidelity simulations. The model parameters are calibrated
in a manner such that the model fits the data; i.e., observations are
used to inversely determine the model inputs that led to that output.
A common example of this procedure is least-squares optimiza-
tion, which is used in a wide variety of scientific disciplines. Least-
squares and many other methods exist for solving these inverse
problems, but an important question to ask is whether or not they
account for the underlying uncertainty.

Uncertainty exists in all areas of scientific research and it arises
for various reasons. A familiar source of uncertainty in data is
simply a certain amount of random noise. Alternatively, uncer-
tainty also occurs due to missing physics in the model or from
lack of knowledge. Modeling scientific and engineering problems
presents many challenges and often times requires compromise.
No model ever fully captures the physics; however, the model
may still be useful for different applications [Box76]. With that
in mind, we now highlight an approach to inverse problems that
helps address uncertainty in the development of scientific and
engineering models.

To quantify the uncertainty in our modeling problem, we uti-
lize Bayesian inference. The key point in this approach stems from
the interpretation of the parameters within the model. A Bayesian
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approach treats these unknown model parameters as random
variables; i.e., they have an underlying probability distribution that
can be used to describe them. This contrasts a frequentist approach
which assumes the parameters are unknown but have a fixed value.
The goal of Bayesian model calibration is to infer the parameter
distributions. This approach to inverse problems provides insight
into model limitations as well as an accurate estimation of the
underlying model and observation uncertainty. A brief summary
is provided in the next section, and more details regarding these
methods can be found elsewhere [Smil4].

The Python package pymcmestat [Mil19b] provides a robust
platform for performing Bayesian model calibration. Procedurally,
the user provides data, defines model parameters and settings,
and sets up simulation options. As many intended users may
be unfamiliar with Bayesian methods, the default package be-
havior requires minimal knowledge of statistics. In fact, like
many optimization problems, the user’s main responsibility is to
provide a sum-of-squares error function, which will become clear
throughout the examples in this paper.

Within pymcmestat, we use Markov Chain Monte Carlo
(MCMC) methods to solve the Bayesian inverse problem [Smil4].
As many Python packages currently exist for performing MCMC
simulations, we had several goals in developing this code. To
our knowledge, no current package contains the n-stage delayed
rejection algorithm, so pymcmcstat was intended to fill this gap.
Delayed rejection may be an unfamiliar concept, so more details
are provided in the discussion of Metropolis algorithms in a
later section. Furthermore, many researchers in our community
have extensive experience using the MATLAB toolbox mcmcstat' .
Our implementation provides a similar user environment, while
exploiting Python structures. We hope to decrease dependence on
MATLAB in academic communities by advertising comparable
tools in Python.

This package has been applied to a wide variety of engineering
problems, including constitutive model development of smart
material systems as well as radiation source localization. Several
example problems will be presented later on, but first we will
outline the package methodology.

Methodology

Knowledge of Bayesian statistics is important to understanding
the theory, but it is not necessarily required information for
using pymcmcstat. We provide a brief overview of the Bayesian

1. https://mjlaine.github.io/mcmecstat/



94

approach and then explain the key terms that impact the user by
going through a basic example.

Bayesian Framework

The goal of Bayesian inference is to estimate the posterior den-
sities 7(g|F°”(i)), which quantify the probability of parameter
values given a set of observations. From Bayes’ relation

L (F(i)|q)mo(q)
Jro L (FP(i)|q)m0(q)dg’

we observe that the posterior is proportional to the likelihood
and prior functions. The function .Z(F°*(i)|q) describes the
likelihood of the observations given a parameter set, and any
information known a priori about the parameters is defined in
the prior distribution 75(g). The denominator ensures that the
posterior integrates to unity. Note, the integral in the denominator
involves integrating over R”, where p is the number of model
parameters.

The pymcmcestat package is designed to work with statistical
models of the form

7(qlF(0) =

()

FoP (i) = F(i;q) + &, where & ~ N(0,6?).

We expect the observations F "bs( /) (experimental data or high-
fidelity simulations) to equal the model response F(i;q) plus
independent and identically distributed error & with mean zero
and observation error variance 6. A direct result of assuming
a statistical model of this nature is that the likelihood function
becomes

L (0)lg) = exp (— 58 @

202/’

where SS, = Z?]:"’{S FOY (i) — F(i,q)]? is the sum-of-squares error
(Nyps is the number of data points). This is consistent with the
observations being independent and identically distributed with
F°%(i) ~ N(F(i;q),0?). As the observation error variance G2 is
unknown in many cases, we will often include it as part of the
inference process.

Direct evaluation of (1) is often computationally untenable due
to the integral in the denominator. To avoid the issues that arise due
to quadrature, we alternatively employ Markov Chain Monte Carlo
(MCMC) methods. In MCMC, we use sampling based Metropolis
algorithms [MRR "53] whose stationary distribution is the pos-
terior density 7(g|F°*(i)). What this means is that we sample
parameter values, evaluate the numerator of Bayes’ equation (1),
and accept or reject parameter values using a Metropolis algo-
rithm. More details regarding Metropolis algorithms are provided
in a later section.

Basic Example

At the end of the day, many users do not need to know the
statistical background, but they can still appreciate the information
gained from using the Bayesian approach. Below we outline the
key components of pymcmcstat and explain their relationship to
the Bayesian approach described above. Procedurally, to calibrate
a model using pymcmcstat, the user will need to provide the
following pieces:

1) Import and initialize MCMC object.

2) Add data to the simulation - F°(i). These may be
either experimental measurements or high-fidelity model
results.
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3) Define model function: The user needs to define a model
of the form F(i,q); i.e., a model that depends on a set of
parameters g. Strictly speaking the model can be created
in any language the user desires so long as it can be
called within your Python script. For example, if your
model code is written in C++ or Fortran, this is easily
done using ctypes”. Note, the model does not need to be
a separate de f statement, but can be included directly in
the sum-of-squares function.

4) Define sum-of-squares function - SS,. The sum-of-
squares error between the model and data will be used
in evaluating the likelihood function % (F°%(i)|q).

5) Define model settings and simulation options. More de-
tails regarding these features will be provided in subse-
quent sections.

6) Add model parameters - g. The user must specify the
parameters in the model that need to be calibrated as
well as define any limits regarding potential values those
parameters can have. By defining parameter minimum
and/or maximum limits, the user has specified the prior
function my(g). By default, pymcmcestat assumes a uni-
form distribution for all parameters; i.e., there is equal
probability of the parameter being a particular value
between the minimum and maximum limit.

7) Execute simulation.

8) Analyze parameter chains. The chains reflect the sam-
pling history of the MCMC simulation.

Let’s walk through a basic example to see how all these pieces
work together. To start, we will generate some fictitious data,
import numpy as np
x = np.linspace (0, 1, num=100)

y = 2.0xx + 3.0 + 0.l%np.random.standard_normal (
x.shape)

Note, we assume data where observations y have been made at
independent points x, which are uniformly distributed between 0
and 1. The observations follow a linear trend with slope 2 and
offset 3. To make the data realistic we add random noise to the
observations of the form & ~ N(0,6?). In this case we define the
observation error standard deviation to be 6 =0.1.

In this case we know what the model should be because we
used it to generate the data. We want to fit a linear model (i.e.,
F(i,q = [m,b]) = mx; + b) to the observations. To calibrate this
model with pymcmcstat, the basic implementation is as follows:

# import and initialize

from pymcmcstat .MCMC import MCMC
mcstat = MCMC ()

# Add data
mcstat.data.add_data_set (x

# Def r

ine st

1 of squ

def ssfun (g, data):
m, b = q # slope
x = data.xdatal[0]
y = data.ydata[0]
# Evaluate model
ymodel = m*x + b

ares

and offset

res = ymodel - vy
return (res ** 2).sum(axis=0)
# Define model settings

mcstat.model_settings.define_model_settings (
sos_function=ssfun)

# Define simulation options
mcstat. 31mulatlon _options. deflne simulation_options (
nsimu=10.0e3) # No. of M simulations

2. https://docs.python.org/3/library/ctypes
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Fig. 1: Parameter chains obtained with all 10,000 realizations of the
linear model.

# Add model parameters

mcstat .parameters.add_model_parameter (
name='m',

7

theta0=2.) # initial value
mcstat.parameters.add_model_parameter (
name='b"',

theta0=2.75,
minimum=-5,
maximum= 5)

# Run s /
mcstat.run_simulation()

We can check the results of the MCMC simulation by displaying
the chain statistics. Note, we typically remove the first part of
the sampling chain as it may not have converged to the correct
posterior depending on the initial value.

# Extract results

results = mcstat.simulation_results.results
chain = results['chain']

burnin = int (chain.shape([0]/2)

# display chain statistics

mcstat.chainstats (chain[burnin:, :], results)
This will output to your display

name : mean std MC_err tau geweke
m : 2.0059 0.0348 0.0015 7.1351 0.9912
b : 2.9983 0.0206 0.0009 7.9169 0.9962

Recall that the data was generated with a slope of 2 and offset
of 3, so the algorithm appears to be converging to the correct
values. Additional items displayed include normalized batch mean
standard deviation (MC_err), autocorrelation time (tau), and
Geweke’s convergence diagnostic (geweke) [BRIS].

A typical part of analyzing the results is to visualize the
sampling history of the MCMC process. This is accomplished by
using pymcmcstat’s plot_chain_panel method.

mcpl = mcstat.mcmcplot # methods

mcpl.plot_chain_panel (chain,

Figure 1 shows the full parameter chains for all 10,000 MCMC
simulations. The algorithm takes a few simulations to reach the
correct distribution, which is clearly seen by the jump at the
beginning. This is why we typically remove the first part of the
chain to allow for burn-in. We make another plot, except this time
we have removed the first part of the chain.

initialize plotting

names)

mcpl.plot_chain_panel (chain[burnin:, :], names)

95
2.1 o . .
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Fig. 2: Parameter chains obtained with the final 5,000 realizations of
the linear model.

Figure 2 shows the burned-in parameter chains based on the final
5,000 MCMC simulations. We observe that the distribution of
parameter values appears to be consistent for the entire range of
sampling shown, which supports the conclusion that we have con-
verged to the posterior distribution. To visualize the distribution,
we use the plot_density_panel method.

mcpl.plot_density_panel (chain[burnin:, :], names)

Figure 3 shows the marginal posterior parameter densities. The
densities are generated using a Kernel Density Estimation (KDE)
algorithm based on the parameter chains shown in Figure 2.
The distributions appear to be nominally Gaussian in nature;
however, that is not a requirement when running MCMC. One
more chain diagnostic that we commonly consider is with regard
to parameter correlation. We visualize the parameter correlation
using the plot_pairwise_correlation_panel method.
mcpl.plot_pairwise_correlation_panel (

chain[burnin:, :], names)
Figure 4 shows the pairwise parameter correlation based on the
sample history of the MCMC simulation. Essentially, we take the
points from the chain seen in Figure 2 and plot the matching
points for m and b against one another. As seen in Figure 4, there
appears to be a negative correlation between the two parameters;
however, it is not particularly strong. The MCMC approach has no
issues with correlated parameters, so these results are fine. Where
you have to be careful is when the pairwise correlation shows a
nearly single-valued relationship of some kind. By single-valued,
we mean that the value of one parameter can be used to directly
determine the other, e.g., if the pairwise correlation revealed a
completely straight line.

Now that we have distributions for the parameters, we want to
know how that uncertainty propagates through the model. Within
pymcmcstat, the user has the ability to generate credible and
prediction intervals. Credible intervals represent the distribution
of the model output based simply on propagating the uncertainty
from the parameter distributions. In contrast, prediction intervals
also include uncertainty that arises due to observation errors &;.
The following example code can be used to generate and plot
credible and prediction intervals using pymcmcstat

def modelfun (pdata,
m, b = theta

theta) :
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Fig. 3: Marginal posterior parameter densities for linear model.
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Fig. 4: Pairwise correlation between sampling points for linear model.

x = pdata.xdatal[0]
y = m*x + b
return y

mcstat.PI.setup_prediction_interval_calculation(
results=results,
data=mcstat.data,
modelfunction=modelfun,
burnin=burnin)
mcstat.PI.generate_prediction_intervals (
calc_pred_int=True)
# plot prediction intervals
fg, ax = mcstat.PI.plot_prediction_intervals (
adddata=True,
plot_pred_int=True)
ax[0] .set_ylabel('y")
ax[0] .set_xlabel ('x")

The procedure takes a subsample of the MCMC chain, evaluates
the model for each sampled parameter set, and sorts the output to
generate a distribution.

Figure 5 shows the 95% credible and prediction intervals.
We observe that the credible intervals are fairly narrow, which
is not surprising given the small amount of uncertainty in the
parameter values (standard deviations of 0.03 and 0.02 for m and
b, respectively). This is not always the case, especially in instances
where there is unknown or missing physics in the model. However,
we generated fictitious data using the model, so these results are
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Fig. 5: 95% credible and prediction intervals for linear model.

reasonable. Prediction intervals quantify the probability of ob-
serving future numerical predictions or experimental observations
because they include both parameter and observation uncertainty.
For a 95% prediction interval, we expect a future observation to
fall within that region 95% of the time. As a general check, we
note that approximately 95% of the data appears to be inside the
prediction interval shown in Figure 5, which is consistent with
what we expect.

This concludes the basic example and highlights the workflow
of how pymcmcstat could be used for a scientific problem. Note,
this example highlighted a linear model; however, the algorithm
is also applicable to nonlinear models, examples of which are
discussed in subsequent sections.

Metropolis Algorithms

For those unfamiliar with Metropolis algorithms, we have pro-
vided a brief overview of the procedure. For each step of the
MCMC simulation, a new set of parameter values are proposed g*.
We accept or reject g* based on comparison with results obtained
with the previous parameter set ¢*~!. To do this we calculate the
acceptance ratio
g ZEPDg)m(q") 3)
L(Fors(i) g )mo(gh1)
We observe that (3) compares the unscaled posterior probabilities.
Essentially, we are computing whether ¢* or ¢*~! is more likely.
For uniform prior distributions, this simplifies to comparing the
likelihood function. For the Gaussian likelihood function (2), a
smaller sum-of-squares error implies a larger likelihood. So, if the
error is reduced by evaluating the model with ¢*, the acceptance
ratio will have a value o > 1. In that case we accept the parameters
and set qk = ¢*. In contrast, if the error increases (i.e., the likeli-
hood decreases), the acceptance ratio becomes o < 1. Rather than
outright reject parameter sets that increase error, we conditionally
accept ¢* if @ > U(0, 1) (random value from a uniform distribution
between O and 1). In this way we will often accept values that
yield similar errors because the acceptance ratio will be closer to
1. Otherwise, we define the next simulation parameter set to be
equal to the previous; i.e., ¢ = ¢~ 1.
Candidates, ¢*, are generated by sampling from a proposal
distribution, which accounts for parameter correlation. In an ideal




PARAMETER ESTIMATION USING THE PYTHON PACKAGE PYMCMCSTAT

TABLE 1: Metropolis algorithms available in pymcmecstat.

Algorithm
MH Metropolis-Hastings
AM Adaptive Metropolis
DR Delayed Rejection
DRAM DR+ AM

case one can adapt the proposal distribution as information is
learned about the posterior distribution from accepted candi-
dates. This is referred to as adaptive Metropolis (AM) and it
is implemented in pymcmcstat using the algorithm presented in
[HST"01]. Another desirable feature in Metropolis algorithms
is to include delayed rejection (DR), which helps to stimulate
mixing within the sampling chain. Good mixing simply means
that the simulation is switching between points frequently and not
stagnating on a single value; i.e., ¢* = ¢! for many simulations
in a row. This has been implemented using the algorithm presented
in [HLMSO06]. A summary of the Metropolis algorithms available
inside pymcmcstat is presented in Table 1.

Options and Settings

Below we provide a brief summary of common features and
explanations of how a user might implement them for a particular
problem. As shown in the basic example, the user must define
the options before running the simulation. The following code
segment shows several additional simulation features that a user
might find useful.

mcstat.simulation_options.define_simulation_options (
nsimu=10.0e3, # No. of MCMC simul
method="dram', # Metropolis algc
updatesigma=True, # Update obs.
savedir='mcmc_chains', # Output c
save_to_bin=True, # Save chains to binary
save_to_txt=True, # Save
savesize=int (1.0e3),
waitbar=False, # Display progr

chains to text

# Saving intervals

verbosity=0, # Level of

)

display while running

The list of available Metropolis algorithms is found in Table
1, and the user can change it via the method keyword argu-
ment. To update the observation error variance, o2, one sets
updatesigma=True. The ability to update c? is a direct result
of the form of the likelihood function, and the reader is referred to
[Smil4] for more details.

Several arguments relate to the ability to save results into a
running log file. As the simulation runs, it periodically appends
the sampling chain to a file. In this case, it will create bi-
nary (save_to_bin=True) and text (save_to_txt=True)
files in a directory (savedir='mcmc_results') and ap-
pend the latest set of chain values every 1,000 simulations
(savesize=int (1.0e3)). This can be extremely useful when
running simulations over a long period of time. The user can run
diagnostics on the latest set of chain results while the simulation
is still running. For more details regarding this feature please see
the tutorial on using Chain Log Files®.

A progress bar will be displayed while the simulation runs;
however, it is easily turned off by setting waitbar=False. Sim-
ilarly, the program displays certain features depending on the level
of verbosity specified. Setting verbosity=0 suppresses all

3. https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/
tutorials/saving_to_log_files/Chain_Log_Files.ipynb
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text output display. More information will be presented as you
increase the value of verbosity.

Additional options are available for specifying the initial
parameter covariance matrix (proposal distribution), adaptation
interval, stages of delayed rejection, as well as outputting results
to a JSON file. For more details regarding the options available in
pymcmcstat, the reader is referred to the pymcmcstat documenta-
tion* and tutorials’. Next, we will outline some specific scientific
problems in which pymcmestat has been utilized to gain insight
regarding model limitations in light of uncertainty.

Case Studies
Viscoelastic Modeling of Dielectric Elastomers

Dielectric elastomers are a type of smart material commonly
implemented within an adaptive structure, which provide unique
capabilities for control of a structure’s shape, stiffness, and
damping [SmiO5]. These capabilities make them suitable for a
wide variety of applications, including robotics, flow control,
and energy harvesting [LGO1], [CIS11]. Accurately modeling
this material presents many challenges in light of its viscoelastic
behavior. Viscoelastic materials exhibit a time-dependent strain
response, which can vary significantly with the rate at which
the material is being deformed [RC03]. To help visualize this
behavior, Figure 6 shows uni-axial experimental data for the
elastomer Very High Bond (VHB) 4910. This highlights how as
the material is deformed (i.e., stretch) you see a different stress
response depending on the rate of deformation (i.e., stretch rate).
Furthermore, at each rate you see two lines. The upper line reflects
the material stress response as it is being loaded and the lower line
is the stress as it is being relaxed. The gap between loading and
relaxing is called hysteresis and is commonly seen in viscoelastic
materials like this. For more details regarding the experimental
procedure used to generate this data, the reader is referred to
[MHSOI15].

A variety of models can be used when modeling the behavior
of these materials, but the details are beyond the scope of this
paper. We implement a model of the form F(i;g) to predict the
nominal stress response during the loading and unloading of the
material. The model depends on the parameter set

q= [GmeA’max»nvﬂ: (€]

where each parameter helps describe a certain aspect of the
physics that we are interested in modeling. Details regarding these
models can be found in [DG13] and [MHSO15]. We calibrate the
model with respect to the experimental data collected at 1 =0.67
Hz as shown in Figure 6.

We can perform the MCMC simulation using the basic proce-
dure previously outlined. For this particular case study, we wish
to point out several specific devices that were used, and a full
implementation of the code for this problem can be found in
the Viscoelasticity Tutorial®. To begin, we point out the potential
advantages of using pymecmcstat in conjunction with models
written in faster computing languages.

In any sampling based method, computational efficiency is
extremely important, and most of your computational time will

4. https://pymemestat.readthedocs.io/

5. https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/
tutorials/index.ipynb

6. https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/
tutorials/viscoelasticity/viscoelastic_analysis_using_ctypes.ipynb
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Fig. 6: Experimental data for VHB 4910. The frequencies refer to
different rates of deformation, or in this case different stretch rates,

be spent in evaluating the model. We note that computational
performance can be significantly improved by writing the model
functions in C++ or Fortran. You can easily call these functions
by utilizing the ctypes package, and an example of how to do this
with pymecmcstat can be found in the Viscoelasticity Tutorial. For
example, the elastomer model implemented here was written in
both Python and C++. The average run time for a single model
evaluation using C++ was approximately 0.09 ms whereas the
Python implementation took over 8 ms. This particular model is
reasonably fast in both languages, but we wished to point out the
advantage of using more efficient code for the model evaluation.

Another item that commonly arises in model calibration is
that not all your parameters are identifiable. Determination of
identifiable parameters is typically done using some type of
sensitivity analysis, which is beyond the scope of this paper. For
this example, let us suppose that the first three parameters in g
have known, fixed values and therefore should not be included in
the sampling chain of the MCMC simulation. As they are fixed
values, one could simply hard code the parameters into the sum-
of-squares function like this

def ssfun(qg, data):

# Assign model parameters

Gc, Ge, lam_max = 7.55, 17.7, 4.83
eta, gamma = g

# evaluate elastomer model

This solution is not ideal as you may later decide to include those
parameters as part of the calibration. To accommodate models with
fixed parameters, pymcmcstat allows the user to specify whether
or not to include parameters in the sampling process. This is
accomplished by specifying sample=False as follows

# define model paramet
mcstat .parameters.add_model_parameter (
name='5G_cS$"',
theta0=7.55,
sample=False)
mcstat.parameters.add_model_parameter (
name='5G_eS$"',
theta0=17.7,

ers
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Fig. 7: Parameter chains obtained with 2.5 x 103 realizations of the
elastomer model.

sample=False)
mcstat.parameters.add_model_parameter (

name="'S$\\lambda_{max}$"',

theta0=4.83,

sample=False)
mcstat.parameters.add_model_parameter (

name="'s\\etas',

theta0=708)
mcstat.parameters.add_model_parameter (

name="5\\gammas$

thetal0=31)

This now allows the user to define their sum-of-squares function
without hard coded values for the first three parameters.

def ssfun (g, data):
# Assign model parameters
Gc, Ge, lam_max, eta, gamma = q
# evaluate elastomer model

The final item for this case study relates to assessing chain
convergence. Previously, we outlined a variety of plotting meth-
ods available for looking at the sampling history and parameter
correlation. We also mentioned various statistical measures, such
Geweke’s convergence diagnostic and autocorrelation time. The
chain panel shown in Figure 7 appears to be converged, but there
is a possibility that the algorithm is stuck in a local minimum.
If you run the simulation longer, then you may see a jump in
the chain as it finds another local minimum. For a more rigorous
assessment of chain convergence, the user can generate multiple
sets of chains and use Gelman-Rubin diagnostics [GRT92]. An
example of how to generate multiple chains with pymcmcstat
can be found in the Running Parallel Chains Tutorial’, which
also includes information on how to calculate Gelman-Rubin
diagnostics.

7. https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/
tutorials/running_parallel_chains/running_parallel_chains.ipynb
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Fig. 8: Simulated 250m x 178m block of downtown Washington D.C.

Radiation Source Localization

Efficient and accurate localization of special nuclear material
(SNM) in urban environments is a vitally important task to
national security and presents many unique computational chal-
lenges. A realistic problem requires accounting for radiation
transport in 3D, using representative nuclear cross-sections for
solid materials, and simulating the expected interaction with a
network of detectors. This is a non-trivial task that highlights
the importance of surrogate modeling when high-fidelity models
become computationally intractable for sampling based methods.
For the purpose of this example, we will highlight some previous
research that utilizes a ray-tracing approach in 2D. We simulate a
250m x 178m block of downtown Washington D. C. as shown in
Figure 8.

We implement a highly simplified radiation transport model
which ignores scattering. The model accounts for signal atten-
uation that is caused by distance as well as interference from
buildings that are in the path between the source and detector
location. This ray tracing model is implemented in the Python
package gefry3®. Additional details regarding this research can be
found in [HM19].

As with the viscoelasticity case study, we only highlight
several key features for solving this problem with pymcmcstat.
The complete code can be found in the Radiation Source Local-
ization Tutorial®. The first item we wish to highlight is the ability
to pass additional information into the sum-of-squares function
by utilizing the user_defined_object feature of the data
structure.

# setup data structure for dram
mcstat.data.add_data_set (
x=np.zeros (observations.shape),
y=observations,
user_defined_object=]
model,
background,
1y
)
In this case, we have created an object which is a list with two
elements: 1) the radiation transport model and 2) the background

8. https://github.com/jasonmhite/gefry3

9. https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/
tutorials/radiation_source_localization/radiation_source_localization.ipynb
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Fig. 9: Marginal posteriors from MCMC simulation presented in
urban environment. Actual source location is denoted by the red circle.

radiation. These items are easily accessed within the sum-of-
squares function.
# Radiation Sum of Squares Function

def radiation_ssfun(theta, data):
x, y, I = theta

model, background = data.user_defined_object[0]
output = model ((x, y), I) + background

res = data.ydatal[0] - output

ss = (res %% 2).sum(axis = 0)

return ss

A Bayesian approach to source localization provides us with
several very practical results. Firstly, there are multiple regions of
the domain that will yield comparable detector measurements, so
assigning probabilities to various locations is more realistic than a
single point estimate. If one can infer regions of higher probability,
it can then motivate the placement of new detectors in the domain
or possibly allow for a team with handheld detectors to complete
the localization process. Given the challenges of modeling the
radiation transport physics, it is extremely useful to visualize the
potential source locations in light of the underlying uncertainty.
Figure 9 shows the marginal posterior densities, where it is clearly
seen that the posteriors are very close to the true source location.
We note that this plot was generated using the mcmcplot package
[Mill9a], and the required code can be found in the previously
referenced Radiation Source Localization Tutorial.

This is a very simplified case, but it highlights another unique
problem in which pymecmestat can be used to gain insight regard-
ing uncertainty.

Concluding Remarks

The pymcmcstat package presents a robust platform from which
to perform a wide array of Bayesian inverse problems using the
Delayed Rejection Adaptive Metropolis (DRAM) algorithm. In
this paper we have provided a basic description of Markov Chain
Monte Carlo (MCMC) methods and outlined a general example
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of how to implement pymcmcstat. Furthermore, we highlighted
aspects of two distinct areas of scientific study where MCMC
methods provided enhanced understanding of the underlying
physics.

To improve the overall usefulness of the pymcmcstat package,
we will expand its functionality to allow for user-defined like-
lihood and prior functions (currently limited to Gaussian). We
designed the package to serve as a Python alternative for the
MATLAB toolbox mcmecstat, so it is important to maintain the
features of the original user interface for ease of transition from
one platform to another. Overall, the package is applicable to a
wide variety of scientific problems, and provides a nice interface
for users who are potentially new to Bayesian methods.
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PyLZJD: An Easy to Use Tool for Machine Learning

Edward Raffs*, Joe Aurelio*¥, Charles Nicholas*

Abstract—As Machine Learning (ML) becomes more widely known and popu-
lar, so too does the desire for new users from other backgrounds to apply ML
techniques to their own domains. A difficult prerequisite that often confounds
new users is the feature creation and engineering process. This is especially true
when users attempt to apply ML to domains that have not historically received
attention from the ML community (e.g., outside of text, images, and audio).
The Lempel Ziv Jaccard Distance (LZJD) is a compression based technique
that can be used for many machine learning tasks. Because of its compression
background, users do not need to specify any feature extraction, making it easy
to apply to new domains. We introduce PyLZJD, a library that implements LZJD
in @ manner meant to be easy to use and apply for novice practitioners. We
will discuss the intuition and high-level mechanics behind LZJD, followed by
examples of how to use it on problems of disparate data types.

Index Terms—compression, complex data, machine learning

Introduction

Machine Learning (ML) has become an increasingly popular tool,
with libraries like Scikit-Learn [PVG11] and others [CG16],
[Raf17], [MBY"16], [HFH"09] making ML algorithms available
to a wide audience of potential users. However, ML can be
daunting for new and amateur users to pick up and use. Before
even considering what algorithm should be used for a given
problem, feature creation and engineering is a prerequisite step
that is not easy to perform, nor is it easy to automate.

In normal use, we as ML practitioners would describe our data
as a matrix X that has n rows and d columns. Each of the n rows
corresponds to one of our data points (i.e., an example), and each
of the d columns corresponds to one of our features. Using cars
as an example, we may want to know what color a car is, how
old it is, or its odometer mileage, as features. We want to have
these features in every row n of our matrix so that we have the
information for every car. Once done, we might train a model
m(-) to perform a classification problem (e.g., is the car an SUV
or sedan?), or use some distance measure d(-,-) to help us find
similar or related examples (e.g., which used car that has been
sold is most like my own?).

The question becomes, how do we determine what to use as
our features? One could begin enumerating every property a car
might have, but that would be time consuming, and not all of
the features would be relevant to all tasks. If we had an image
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of a car, we might use a Neural Network to help us extract
information or find similar looking images. But if one does not
have prior experience with machine learning, these tasks can be
daunting. For some types of complex data, feature engineering can
be challenging even for experts.

To help new users avoid this difficult task, we have developed
the PyLZJD library. PyLZJD makes it easy to get started with ML
algorithms and retrieval tasks without needing any kind of feature
specification, selection, or engineering from the user. Instead, a
user represents their data as a file (i.e., one file for every data
point, for n total files). PyLZJD will automatically process the
file and can be used with Scikit-Learn to tackle many common
tasks. While PyLZJD will likely not be the best method to use for
most problems, it provides an avenue for new users to begin using
machine learning with minimal effort and time.

The Lempel Ziv Jaccard Distance

LZJD stands for "Lempel Ziv Jaccard Distance" [RN17a] and
is the algorithm implemented in PyLZJD. LZJD takes a byte or
character sequence x (i.e., a "string"), converts it to a set of sub-
strings, and then converts the set into a digest. This digest is a
fixed-length summary of the input sequence, which requires a total
of k integers to represent. We can then measure the similarity of
digests using a distance function, and we can trade accuracy for
speed and compactness by decreasing k. We can optionally convert
this digest into a vector in Euclidean space, allowing greater
flexibility to use LZJD with other machine learning algorithms.

The inspiration and high-level understanding of LZJD comes
from compression algorithms. Let C(-) represent your favorite
compression algorithm (e.g., zip or bz2), which takes an input
x and produces a compressed version C(x). Using a decompressor,
you can recover the original object or file x from C(x). The purpose
of this compression is to reduce the size of the file stored on disk.
So if |x| represents how many bytes it takes to represent the file x,
the goal is that |C(x)| < |x|.

What if we wanted to compare the similarity of two files, x
and y? We can use compression to help us do that. Consider two
files x and y, with absolutely no shared content. Then we would
expect that if we concatenated x and y together to make one larger
file, x||y, then compressing the concatenated version of the files
should be about the same size as the files compressed separately,
(Clxlly)] = €] + ICO)- But what if [C(x]y)| < [C(x)] +]C()]?
For that to be true, there must be some overlapping content
between x and y that our compressor C(+) was able to reuse in order
to achieve a smaller output. The more similarity between x and y,
the greater difference in file size we should see. In which case, we
could use the ratio of compressed file lengths to tell us how similar
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the files are. We could call this a "Compression Distance Metric"
[KLRO4] as shown in Equation 1, where CDM(x,y) returns a
smaller value the more similar x and y are, and a larger value
if they are different.
Cxly)

COMY) = [e@l +1c0)] @
The CDM distance we just described gives the intuition behind
LZJD. That we can use compression algorithms to measure the
similarity between arbitrary files. CDM has been used to perform
time series clustering and classification [KLLR04]. A large number
of compression based distance measures have been proposed
[SBO6] and used for tasks such as DNA clustering [LCL"04],
image retrieval [Tra07], and malware classification [Bor15].

Mechanics of LZJD

While the above strategy has seen much success, it also suffers
from drawbacks. Using a compression algorithm for every simi-
larity comparison makes prior methods slow, and the mechanics
of standard compression algorithms are not optimized for machine
learning tasks. Equation 1 also does not have the properties of a
true distance metric!, which can lead to confusing behavior and
prevents using tools that rely on these properties. LZJD rectifies
these issues by converting a specific compression algorithm,
LZMA, into a dedicated distance metric [RN17a]. LZID is fast
enough to use for larger datasets and maintains the properties of a
true distance metric. LZJD works by first creating the compression
dictionary of the Lempel Ziv algorithm [LZ76].
def lzset (b):
s = set ()
start = 0
end = 1
while end <= len(b):

b_s = b[start:end]
if b_s not in s:

#code for string case only

s.add (b_s)
start = end
end += 1
return s
def sim(A, B): # A & B should be set objects

return len(A & B) / len(A | B)

The lzset method shows the Lempel compression dictionary
creation process. Since LZJD cares about similarity as a direct
goal, we do not put in the extra work or code normally required to
make an effective compressor. Instead, we simply create a Python
set of many different sub-strings of the input sequence b. Because
the 1zset method gives us a set of objects, we use the well-
known Jaccard similarity to measure how close the two sets are.
This is defined in the sim method above, and mathematically in
Equation 2.

_ |AnB| |ANB|
~ |AUB|  |A|+|B|—]ANB|

J(A,B) 2
The distance d(A,B) = 1—J(A,B) is a valid metric, and thus
provides all the tools necessary to measure the similarity be-
tween arbitrary sequences or files. If a and b represent different
sequences, their LZJD is computed as:

dist = 1.0-sim(lzset (a),lzset (b))

1. The properties of a true distance metric are symmetry, indiscernibility,
and the triangle inequality.

PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

While the procedure above will implement the LZJD algorithm,
it does not include the speedups that have been incorporated into
PyLZJD. Following [RN17a] we use Min-Hashing [BCFM98] to
convert a set A into a more compact representation A’, which is of a
fixed size k (i.e., |A’| = k) but guarantees that J(A,B) ~ J(A’,B')>.
[RN18] reduced computational time and memory use further by
mapping every sub-sequence to a hash and performing lzset
construction using a rolling hash function to ensure every byte
of input was only processed once. To handle class imbalance
scenarios, a stochastic variant of LZJD allows over-sampling
to improve accuracy [RN17b]. All of these optimizations were
implemented with Cython [BBC " 11] in order to make PyLZJD as
fast as possible.

Vectorizing Inputs

The LZJD algorithm as discussed so far provides only a distance
metric. This is valuable for search and information retrieval prob-
lems, many clustering algorithms, and k-nearest-neighbor style
classification, but it does not avail ourselves to all the algorithms
that would be available in Scikit-Learn. Prior work proposed one
method of vectorizing LZSets [RN17b] based on feature hashing
[WDL"09], where every item in the set is mapped to a random
position in a large and high dimensional input (they used d = 229).
For new users, we want to avoid such high dimensional spaces
to avoid the curse of dimensionality [Bel57], a phenomena that
makes obtaining meaningful results in higher dimensions difficult.

Working in such high dimensional spaces often requires
greater consideration and expertise. To make PyLZJD easier for
novices to use, we have developed a different vectorization strat-
egy. To make this possible, we use a new version of Min-Hashing
called "SuperMinHash", [Ert17]. The new SuperMinHash is up to
40% slower compared to the prior method, but enables us to use
what is known as b-bit minwise hashing to convert sets to a more
compact vectorized representation [LK11]. Since k < 1024 in most
cases, and b < 8, we arrive at a more modest d = k-b < §,192.
By keeping the dimension smaller, we make PyLZJD easier to
use and a wider selection of algorithms from Scikit-Learn should
produce reasonable results.

Over-Sampling Data

Another feature introduced in [RN17b] is the ability to stochasti-
cally over-sample data to create artificially larger datasets. This is
particularly useful when working with imbalanced datasets. Given
a value false_seen_prob, their approach modifies the inner
if statement of 1zset to falsely "see" a sub-string that it has not
seen before. This is a one line change that looks like the following:

if b_s not in s

and random.uniform() > false_seen_prob:

By doing so, the set of sub-strings returned is altered. However,
the altered set is still true to the data in that every string in the set
is a real and valid sub-string from the corpus. This works because
the Lempel Ziv dictionary creation is sensitive to small changes
in the input, so a few small alterations can propagate forward and
cause a number of differences in the entire process. By making
the condition random, we can repeat the process several times and
get different results each time. This provides additional example
diversity that can help train a model. When false_seen_prob

2. The bottom-k approach is used by default, where one hash %(-) is applied
to every item in the set, and the bottom-k values according to A(-) are selected.
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= 0, we get the standard LZJD output. To perform oversampling,
we recommend using small values like false_seen_prob <
0.05.

Using PyLZJD
Now that we have given the intuition and described how LZJD
works, we show three examples of how PyLZJD performs machine
learning, without having to specify a feature processing pipeline.
PyLZJD, along with complete versions of these examples, can be
found at https://github.com/EdwardRaff/pyLZID.

To use PyLZJD, at most three functions need to be imported,
as shown below.

from pyLZJD import digest, sim, vectorize

These three functions work as follows:

¢ digest (b, hash_size=1024, mode=None,
processes=-1, false_seen_prob=0.0): takes
in (1) a string as data to convert to a digest or (2) a path
to a file and converts the file’s content to an LZJD digest.
If a list is given as input, each element of the list will be
processed to return a list of digests.’

e vectorize (b, hash_size=1024, k=8,
processes=-1, false_seen_prob=0.0):
works the same as digest, but instead of returning a list,
returns a numpy array representing a feature vector.

e sim(A, B): takes two LZJD digests, and returns the
similarity score between two files. 1.0 indicating they are
exactly similar, and 0.0 indicating no similarity.

The above is all that is needed for practitioners to use PyLZJD
in their code. Below we will go through three examples of how
to use these functions in conjunction with Scikit-Learn to get
decent results on these problems. For new users, we recommend
considering LZJD as a first-pass easy-to-use algorithm so long as
the length of the input data is 200 bytes/characters or more. This
recommendation comes from the fact that LZJD is compression
based, and it is difficult to compress very short sequences. A quick
test of LZJD’s appropriateness, is to manually compress your data
points (as files) with your favorite compression algorithm. If the
files compress well, LZJD may work. If the files do not compress
well, LZJD is less likely to work.

T5 Corpus Example

The first example we use is a dataset called TS, which has
historically been used for computer forensics [Roul1]. It contains
4,457 files that are of one of 8 different file types: html, pdf, text,
doc, ppt, jpg, xIs, or gif. As a simple first step to using PyLZJD,
we will attempt to classify a file as one of these 8 file types. Our
code starts by collecting the paths to each file into a list X_paths.
Creating a LZJD digest for each of these files is simple; call the
digest function as shown below:

X_hashes = digest (X_paths, processes=-1)

The processes argument is optional. By setting it to -1, as many
processor cores as are available are used. If set to any positive
value n, then n cores will be used. A list of digests will be returned
with the same corresponding order as the input. The digest

3. mode controls which version of min-hashing is used. None for the
standard hash, or "SuperHash" to use the approach that is compatible with
vectorization.
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function will automatically load every file path from disk, and
perform the LZJD process outlined above.

For this first example, we will stick to using LZJD as a
similarity tool and distance metric. When you want to use distance
based algorithms, you want to use the digest and sim functions
instead of vectorize. vectorize is less accurate and slower
when computing distances.

To use LZJD’s digest with Scikit-Learn, we need to massage
the files into a form that it expects. Scikit-Learn needs a distance
function between data stored as a list of vectors (i.e., a matrix
X). However, our digests are not vectors in the way that Scikit-
Learn understands them, so Scikit-Learn needs to be told how to
properly measure distances when using LZJD. An easy way to
do this*, which is compatible with other specialized distance a
user may want to leverage, is to create a 1-D list of vectors. Each
vector will store the index of its digest in the created X_hashes
list. Then we create a distance function which uses the index and
returns the correct value. While wordy to explain, it takes only a
few lines of code:

#This will be the vetor given to Scikit-Learn

X = [ [i] for i1 in range(len(X_hashes))]
will give us two vectors a and b from 'X'
dist (a, b):
h has len(a) 1, so only one value to grab

stored value tells us which 1

#has 'our' digest

digest_a = X_hashes[int (a[0])]

b = X_hashes[int (b[0])]
have the digests,

measure.

compute a

#dist
return 1.0-sim(digest_a,

digest_b)

This is all we need to use the tools built into Scikit-learn. For
example, we can perform k-nearest-neighbor classification with
cross-validation to see how accurately we predict a file’s type.

knn_model = KNeighborsClassifier (n_neighbors=5,
algorithm="brute', metric=1lzjd_dist)

scores = cross_val_score (knn_model, X, Y)
print ("Accuracy: (+/- )"

% (scores.mean(), scores.std() = 2))

The above code returns a value of 91% accuracy, where a majority-
vote baseline returns 25%. This was all done without us having to
specify anything about the associated file formats, how to parse
them, or any feature engineering work. We can also leverage
other distance metric based tools that Scikit-Learn provides. For
example, we can use the t-SNE [MHO08] algorithm to create a
2D embedding of our data that we can visualize with matplotlib.
Using Scikit-Learn, this is only one line of code:

X_embedded = TSNE (n_components=2, perplexity=5,
metric=1lzjd_dist).fit_transform(X)

The resulting plot is shown in Figure 1. We see that the groups
are mostly clustered into separate regions, but that there is a
significant collection of points that were difficult to organize
with their respective groups. While a tutorial on effective t-SNE
use is beyond our scope, LZJD allows us to leverage t-SNE for
immediate visual feedback and exploration.

4. This approach is how the Scikit-learn developers recomend using other
non-standard distance metrics. For example, the Scikit-learn FAQ shows how
to use this approach for doing edit-distance over strings.
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TSNE Visualization
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Fig. 1: Example of t-SNE visualization created using LZJD. Best
viewed digitally and in color.

Spam Image Classification

The prior example used files of varying types, which is similar to
the problem domain that LZJD was developed for. In this example,
we change the type of data and how we approach the problem.
Here, our goal is to predict if an email image attachment is a
spam image (i.e., undesirable) or a ham image (i.e., desirable - or
at least, more desirable than spam). This dataset was collected in
2007 [DGEBO7], with 3298 spam and 2021 ham images.

PERFECT HIGH END ROLEX WATCHES!

Save now with the best replicas online
High quality swiss made pieces at the lowest price
BUY 2 GET 15% OFF YOUR ORDER
CLICK HERE AND SEE

Fig. 2: Example of ham (left) and spam (right) images from the
dataset’s website.

We use the vectorize function to create feature vectors for
each data point. Using vectorize instead of digest allows
us to build models that avoid the nearest neighbor search, which
can be slow and cumbersome to deploy. The trade off is we spend
more time during the training phase of the algorithm. Doing this
with PyLZJD is simple, and the below code snippet handles the
work of creating the labels, loading the files, and creating feature
vectors, again, without us having to specify anything about the
input.
spam_paths = glob.glob ("personal_image_spam/*")
ham_paths = glob.glob ("personal image_ ham/x")

all _paths = spam_paths + ham_paths

yBad = [1 for i in range(len (spam_paths))]
yGood = [0 for i in range (len (ham_paths))]
y = yBad + yGood

X = vectorize(all_paths)

Now that we have feature vectors, we can train a Logistic Regres-
sion model to predict if a new image is a spam or not. The code
to train and evaluate it (by several metrics) is:
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X_train, X_test, y_train,
train_test_split (X, vy,
random_state=42)

y_test =
test_size=0.2,

lgs = LogisticRegression(class_weight='balanced')
lgs.fit (X_train, y_train) #training our model
predicted = lgs.predict (X_test)
fpr,
(lgs.predict_proba (X_test) [:,
auc = metrics.auc (fpr, tpr)
print ("Accuracy: "%
lgs.score (X_test, y_test))
print ("Precision: "%
metrics.precision_score (y_test,
print ("Recall: "%
metrics.recall_score(y_test,
print ("Fl-Score: "%
metrics.fl_score(y_test,
print ("AUC: " % auc)

tpr, _ = metrics.roc_curve (y_test,
11))

predicted))
predicted))

predicted))

This produces an accuracy of about 94.6%, and an AUC of 98.7%.
In the above code snippet, we included the class_weight
parameter to address class imbalance in the data. There are more
examples of spam images, which can bias a model toward calling
most inputs "spam" by default. Using a ’balanced’ class weight re-
weights the data as if there was an equal number of examples of
each class. With PyLZJD, you can perform a special type of over-
sampling to help further reduce this impact and improve accuracy.
Here is a simple version of this ability:

paths_train, paths_test, y_train,

train_test_split(all_paths, vy,
test_size=0.2, random_state=42)

y_test =

X_train_clean = vectorize (paths_train)

X_train_aug = vectorize (paths_train«10,
false_seen_prob=0.05)

X_test = vectorize (paths_test)

In this code, X_train_clean constructs the training data in the
normal manner. Alternatively, X_train_aug has over-sampled
both the spam and ham training data 10 times. Normally, this
would create 10 copies of the same vectors and have no impact
on the solution learned. But, we added the false_seen_prob
flag, which alters how the 1zset is constructed: this flag turns
on the stochastic component and you get a different result every
call. We get a variety of different (but realistic) examples for each
datapoint. If we train a new logistic regression model on this data,
we get improved results (Table 1).

TABLE 1: Results on training a Logistic Regression model for
spam image detection. Over-sampled scores show results when
‘false_seen_prob’ is used.

Metric Score  Over-sampled Score
Accuracy  0.946 0.957
Precision  0.950 0.954
Recall 0.966 0.979
F1-Score  0.958 0.966
AUC 0.987 0.992

LZJD won’t always be effective for images, and convolutional
neural networks (CNNs) are a better approach if you need the
best possible accuracy. However, this example demonstrates that
LZJD can still be useful, and has been used successfully to find
slightly altered images [Fj]. This example also shows how to
build a more deployable classifier with PyLZJD and tackle class-
imbalance situations.
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Text Classification

As our last example, we will use a text-classification problem.
While other methods will work better, the purpose is to show that
LZJD can be used in a wide array of potential applications. For
this, we will use the well-known 20 Newsgroups dataset, which is
available in Scikit-Learn. We use this dataset because LZJD works
best with longer input sequences. For simplicity we will stick with
distinguishing between the newsgroup categories of ’alt.atheism’
and ’comp.graphics’. An example of an email from the later group
is shown below.

By ’8 grey level images’ you mean 8 items of 1bit
images? It does work(!), but it doesn’t work if you have
more than 1bit in your screen and if the screen intensity
is non-linear.

With 2 bit per pixel; there could be 1¥c_1 + 4%*c_2
timing, this gives 16 levels, but they are linear if screen
intensity is linear. With 1*c_1 + 2*c_2 it works, but
we have to find the best compinations -- there’s 10
levels, but 16 choises; best 10 must be chosen. Different
compinations for the same level, varies a bit, but the
levels keeps their order.

Readers should verify what I wrote... :-)

When a string is not a valid path to a file, PyLZJD will
processes the string itself to create a digest. This simplifies
working with strings, and getting results is as easy as:

X_train = vectorize (newsgroups_train.data)
X_test = vectorize (newsgroups_test.data)
clf = LogisticRegression ()

clf.fit(X_train, newsgroups_train.target)

pred = clf.predict (X_test)
metrics.fl_score (newsgroups_test.target,
pred, average='macro')

With the above code, we get an F; score of 83%. Using Scikit-
Learn’s TfidfVectorizer achieves an F; of 89%. The point here
is that with pyLZJD we can get decent results without having to
think about what kind of vectorization is being performed, and any
string encoded data can be feed directly into the vectorize or
digest functions to get immediate results.

Conclusion

We have shown, by example, how to use PyLZJD on a number
of different datasets composed of raw binary files, images, and
regular ASCII text. In all cases, we did not have to do any feature
engineering or extraction to use PyLZJD, making application
simpler and easier. This shortcut is particularly useful when feature
specification is hard, such as raw file types, but can also make it
easier for people to get into applying Machine Learning.
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Parkinson’s Classification and Feature Extraction from
Diffusion Tensor Images

Rajeswari Sivakumar®*, Shannon Quinn*

Abstract—Parkinson’s disease (PD) affects over 6.2 million people around the
world. Despite its prevalence, there is still no cure, and diagnostic methods
are extremely subjective, relying on observation of physical motor symptoms
and response to treatment protocols. Other neurodegenerative diseases can
manifest similar motor symptoms and often too much neuronal damage has
occurred before motor symptoms can be observed. The goal of our study is
to examine diffusion tensor images (DTI) from Parkinson’s and control pa-
tients through linear dynamical systems and tensor decomposition methods
to generate features for training classification models. Diffusion tensor imaging
emphasizes the spread and density of white matter in the brain. We will reduce
the dimensionality of these images to allow us to focus on the key features that
differentiate PD and control patients. We show through our experiments that
these approaches can result in good classification accuracy (90%), and indicate
this avenue of research has a promising future.

Index Terms—tensor decomposition, brain imaging, diffusion tensor image,
Parkinsons disease

Introduction
Parkinson’s Disease

Parkinson’s disease (PD) is one of the most common neurodegen-
erative disorders. The disease mainly affects the motor systems
and its symptoms can include shaking, slowness of movement,
and reduced fine motor skills. As of 2015 an estimated 6.2 million
globally were afflicted with the disease [vos2016]. Its cause is
largely unknown and there are some treatments available, but no
cure has yet been found. Early diagnosis of PD is a topic of
keen interest to diagnosticians and researchers alike. Currently
Parkinson’s is diagnosed based on the presence of observable
motor symptoms and change in symptoms in response to medica-
tions that target dopaminergic receptors such as Levodopa [svein-
bjornsdottir2016]. The problem with this approach is that it relies
on treating symptoms instead of preventing them. Once motor
symptoms present, at least 60% of neurons have been affected and
there is little likelihood of healing them fully. Additionally early
diagnosis will help reduce likelihood of misdiagnosis with other
motor neuron diseases.

Parkinsons Progression Markers Initiative Datasets

The Parkinson’s Progression Markers Initiative (PPMI)
[marek2011] is a clinical study designed to identify PD
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biomarkers and contribute towards new and better treatments
for the disease. The cohort consists of approximately 400 de
novo, untreated PD subjects and 200 healthy subjects followed
longitudinally for clinical, imaging and biospecimen biomarker
assessment. The PPMI data set is a collection of biomarker
data collected from a longitudinal study of Parkinson’s and
control subjects. They have thus far collected DaT (dopamine
transporter) scan, MRI (magnetic resonance imaging), fMRI
(functional magnetic resonance imaging), and CT (computerized
tomography) scan data from several hundred subjects in 6 month
intervals. They first began collecting data in 2010, funded by
the Michael J.Fox Foundation. The dataset chosen for this paper
was PPMI’s Diffusion Tensor Imaging (DTI) records. DTI has
been shown to be a promising avenue to explore biomarkers in
Parkinsonian symptoms and can provide unique insights into
brain network connectivity. Moreover, the DTI data was one
of PPMI’s cleanest and largest datasets and thus expected to
be one of the most useful for further analysis. A DTI record
is a four-dimensional dataset comprised of a time-series of a
three-dimensional imaging sequence of the brain. PPMI’s DTIs
generally consisted of 65 time slices, each taken approximately
five seconds apart. This method tracks movement of water in
brain over the discrete time steps, creating a representation of the
brain that emphasizes the white matter structures [soares2013].

Existing Work
Parkinson’s Disease

A variety of tools currently exist for diagnosis of Parkinson’s
through pre-motor symptoms. For example Parkinson’s seems
to measurably affect olfactory sensitivity prior to presenting
motor symptoms more than other motor neuron diseases, as
illustrated by the University of Pennsylvania Smell Identification
Test (UPSIT) [chaudhuri2016]. While there is still more work
needed to refine tests like these, it is one example that proves
the feasibility of earlier diagnosis of Parkinson’s disease. The
PPMI holds that discovery of one or more biomarkers for PD
is a critical step for developing treatments for the disease. In
[chahine2016] a search was conducted of existing PD articles
relating to objective biomarkers for PD and found that there
are several potential candidates, including biofluids, peripheral
tissue, imaging, genetics, and technology based objective motor
testing. Dinov et al [dinov2016] explored both model-based and
model-free approaches for PD classification and prediction, jointly
processing imaging, genetic, clinical, and demographic data. They
were able to develop and full data-processing pipeline enabling
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modeling of all the data available from PPMI, and found that
model-free approaches such as support vector machines (SVM)
and K-nearest-neighbor (KNN) outperformed model-based tech-
niques like logistic regression in terms of predicted accuracy.
Several of these classifiers generated specificity exceeding 96%
when all data available from the dataset was aggregated and used.
One interesting finding was a notable increase in accuracy when
using group size rebalancing techniques to counteract the effect
of cohort sample-size disparities (there are many more patients
than control subjects), increasing accuracy in one SVM classifier
from 75.9% to 96.3%. Researchers in [baytas2017] recognized
the inherent difficulty of using time-series analysis techniques
on longitudinal data collected at irregularly-spaced intervals and
proposed a new Long-Short Term Memory (LSTM) technique:
Time-Aware LSTM (T-LSTM). In [simuni2016] it was found that
the subgroup PD classification of tremor dominant (TD) versus
postural instability gait disorder dominant (PIGD) has substantial
variability, especially in the early stages of diagnosis. For this
reason no attempt was made in this paper to include subtype
assignment, but only to learn a binary Yes/No PD classification
prediction. State-of-the art Parkinson’s classification results were
reported by [adeli2017] in early 2017 through use of a joint kernel-
based feature selection and classification framework. Unlike con-
ventional feature selection techniques, this allowed them to select
features that best benefit the classification scheme in the kernel
space as opposed to the original input feature space. They analyzed
MRI and SPECT data of 538 subjects from the PPMI database and
obtained a diagnosis accuracy of 70.5% in MRI generated features
and 95.6% in SPECT image generated features. The authors
speculated that their non-linear feature selection was the reason
for their outperformance of other methods on this non-linear
classification problem. Other researchers, [banerjee2016] were
able to achieve 98.53% using ensemble learning methods trained
on T1 weighted MRI data. However Banerjee used several domain
knowledge based feature extraction methods to preprocess their
data including image registration, segmentation, and volumetric
analysis.

The present research strikes a balance between feature selec-
tion and domain knowledge. While our autoregressive model does
utilize a basic understanding of relevance of time in diffusion
tensor imaging, we do not utilize any other domain specific
knowledge to inform our feature extraction. Our hope is to build a
generalizable approach that can be applied to other data structured
similarly both within and outside the domain of biomedical image
analysis. Additionally we want to improve the models being
trained without domain specific knowledge on MRI data. This is
because MRI is a far less invasive brain imaging method than
SPECT imaging which is an X-ray based technique and must
be used at a limited frequency. Additionally the multiple MRI
modalities offer versatility in examining biological structures.

Tensor and Matrix Decomposition

Matrix decomposition has been used in a variety of computer
vision applications in recent years including analysis of facial
features. It offers another means of quantifying the features that
describe the relationships between values in a 2D space and
can be generalized to a variety of applications. The key being
that decomposition offers a powerful means of simultaneously
evaluating the relationships of values in a 2 or higher dimensional
space. In higher dimensional spaces, tensor decomposition is used,
where tensors are a generalization of matrices [rabanser2017].
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Fig. 1: Tucker decomposition, visualized.

Matrix decomposition can be described as a means of separating
a matrix into several component matrices whose product would
result in the original matrix. For example when solving a system
of equations you might approach formulate the problem as:

Ax=0>b

where A is a matrix and x and b are vectors. When trying to
solve this system of linear equation, we could apply a matrix
decompositions operations to the matrix A, to more efficiently
solve the system. By finding the products of the of x and b with
the one matrix resulting from the decomposition and the inverse of
the other, we can solve the system of equations with significantly
fewer operations [rabanser2017]. This can be generalized to ma-
chine learning applications where increased complexity of models,
often result in exponential increases in number of computations.
This also affects the applications of new algorithms and pipelines,
Those that are too complex and consequently have too many
operations become too computationally intensive to be practical to
use in some cases. We can choose specific types of decompositions
that also allow us to preserve unique information about original
matrix while also reducing the size of the matrix. In the case of
singular value decomposition we are trying to solve:

A=USvT

Where A is the original matrix, of size m*n, U is an orthogonal
matrix of size m+*n, S is a diagonal matrix of size n*n, and
VT is an orthogonal matrix of size n*n. This generalization of
the eigendecomposition is useful in compressing matrices without
losing information. It will come into play with our final experiment
using linear dynamical systems to extract features from the DTIs.
Extending the premise of singular value decomposition (SVD) to
higher order matrices, or tensors, we come to Tucker decomposi-
tion.

Similarly to SVD, Tucker decomposition is used to compress
tensors, and can be applied to any tensor of 3 or more dimensions.
This is illustrated using a tensor of three dimensions in Figure 1.
The resulting core tensor from the decomposition still maintains
the same shape and number of dimensions, but each are scaled
down to the size specified. We are thus able to use it as means
to scale brain images to a set of representative features without
breaking down specific regions of interest.

Methods

There are two main experiments conducted. We examine both
Tucker tensor decomposition and a linear dynamical systems ap-
proach to reduce number of dimensions and scale down diffusion
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tensor images. The goal is to evaluate the two approaches for
the quality of features extracted. To this end, the final feature
vectors produced by each method is then passed on to a random
forest classifier, where the accuracy of the final trained model is
measured on a classification task to predict control or Parkinson’s
(PD) group.

The objective is to represent the original DTI as an abstracted
tensor that is the product of one of the dimensionality reduction
techniques used in each experiment.

Algorithm Selection

To guide our selection of a classifier, we used the python package
TPOT [olson2016]. TPOT uses genetic algorithms to iteratively
generate, select and evaluate classification pipelines. We evaluated
10 generations of pipelines with population size 100 in each and
found that Random Forest classification was most successful as
predicting Parkinson’s from the generated features. Given the
success of random forest classifier, we considered that we might
further improve our accuracy by reducing the number of features
we used from the generated set. We considered that because
we are focused on the differences in a relatively small specific
brain regions, only a small number of features would be relevant.
To test this theory, we used three different methods to reduce
the dimensionality of our feature set to 20 components: linear
principle component analysis (PCA), linear discriminant analysis
(LDA) and kernel PCA using a radial basis function (RBF).

Experiment |

Using the tensorly package [kossaifi2019], a Tucker decompo-
sition is applied to each brain image. This approach to tensor
decomposition was selected because it will produce one core
tensor that is representative but scaled down from the original
diffusion tensor image. Additionally Tucker decomposition, unlike
other forms of tensor decomposition is significantly better at pre-
serving features specific to the tensor being decomposed. Because
of this it has applications in compression algorithms. The Tucker
decomposition method is chosen in the present study over other
tensor decomposition methods to preserve features unique to each
brain image it is applied to. This will allow us to scale down each
image and focus features and regions of interest in each that are
specific to that image. In this experiment we decompose each brain
image from a dimension of (65,100,116,116) to (10,10,10,10)
to have a continuity in number of features produced.

Experiment Il

This experiment focused on breaking down the feature extraction
further and evaluate another approach: linear dynamical systems.
We scale down each coronal slice in the images and then evaluate
the change over time. The reason for scaling down the coronal
slices is to allow us to more efficiently build a transition model
to represent the flow of water over the time steps of the image.
This will allow us to build a three-dimensional representation of
the brain from the images that will show the flow of water and the
distribution of white matter in the brain. We evaluate the produced
transition matrix as features to be applied to the classification
pipeline. The nature of the linear dynamical systems allow us to
directly model the flow of water via the net change over time in
the DTL

L

Fig. 2: (left): Slice from original brain image at a specific time point;
(right): Corresponding slice from tensor decomposition output

Dimensionality Reduction ~ F-measure Accuracy
0.94 0.94
PCA 0.94 0.94
LDA 0.82 0.81
Kernel PCA 0.94 0.94

TABLE 1: Classification accuracy of features generated from Tucker
decomposition after various additional dimensionality reduction tech-
niques are applied

Results
Experiment |

While we were able to achieve an accuracy of 94% immediately,
we were not able to improve on this by further reducing the
produced features with various dimensionality reduction methods.
In fact it appears that in some cases, such as linear discriminant
analysis (LDA), additional dimensionality reduction adversely
affects classifier performance. In exploring a slice of the output
core tensor at one ‘time’ point, what we see suggests that the
output of the tensor decomposition might be likened to a stack of
sliced that focus on the regions of interest in the original image.
This is validated by examining several corresponding decomposed
core and original slices.

Experiment Il

We were able to achieve accuracy of 82% with random forest
classifier alone. This outperforms previous benchmarks in training
classifiers on synthetic features derived from MR images. Com-
pared to present results, [cole2016] achieved only 70% accuracy at
best on synthetic features generated from T1 weighted MRI scans.
Furthermore, based on the F-measure scores across the experiment
conditions, we can reasonably say that our model is not skewed as
a consequence of the uneven distribution of the data. The PPMI

Dimensionality Reduction ~ F-measure Accuracy
0.90 0.82
PCA 0.89 0.81
LDA 0.84 0.74
Kernel PCA 0.93 0.89

TABLE 2: Classification accuracy of features generated from linear
dynamical systems after various additional dimensionality reduction
techniques are applied
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data is heavily skewed toward Parkinson’s individuals, with a
majority of our data set coming from Parkinson’s patients (421
subjects) versus controls (213 subjects), which was also addressed
by rebalancing the classes by oversampling the control. We intu-
ited that we could speed up model training and improve accuracy
by reducing the number of synthetic features we retained. We
initially tried linear PCA and LDA to perform the dimensionality
reduction. However, these actually hurt performance, resulting in
test accuracy of 81% and 74% respectively. Based on this, we
considered non-linear dimensionality reduction would be more
effective. To this end we used Kernel PCA with RBF kernel, which
effectively improved accuracy to 89%.

Discussion

In summary we can conclude that dimensionality reduction is a
useful method for extracting meaningful features from brain imag-
ing. Furthermore the impressive performance of these features in
machine learning applications indicates that at least some subset
of these features strongly correlates with the patient group.

While not explored in this paper, it would be interesting to
explore why LDA seemed cause a drop in classifier performance
while traditional PCA did not in the tensor decomposition. Fur-
thermore it would be interesting to explore why PCA and LDA
both have caused classifier performance decreases with features
produced from linear dynamical systems. Specifically it would be
interesting to explore the co linearity between the class and fea-
tures that affect the output features following the LDA treatment.
Specifically LDA seems to be stuck producing one strong feature
and ignoring the rest.

Additionally it would be interesting to explore the effect
of various preprocessing methods to improve out comes and to
systematically obscure the data to evaluate which features of the
raw pixel data are being hi-lighted by the tensor decomposition
and linear dynamical systems steps.
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PyDDA: A new Pythonic Wind Retrieval Package

Robert Jackson®*, Scott Collis¥, Timothy Lang!, Corey Potvin®!, Todd Munson®

Abstract—PyDDA is a new community framework aimed at wind retrievals that
depends only upon utilities in the SciPy ecosystem such as scipy, numpy, and
dask. It can support retrievals of winds using information from weather radar
networks constrained by high resolution forecast models over grids that cover
thousands of kilometers at kilometer-scale resolution. Unlike past wind retrieval
packages, this package can be installed using anaconda for easy installation
and, with a focus on ease of use can retrieve winds from gridded radar and
model data with just a few lines of code. The package is currently available for
download at https://github.com/openradar/PyDDA.

Index Terms—wind, retrieval, hurricane, tornado, radar

Introduction

Three dimensional wind retrievals are important for examining
the dynamics that drive severe weather such as tornadoes and
hurricanes. In addition, spatial wind retrievals inside severe con-
vection are important for assessing the wind damage they cause.
Scanning radars provide the best opportunity for providing three
dimensional volumes of winds inside severe weather. However,
the retrieval of three dimensional winds from weather radars is
a nontrivial task. Given that the radar measures the speed of
scatterers in the direction of the radar beam rather than the full
wind velocity, retrieving these winds requires more information
than the Doppler velocities measured by a single weather radar.
Typically, the 3D wind field is retrieved based on constraints with
regards to physical laws such as conservation of mass or wind data
from other sources such as model reanalyses, wind profilers, and
rawinsondes. In particular, atmospheric scientists use two methods
to retrieve winds from scanning weather radars. The first method
prescribes a strong constraint on the wind field according to the
mass continuity equation. The second method is a variational
technique that places weak constraints on the wind field by finding
the wind field that minimizes a cost function according to deviance
from physical laws or from observations ([SPG09], [PSX12]).
Currently existing software for wind retrievals includes soft-
ware based off of the strong constraint technique such as CEDRIC
[MF98] as well as software based off of the weak variational
technique such as MultiDop [LSKJ17]. Since CEDRIC uses a
strong constraint from mass continuity equation to retrieve winds,
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the addition of constraints from other data sources is not possible
with CEDRIC. Also, while CEDRIC was revolutionary for its
time, it is difficult to use as a separate scripting language is the
input for the retrieval. While MultiDop is based off of the more
customizable 3D variational technique, it is fixed to 2 or 3 radars
and is not scalable. Also, Multidop does not support the addition of
3D wind fields from models or other retrievals. Finally, Multidop
is a wrapper around a program written in C which introduces
issues related to packaging and scalability due to the non-thread-
safe nature of the wrapper.

The limitations in current wind retrieval software moti-
vated development of Pythonic Direct Data Assimilation (Py-
DDA).PyDDA is currently available for download at https:
/lopenradarscience.org/PyDDA. PyDDA is entirely written in
Python and uses only tools in the Scientific Python ecosystem such
as NumPy [vdWCV11], SciPy [JOP01], and Cartopy [Off15].
This therefore permits the easy installation of PyDDA using pip
or anaconda. Given that installation is a major hurdle to using
currently existing retrieval software, this makes it easier for those
who are not radar scientists to be able to use the software. Unlike
currently existing software, a suite of unit tests are built into
PyDDA that are executed whenever a user make a contribution to
PyDDA, ensuring that the package will function for the user. With
regards to ease of use, PyDDA can retrieve winds from multiple
radars combined with data from model reanalyses with just a few
lines of code. In addition, PyDDA is built upon the Python ARM
Radar Toolkit (Py-ART) [HC16]. Since Py-ART is already used
by hundreds of users in the radar meteorology community, these
users would be able to learn how to use PyDDA easily. Moreover,
the open source nature of PyDDA encourages contributions by
users for further enhancement. In essence, PyYDDA was created
with a goal in mind: to make radar wind retrievals more accessible
to the scientific community through both ease of installation and
use.

This paper will first show the implementation of the variational
technique used in PyDDA. After that, this paper shows examples
of retrieving and visualizing gridded radar data with PyDDA.
Finally, several use cases in severe convection such as Hurricane
Florence and a tornado in Sydney, Australia are shown in order
to provide examples on how this software can be used by those
interested in validating severe weather forecasts and assessing
wind damage.

Three dimensional variational (3DVAR) technique

The wind retrieval used by PyDDA is the three dimensional
variational technique (3DVAR). 3DVAR retrieves winds by finding
the wind vector field V that minimizes the cost function J(V). This
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Cost function Basis of constraint

Jo(V) Radar observations

Je(V) Mass continuity equation
J,(V) Vertical vorticity equation
J,,,(V Model field constraint

Jb(\7) Background constraint (raw-

insonde data)
Smoothness constraint

TABLE 1: List of cost functions implemented in PyDDA.

cost function is the weighted sum of many different cost functions
related to various constraints. The detailed formulas behind these
cost functions can be found in [SPG09], [PSX12] as well as in the
source code of the cost_functions module of PyDDA. The
details behind constructing the model constraint are provided in
the next section.

The cost function V is then typically expressed as:

J(V) = Jo(V) +Je(V) +Jo(V) + (V) + Ip(V) + (V)
where each addend is as in Table 1.

The evaluation of J(V) can be done entirely using calls from
NumPy and SciPy. For example, evaluating JL.({’) = V.V with an
optional anelastic term be reduced to a few NumPy calls. The code
that executes these NumPy calls can be found in the Appendix.

Since NumPy can be configured to take advantage of open
source mathematics libraries that parallelize the calculation, this
also extends the capability of the retrieval to use the available
cores on the machine in addition to simplifying the code. Each cost
function and its gradient can be expressed in an analytical form
using variational calculus, so the addition of more cost functions
is possible due to the modular nature of each constraint.

These calculations are then done in order to find the v
that minimizes J(V). A common technique to minimize J(V)
calculates:

V.=V, 1 —a(VV)

for an o > 0 until there is convergence to a solution, given that
an initial guess Vo is provided. This is called the gradient descent
method that finds the minimum by decrementing V in the direction
of steepest descent along J. Multidop uses a variant of the gradient
descent method, the conjugate %radient descent method, in order
to minimize the cost function J(V).

However, convergence can be slow for certain cost func-
tions. Therefore, in order to ensure faster convergence, PyDDA
uses the limited memory Broyden—Fletcher—Goldfarb—Shanno (L-
BGFS) technique that optimizes the gradient descent method by
approximating the Hessian from previous iterations. The inverse
of the approximate Hessian is then used to find the optimal search
direction and o for each retrieval [BLNZ95]. Since there are
physically realistic constraints to V, the L-BFGS box (L-BFGS-
B) variant of this technique can take advantage of this by only
using L-BFGS on what the algorithm identifies as free variables,
optimizing the retrieval further. In PyDDA, we constrain the
solution to ensure that each individual component of V is within a
range of (—100 m s~',100 m s~ ).

The L-BFGS-B algorithm is implemented in SciPy. After
the initial wind field is provided, PyDDA calls 10 iterations of
L-BFGS-B using scipy.optimize.fmin_1_bfgs_b. Py-
DDA will then then test for convergence of a solution by either
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Data source Routine in initialization module

Weather
Research  and
Forecasting
(WRF)

High Resolution
Rapid Refresh

make_background_from_wrf

make_initialization_from hrrr

(HRRR)

ERA Interim make_initialization_from
_era_interim

Rawinsonde make_wind_field_from_profile

Constant field make_constant_wind_field

TABLE 2: The differing initializations PyDDA can provide to the
user. These initializations are constructed by interpolating the model

-

J(V) to the analysis grid coordinates.

detecting whether the maximum change in vertical velocity be-
tween the current solution and the previous 10 iterations is less

than 0.02 m s~! or if HVH < 1073, signifying that we have reached

a local minimum in V. In addition, in order to reduce noise in the
retrieved V, there are options for the user to use a low pass filter
on the retrieval as well as to adjust the smoothness constraint.

Executing the 3DVAR technique with just a few lines of code

With  one line of «code, one can use the
3DVAR  technique to retrieve  winds using  the
pydda.retrieval.get_dd_wind_field procedure.

If one has a list of Py-ART grids 1ist_of_grids that they

have loaded and provide Vj into arrays called u_init, v_init,

and w_1init, retrieval of winds is as easy as

winds = pydda.retrieval.get_dd_wind_field(
list_of_grids, ui, vi, wi)

PyDDA even includes an initialization module that will generate

example ui, vi, and wi for the user. For example, in order to

generate a simple initial wind field of V = 0 in the shape of any

one of the grids in 1ist_of_grids, simply do

import pydda.initialization as init

ui, vi, wi = init.make_constant_wind_field(
list_of_grids[0], wind=(0.0, 0.0, 0.0))

The user can add their own custom con-

straints and initializations into PyDDA. Since

pydda.retrieval.get_dd_wind_field has 3D NumPy
arrays as inputs for the initialization, this allows the user to enter
in an arbitrary NumPy array with the same shape as the analysis
grid as the initialization field.

In addition, PyDDA includes four different initialization rou-
tines that will create this field for you from various data sources
such as ERA-Interim. Similar to when the constraints are created,
the initialization is created by interpolating the original model data
from its coordinates to the analysis grid coordinates using nearest-
neighbor interpolation. This initialization is then entered in as Vo
in the optimization loop.

A similar set of routines exist in in the constraints module
for creating constraints from model fields. These routines are
listed in Table 3. In order to create these constraints, PyDDA
will first interpolate the model wind field V,, from the data’s
original coordinates data into the analysis grid’s coordinates using
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Data source Routine in constraints module

Weather
Research and
Forecasting
(WRF)

High Resolution
Rapid  Refresh
(HRRR)

ERA Interim

make_constraint_from wrf

add_hrrr_constraint_to_grid

make_constraint_from_era_interim

TABLE 3: The differing model constraints PyDDA can provide to
the user. These constraints are constructed by interpolating the model

-

J(V) to the analysis grid coordinates.
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Fig. 1: An example streamline plot of winds in Hurricane Florence
overlaid over radar estimated rainfall rate. The LKTX and KMHX
NEXt Generation Radars (NEXRADs) were used to retrieve the winds
and rainfall rates. The blue contour represents the region containing
gale force winds, while the red contour represents the regions where
hurricane force winds are present.

nearest-neighbor interpolation. After that, for each model, an extra
term is added to J(V) in the optimization technique. This term
corresponds to the sum of the squared error between the V and
Vo
In(V) = cm Y Vijk — Vmije)*
(i,j,k) € domain

cm 1s the weight given to this constraint by the user. The code
snippet below will interpolate an HRRR model run to a Py-ART
grid called mygrid. The get_dd_wind_field will then look

—

for the name of the model inside mygrid when calculating J,,, (V).

import pydda.constraints as const

# Add HRRR GRIB file

hrrr_path = 'my_hrrr_ file.grib'

mygrid = const.add_hrrr_constraint_to_grid(
mygrid, hrrr_path)

The model constraints and retrieval initializations are based off of
any 3D field with the same array size and grid specification as
the input radar grids. Therefore, these lists can be easily expanded
with user routines that interpolate the model or other observational
data to the analysis grid.

Visualization module

In addition, PyDDA also supports 3 types of basic visualizations:
wind barb plots, quiver plots, and streamline plots. These plots
are created using matplotlib and return a matplotlib axis handle so
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that the user can use matplotlib to make further customizations to
the plots. For example, creating a plot of winds on a geographical
map with contours overlaid on it such as what is shown in Figure
1 is as simple as:

import pyart

import pydda
import cartopy.crs as ccrs

# Load Grids
ltx_grid = pyart.io.read_grid('ltx_grid.nc')
mhx_grid = pyart.io.read_grid('mtx_grid.nc")

# Set up projection and plot of winds
ax = plt.axes (projection=ccrs.PlateCarree())
ax = pydda.vis.plot_horiz_xsection_streamlines_map (

[l1tx_grid, mhx_grid], ax=ax,
background_field='rainfall rate', bg_grid_no=-1,
level=2, vmin=0, vmax=50, show_lobes=False)

that you wish
wind_speed = np.sqgrt (ltx_grid.fields["u"]["data"]*«*2
wind_speed += 1ltx_grid.fields["v"]["data"]*«%2)
wind_speed = wind_speed.filled (np.nan)
lons = ltx_grid.point_longitude["data"]
lats = ltx_grid.point_latitude["data"]
cs = ax.contour (
lons (2], lats([2],
linewidths=8, colors=['b',
plt.clabel (cs, ax=ax, inline=1,

# You can add more layers of data

wind_speed[2], levels=[28,
T, k']
fontsize=15)

321,

# Adjust axes properties

ax.set_xticks (np.arange(-80, -75, 0.5))
ax.set_yticks (np.arange (33, 35.8, 0.5))
ax.set_title(ltx_grid.time["units"][-20:])

This therefore makes it very easy to create quicklook plots
from the data. In addition to horizontal cross sections, PyDDA
can also plot wind cross sections in the x-z and y-z planes so
that one can view a vertical cross section of winds. Since the
pydda.vis.plot_horiz_xsection_streamlines_map
returns a matplotlib axes handle, it is then possible for the user to
customize the plot further to add features such as wind contours
as well as adjust the axes limits as shown in the code above.

In addition to streamline plots, PyDDA also supports visual-
ization through quiver plots. Creating a quiver plot from a dataset
that looks like Figure 2, in this case a single Doppler retrieval, is
as easy as:

import pyart
import pydda

Grids = [pyart.io.read_grid('mywinds.nc')]

plt.figure(figsize=(7,7))

pydda.vis.plot_horiz_xsection_quiver (
Grids, None, 'reflectivity', level=6,
quiver_spacing_x_km=10.0,
quiver_spacing_y_km=10.0)

In a similar regard, one can also make wind barb plots like the one
in Figure 3 using a similar code snippet:

import pyart
import pydda

Grids = [pyart.io.read_grid('mywinds.nc')]
plt.figure(figsize=(7,7))
pydda.vis.plot_horiz_xsection_barbs (
Grids, None, 'reflectivity', level=6,
barb_spacing_x_km=15.0, barb_spacing_y_km=15.0)

More detailed examples on how to visualize wind fields using
PyDDA are available at the PyDDA example gallery at https://
openradarscience.org/PyDDA/source/auto_examples/index.html.



114

PyDDA retreived winds @3.05 km

30 =
NN N NN NN NN NN NN NN
) 50
O N NN NN SN NN N NN NN pe

" | I
75\:\ kl.,:_\\\\\\\}

NN NN
e

10

I
o

w
=]

N
o
Corrected reflectivity [dBZ]

10

Fig. 2: An example wind quiver plot from a retrieval from the C-
band Polarization Radar, Berrimah radar, and a weather balloon over
Darwin on 20 Jan 2006. The background colors represent the radar
reflectivity.
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PyDDA retreived winds @0 825 km
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Fig. 4: A wind barb plot showing the winds retrieved by PyDDA from
6 NEXRADs, the HRRR and the ERA-Interim. The locations of the
6 NEXRADs are marked by their location code. Contours are as in
Figure 1.

Hurricane Florence winds using NEXRAD and HRRR

Another example of the power of PyDDA is its ability to retrieve
winds from networks of radars over areas spanning thousands of
kilometers with ease. An example retrieval in Hurricane Florence
using 2 NEXRAD radars and HRRR was shown in Figure 1. For
this grid, the horizontal domain is 300 by 400 km with 1 km
grid spacing. While there is already hundreds of kilometers in
coverage, not all of the hurricane is covered within the retrieval
domain. This therefore motivated a feature in PyDDA to use dask
[Das16] to manage retrievals that are too large to execute on
one single machine. Figure 4 shows an example of a retrieval
from PyDDA using 6 NEXRAD radars combined with the HRRR
and ERA-Interim. The total horizontal coverage of the domain in
Figure 4 is 1200 km by 1200 km with 1 km spacing. Using a
multigrid method that first retrieves the wind field on a coarse
grid and then splits the fine grid retrieval into chunks, this
technique can use dask to retrieve the wind field in Figure 4
about 30 minutes on 4 nodes with 36-core Intel Broadwell CPUs.
The code to retrieve the wind field from many radars and both
models is as simple as passing the dask Client instance to the
pydda.get_dd_wind_field_nested technique. The data
and source code for the 2 radar example can be downloaded
from https://openradarscience.org/PyDDA/source/auto_examples/
index.html.

Given that hurricanes can span hundreds of kilometers and
yet have kilometer scale variations in wind speed, having the
ability to create such high resolution retrievals is important for
those using high resolution wind data for forecast validation and
damage assessment. In this example, the coverage of both the
tropical storm force and damaging hurricane force winds are
examined. Figures 1 and 4 both show kilometer-scale regions of
hurricane force winds that may otherwise not have been forecast
to occur simply because they are outside of the primary region of
damaging winds. This therefore shows the importance of having a
high resolution, three dimensional wind retrieval when examining
the effects of storm wind damage.
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Fig. 5: The locations of the four operational radars operated by the
Bureau of Meteorology in the vicinity of Sydney, Australia. The circles
represent the maximum unambiguous range of each radar.
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Fig. 6: A quiver plot inside a supercell that spawned a tornado in
the vicinity of Sydney, Australia. The area inside the hatched contour
represents regions where the updraft velocity is greater than 1 m/s to
highlight regions where updrafts are present.

Tornado in Sydney, Australia using 4 radars

In addition to retrieving winds in hurricanes PyDDA can also
integrate data from radar networks in order to retrieve the winds
inside tornadoes. For example, a network of four scanning radars
in the vicinity of Sydney, Australia captured a supercell within
the vicinity of Sydney as shown in Figure 5. In this retrieval, a
horizontal domain of 350 km by 550 km with 1 km grid spacing
was used.

Figure 6 shows the winds retrieved by PyDDA inside this
supercell. Using data from the radars, PyDDA is able to provide
a complete picture of the rotation inside the supercell and even
resolves the updraft in the vicinty of the mesocyclone. Such
datasets can be of use for estimating the winds inside a tornado
at altitudes as low as 500 m above ground level. This therefore
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Fig. 7: The locations of the two X-band Scanning Precipitation Radars
(XSAPRs) I5 and 16 as well as the KVNX NEXRAD. The two circles
represent the maximum unambiguous range of the XSAPR radars. The
maximum unambiguous range of KVNX covers the entire figure.

is capable of providing wind datasets that can be used to both
provide an estimated wind speed for wind damage assessments
as well as for verification of supercell simulations from weather
forecasting models. The data and source code for this example
is also available at https://openradarscience.org/PyDDA/source/
auto_examples/index.html.

Combining winds from 3 scanning radars with HRRR in Okla-
homa

A final example shows how easily data from multiple radars and
models can be combined together. In this case, we integrate data
from three scanning radars whose locations are shown in Figure 7
in the vicinity of the Atmospheric Radiation Measurement (ARM)
Southern Great Plains (SGP) site. In this example, the 2 XSAPR
radars are at X-band and therefore have lower coverage but greater
resolution than the S-band KVNX radar. In addition, the High
Resolution Rapid Refresh was used as an additional constraint,
with the constraint stronger in regions without radar coverage.
The horizontal domain for the retrieval was 100 km by 100 km
with 1 km spacing.

Figure 8 shows the resulting wind field of such a retrieval
during a case of stratiform rain with embedded convection that
occurred over the SGP site on 04 October 2017. Generally,
weaker winds and a less organized structure is seen compared
to the previous two examples. This would be expected in such
conditions. However, this also demonstrates the success in inte-
grating radar data from 3 radars and a high resolution reanalysis
to provide the most complete wind retrieval possible. The data
and source code for this example is also available at https:
/lopenradarscience.org/PyDDA/source/auto_examples/index.html.

Validation

PyDDA utilizes a series of unit tests in order to ensure that
quality results are produced with each build of PyDDA.
These tests are implemented using pytest. In total, PyDDA
currently has 27 tests on the software that test all aspects
of the software including the cost functions, optimization
loop, and visualizations. For each pull request to the master
branch of PyDDA, Travis CI runs this suite of unit tests on
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Fig. 8: A quiver plot of a wind retrieval from 2 XSAPR radars and
the KVNX NEXRAD radar in Oklahoma. In addition, the HRRR was
used as a constraint. The wind barbs are plotted over the reflectivity
derived from the maximum of the reflectivity from the 3 radars.

the program in order to ensure functionality of the program.
Examples of unit tests that are executed by PyDDA are based
on expected results from theoretical considerations regarding
each cost function. For example, in order to evaluate whether
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¢ Documentation improvements, including better descrip-
tions in the current English version of the documentation
and versions of the documentation in non-English lan-
guages.

All contributions to PyDDA will have to be submitted by a
pull request to the master branch on https://github.com/openradar/
PyDDA. From there, the main developers will examine the pull
request to see if unit tests are needed and if the contribution both
helps contribute to the goals of the road map and if it passes a
suite of unit tests in order to ensure the functionality of PyDDA.
In addition, we also require that the user provide documentation
for the code they contribute. For the full information on how
to make a contribution, go to the contributor’s guide at https:
/lopenradarscience.org/PyDDA/contributors_guide/index.html.

In addition, for further information about how to use PyDDA,
please consult the documentation at https://openradarscience.org/
PyDDA.
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Appendix: Mass continuity cost function in Python

This appendix shows an example cost function from PyDDA. The
code snippet below shows how the mass continuity cost function
can be implemented using NumPy.

pydda.cost_functions.calculate_mass_continuity import numpy as np

is working correctly, the tests evaluate this function using a wind
field with surface convergence in the center. If the cost function is
negative as would be expected, then the unit test passes. Another
example evaluates whether the model cost function is working
by checking to see if the wind field from the optimization loop
converges to the model input if no other data or constraints are
specified. In addition, the visualization modules are tested by
comparing their results against baseline images to ensure that they
are functioning correctly.

Contributor Information

We are currently welcoming contributions from the community
into PyDDA. A PyDDA road map demonstrates what kinds of
contributions to PyDDA would be useful. As of the writing of this
paper, the road map states that the current goals of PyDDA are to
implement:

o Support for a greater number of high resolution (LES)
models such as CM1 [BF02]

« Support for integrating in data from the Rapid Refresh

o Coarser resolution reanalyses such as the NCEP reanalysis
as initializations and constraints.

e Support for individual point analyses, such as those from
wind profilers and METARs

« Support for radar data in antenna coordinates

« Improvements in visualizations

def calculate_mass_continuity(
u, v, w, z, dx, dy, dz, coeff=1500.0,

mnn

anel=1):

Calculates the mass continuity cost function by
taking the divergence
of the wind field.

All arrays in the given lists must have the same
dimensions and represent the same spatial
coordinates.

Parameters
u: Float array

Float array with u component of wind field
v: Float array

Float array with v component of wind field
w: Float array

Float array with w component of wind field

dx: float

Grid spacing in x direction.
dy: float

Grid spacing in y direction.
dz: float

Grid spacing in z direction.
z: Float array (1D)
1D Float array with heights of grid
coeff: float
Constant controlling contribution of mass
continuity to cost function
anel: int

= 1 use anelastic approximation, O=don't
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Returns [vdWCV11] S. van der Walt, S. C. Colbert, and G. Varoquaux. The

——————— numpy array: A structure for efficient numerical computation.

J: float Computing in Science Engineering, 13(2):22-30, March 2011.
value of mass continuity cost function doi:10.1109/MCSE.2011.37.

mown

dudx = np.gradient (u, dx, axis=2)
dvdy = np.gradient (v, dy, axis=1)

dwdz = np.gradient (w, dz, axis=0)
if (anel == 1):
rho = np.exp(-z/10000.0)
drho_dz = np.gradient (rho, dz, axis=0)
anel = w/rhoxdrho_dz
else:
anel = np.zeros (w.shape)

return coeffxnp.sum/(
np.square (dudx + dvdy + dwdz + anel)) /2.0
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Better and faster hyperparameter optimization with
Dask

Scott Sievert™*, Tom Augspurger**, Matthew Rocklinl

Abstract—Nearly every machine learning model requires hyperparameters,
parameters that the user must specify before training begins and influence
model performance. Finding the optimal set of hyperparameters is often a
time- and resource-consuming process. A recent breakthrough hyperparameter
optimization algorithm, Hyperband finds high performing hyperparameters with
minimal training via a principled early stopping scheme for random hyperpa-
rameter selection [LJD " 18]. This paper will provide an intuitive introduction to
Hyperband and explain the implementation in Dask, a Python library that scales
Python to larger datasets and more computational resources. The implementa-
tion makes adjustments to the Hyperband algorithm to exploit Dask’s capabilities
and parallel processing. In experiments, the Dask implementation of Hyperband
rapidly finds high performing hyperparameters for deep learning models.

Index Terms—distributed computation, hyperparameter optimization, machine
learning

Introduction

Training any machine learning pipeline requires data, an untrained
model or estimator and "hyperparameters", parameters chosen be-
fore training begins that help with cohesion between the model and
data. The user needs to specify values for these hyperparameters
in order to use the model. A good example is adapting the ridge
regression or LASSO to the amount of noise in the data with
the regularization parameter [MS75] [Tib96]. Hyperparameter
choice verification can not be performed until model training is
completed.

Model performance strongly depends on the hyperparameters
provided, even for the simple examples above. This gets much
more complex when multiple hyperparameters are required. For
example, a particular visualization tool, t-SNE requires (at least)
three hyperparameters [MHOS] and the first section in a study on
how to use this tool effectively is titled "Those hyperparameters
really matter" [WVIJ16].

These hyperparameters need to be specified by the user.
There are no good heuristics for determining what the values
should be. These values are typically found through a search over
possible values through a "cross validation" search where models

x Corresponding author: scott@stsievert.com
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§ Relevant work performed while interning for Anaconda, Inc.
% Anaconda, Inc.
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Copyright © 2019 Scott Sievert et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

are scored on unseen holdout data. Even in the simple ridge
regression case above, a brute force search is required [MS75].
This brute force search quickly grows infeasible as the number of
hyperparameters grow.

Hyperparameter optimization grows more complex as the
number of hyperparameters grow, especially because of the fre-
quent interactions between them. A good example of hyperpa-
rameter optimization is with deep learning, which has specialized
algorithms for handling many data but have difficulty provid-
ing basic hyperparameters. For example, the commonly used
stochastic gradient descent (SGD) has difficulty with the most
basic hyperparameter "learning rate" [Botl10], which is a quick
computation with few data but infeasible for many data [MH15].

Contributions

A hyperparameter optimization is required if high performance
is desired. In practice, it’s expensive and time-consuming for
machine learning researchers and practitioners. Ideally, hyperpa-
rameter optimization algorithms return high performing models
quickly and are simple to use.

Quickly returning quality hyperparameters relies on making
decisions about which hyperparameters to devote training time
to. This might mean progressively choosing higher-performing
hyperparameter values or stopping low-performing models early
during training.

Returning this high performing model quickly would lower
the expense and/or time barrier to performing hyperparameter
optimization. This will allow the user (e.g., a data scientist) to
more easily use these algorithms.

This work

e provides an implementation of a particular hyperparameter
optimization algorithm, Hyperband [LJD 18] in Dask
[Das16], a Python library that provides advanced paral-
lelism. Hyperband returns models with a high validation
score with minimal training. A Dask implementation is
attractive because Hyperband is amenable to parallelism.

« makes a simple modifications to increase Hyperband’s
amenability to parallelism.

« provides an simple heuristic to determine the parameters
Hyperband requires, which only requires knowing how
many examples the model should observe and a rough
estimate on how many parameters to sample

« provides validating experiments that illustrate common use
cases and explore performance
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Hyperband treats computation as a scarce resource' and has
parallel underpinnings. In the experiments performed with the
Dask implementation, Hyperband returns high performing models
fairly quickly with a simple heuristic for determining Hyperband’s
input parameters. The implementation can be found in Dask’s
machine learning package, Dask-ML?Z.

This paper will review other existing work for hyperparameter
optimization before detailing the Hyperband implementation in
Dask. A realistic set of experiments will be presented to highlight
the performance of the Dask implementation before mentioning
ideas for future work.

Related work
Hyperparameter optimization

Hyperparameter optimization finds the optimal set of hyperpa-
rameters for a given model. These hyperparameters are chosen
to maximize performance on unseen data. The hyperparameter
optimization process typically looks like

1)  Split the dataset into the train dataset and test dataset. The
test dataset is reserved for the final model evaluation.

2) Choose hyperparameters

3) Train models with those hyperparameters

4)  Score those models with unseen data (a subset of the train
dataset typically referred to as the "validation set")

5) Use the best performing hyperparameters to train a model
with those hyperparameters on the complete train dataset

6) Score the model on the test dataset. This is the score that
is reported.

The rest of this paper will focus on steps 2 and 3, which is
where most of the work happens in hyperparameter optimization.

A commonly used method for hyperparameter selection is a
random selection of hyperparameters, and is typically followed
by training each model to completion. This offers several advan-
tages, including a simple implementation that is very amenable
to parallelism. Other benefits include sampling "important param-
eters" more densely than unimportant parameters [BB12]. This
randomized search is implemented in many places, including in
Scikit-Learn [PVG " 11].

These implementations are by definition passive because they
do not adapt to previous training. Adaptive algorithms can return
a higher quality solution with less training by adapting to previous
training and choosing which hyperparameter values to evaluate.
This is especially useful for difficult hyperparameter optimization
problems with many hyperparameters and many values for each
hyperparameter.

A popular class of adaptive hyperparameter optimization algo-
rithms are Bayesian algorithms. These algorithms treat the model
as a black box and the model scores as an evaluation of that
black box. These algorithms have an estimate of the optimal
set of hyperparameters and use some probabilistic methods to
improve the estimate. The choice of which hyperparameter value
to evaluate depends on previous evaluations.

Popular Bayesian searches include sequential model-based
algorithm configuration (SMAC) [hutl1], tree-structure Parzen
estimator (TPE) [STZB"11], and Spearmint [PBBW12]. Many
of these are available through the "robust Bayesian optimization"

1. If computation is not a scarce resource, there is little benefit from this
algorithm.

2. https://ml.dask.org.
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package RoBo [KFMH17] through AutoML?. This package also
includes Fabolas, a method that takes dataset size as input and
allows for some computational control [KFB™16].

Hyperband

Hyperband is a principled early stopping scheme for random-
ized hyperparameter selection® and an adaptive hyperparameter
optimization algorithm [LJD"18]. At the most basic level, it
partially trains models before stopping models with low scores,
then repeats. By default, it stops training the lowest performing
33% of the available models at certain times. This means that the
number of models decay over time, and the surviving models have
high scores.

Naturally, model quality depends on two factors: the amount
of training performed and the values of various hyperparameters.
If training time only matters a little, it makes sense to aggressively
stop training models. On the flip side, if only training time
influences the score, it only makes sense to let all models train
for as long as possible and not perform any stopping.

Hyperband sweeps over the relative importance of hyperpa-
rameter choice and amount of training. This sweep over training
time importance enables a theorem that Hyperband will return
a much higher performing model than the randomized search
without early stopping returns. This is best characterized by an
informal presentation of the main theorem:

Corollary 1. (informal presentation of [LJD" 18, Theorem 5] and
surrounding discussion) Assume the loss at iteration k decays like
(1/k)Y*, and the validation losses v approximately follow the
cumulative distribution function F(v) = (v — v.)B with optimal
validation loss v, with v — v, € [0,1] .

Higher values of oo mean slower convergence, and higher
values of B represent more difficult hyperparameter optimization
problems because it’s harder to obtain a validation loss close to
the optimal validation loss V.. Taking B > 1 means the validation
losses are not uniformly distributed and higher losses are more
common. The commonly used stochastic gradient descent has
convergence rates with oo =2 [Bot12] [LID 18, Corollary 6],
and gradient descent has convergence rates with o« = 1 [B115,
Theorem 3.3].

Then for any T € N, let ?T be the empirically best performing
model when models are stopped early according to the infinite
horizon Hyperband algorithm when T resources have been used
to train models. Then with probability 1 — 0, the empirically best
performing model ir has loss

Ba(ra)

V;TSV*qLC( T

for some constant ¢ and a = log(log(T)/8) where log(x) =
log(xlog(x)).

By comparison, finding the best model without the early stop-
ping Hyperband performs (i.e., randomized searches and training
until completion) after T resources have been used to train models

has loss
log(T)-a 1/(o+h)
=)

For simplicity, only the infinite horizon case is presented
though much of the analysis carries over to the practical finite

V?T SV*+C<

3. https://github.com/automl/

4. In general, Hyperband is a resource-allocation scheme for model selec-
tion.
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horizon Hyperband.> Because of this, it only makes sense to
compare the loss when the number of resources used T is large.
When this happens, the validation loss of the Hyperband produces
Vi decays much faster than the uniform allocation scheme.®
This shows a definite advantage to performing early stopping on
randomized searches.

Li et. al. show that the model Hyperband identifies as the
best is identified with a (near) minimal amount of training in
Theorem 7 [LJD " 18], within log factors of the known lower bound
[KCG16].

More relevant work involves combining Bayesian searches
and Hyperband, which can be combined by using the Hyper-
band bracket framework sequentially and progressively tuning a
Bayesian prior to select parameters for each bracket [FKHI8].
This work is also available through AutoML.

There is little to no gain from adaptive searches if the pas-
sive search requires little computational effort. Adaptive searches
spends choosing which models to evaluate to minimize the com-
putational effort required; if that’s not a concern there’s not much
value the value in any adaptive search is limited.

Dask

Dask provides advanced parallelism for analytics, especially for
NumPy, Pandas and Scikit-learn [Das16]. It is familiar to Python
users and does not require rewriting code or retraining models to
scale to larger datasets or to more machines. It can scale up to
clusters or to a massive dataset but also works on laptops and
presents the same interface. Dask provides two components:

¢ Dynamic task scheduling optimized for computation. This
low level scheduler provides parallel computation and is
optimized for interactive computational workloads.

« "Big Data" collections like parallel arrays, or dataframes,
and lists that extend common interfaces like NumPy,
Pandas, or Python iterators to larger-than-memory or dis-
tributed environments. These parallel collections run on
top of dynamic task schedulers.

Dask aims to be familiar and flexible: it aims to parallelize and
distribute computation or datasets easily while retaining a task
scheduling interface for custom workloads and integration into
other projects. It is fast and the scheduler has low overhead. It’s
implemented in pure Python and can scale from massive datasets
to a cluster with thousands of cores to a laptop running single
process. In addition, it’s designed with interactive computing and
provides rapid feedback and diagnostics to aid humans.

Dask’s implementation of Hyperband

Combining Dask and Hyperband is a natural fit. Hyperparameter
optimization searches often require significant amounts of com-
putation and can involve large datasets. Hyperband is amenable
to parallelism, and Dask can scale up to clusters or to massive
datasets.

This work focuses on the case when significant computation
is required. In these cases, the existing passive hyperparameter

5. To prove results about the finite horizon algorithm Li et. al. only need the
result in Corollary 9 [LJD ™ 18]. In the discussion afterwards they remark that
with Corollary 9 they can show a similar result but leave it as an exercise for
the reader.

6. This is clear by examining log(v?r — V,.) for Hyperband and uniform allo-
cation. For Hyperband, the slope approximately decays like —1/max(c, ),
much faster than the uniform allocation’s approximate slope of —1/(at+ ).
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optimization algorithms in Dask-ML have limited use because
they don’t adapt to previous training to reduce the amount of
training required.’

This section will explain the parallel underpinnings of Hy-
perband, show the heuristic for Hyperband’s inputs and mention
a modification to increase amenability to parallelism. Complete
documentation of the Dask implementation of Hyperband can be
found at https://ml.dask.org/modules/generated/dask_ml.model_
selection.HyperbandSearchCV.

Hyperband architecture

There are two levels of parallelism in Hyperband, which result in
two for-loops:

o an "embarrassingly parallel” sweep over the different
brackets of the training time importance

o each bracket has an early stopping scheme for random
search. This means the models are trained independently in
parallel. At certain times, training stops on certain models.

The amount of parallelism makes a Dask implementation very
attractive. Dask Distributed is required because the computational
graph is dynamic and depends on other nodes in the graph.

Of course, the number of models in each bracket decreases
over time because Hyperband is an early stopping strategy. This is
best illustrated by the algorithm’s pseudo-code:

from sklearn.base import BaseEstimator

def sha(n_models: int,
calls: int,
max_iter: int) -> BaseEstimator:

"""Successive halving algorithm"""

# (model user)

models =

and params are specified by the
[get_model (random_params () )
for _ in range(n_models) ]
while True:
models = [train (m,
models = top_k (models,
calls »= 3
if len(models) < 3:
return top_k (models,

calls)
k=1len (models)

for m in models]
// 3)

k=1)
def hyperband(max_iter: int) -> BaseEstimator:

# Different brackets have different values of

# "t ing" d "hyperpa eter" impo Ce.
# => more models means more aggressive pruning
brackets = [ (get_num_models (b, max_iter),

get_initial_calls (b, max_iter))
for b in range(formula (max_iter))]
if max_iter == 243: # for example...

assert brackets == [(81, 3), (34, 9),
(15, 27), (8, 81),
(5, 243)]
# Each tuple is (num_models, n_init_calls)
final_models = [sha(n, r, max_iter)
for n, r in brackets]
return top_k (final_models, k=1)

In this pseudo-code, the train set and validation data are hidden.
top_k returns the k best performing models on the validation
data and train trains a model for a certain number of calls to
partial_ fit.

Each bracket indicates a value in the trade-off between training
time and hyperparameter importance, and is specified by the list of
tuples in the example above. Each bracket is specified so that the

7. The existing implementation can reduce the computation required when
pipelines are used. This is particularly useful when tuning data preprocessing
(e.g., with natural language processing). More detail is at https://ml.dask.org/
hyper-parameter-search.html.
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total number of partial_fit calls is approximately the same
among different brackets. Then, having many models requires
pruning models very aggressively and vice versa with few models.
As an example, with max_iter=243 the least adaptive bracket
has 5 models and no pruning. The most adaptive bracket has 81
models and fairly aggressive early stopping schedule.

The exact aggressiveness of the early stopping schedule
depends on one optional input to HyperbandSearchCvV,
aggressiveness. The default value is 3, which has
some mathematical motivation [LJDT18, Section 2.6].
aggressiveness=4 1is likely more suitable for initial
exploration when not much is known about the model, data or
hyperparameters.

Input parameters

Hyperband is also fairly easy to use. It requires two input param-
eters:

1) the number of partial_fit calls for the best model
(viamax_iter)

2) the number of examples that each partial_fit call
sees (which is implicit and referred to as chunks, which
can be the "chunk size" of the Dask array).

These two parameters rely on knowing how long to train the
model® and having a rough idea on the number of parameters
to evaluate. Trying twice as many parameters with the same
amount of computation requires halving chunks and doubling
max_iter.

The primary advantage to Hyperband’s inputs is that they do
not require balancing training time importance and hyperparame-
ter importance.

In comparison, random searches require three inputs:

1) the number of partial_fit calls for every model (via
max_1iter)

2) how many parameters to try (via num_params).

3) the number of examples that each partial_fit call
sees (which is implicit and referred to as chunks, which
can be the "chunk size" of the Dask array).

Trying twice as many parameters with the same amount of
computation requires doubling num_params and halving either
max_iter or chunks, which means every model will see half
as many data. Implicitly, a balance between training time and
hyperparameter importance is being decided upon. Hyperband has
one fewer input because it sweeps over this balance’s importance
in different brackets.

Dwindling number of models

At first, Hyperband evaluates many models. As time progresses,
the number of models decay because Hyperband is an early
stopping scheme. This means towards the end of the computation,
a few (possibly high-performing) models can be training while
most of the computational hardware is free. This is especially a
problem when computational resources are not free (e.g., with
cloud platforms like Amazon AWS or Google Cloud Platform).

Hyperband is a principled early stopping scheme, but it doesn’t
protect against at least two common cases:

8. e.g., something in the form "the most trained model should see 100 times
the number of examples (aka 100 epochs)”

9. Tolerance (typically via tol) is a proxy for max_iter because smaller
tolerance typically means more iterations are run.
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Fig. 1: The synthetic dataset used as input for the serial simulations.
The colors correspond to different class labels. In addition to these
two informative dimensions, there are 4 uninformative dimensions
with uniformly distributed random noise. There are 60,000 examples
in this dataset and 50,000 are used for training.

1) when models have converged before training completes
(i.e., the score stays constant)

2)  when models have not converged and poor hyperparame-
ters are chosen (i.e, the scores are not increasing).

Providing a "stop on plateau" scheme will protect against these
cases because training will be stopped if a model’s score stops
increasing [Pre98]. This will require two additional parameters:
patience to determine how long to wait before stopping a
model, and tol which determines how much the score should
increase.

Hyperband’s early stopping is designed to identify the highest
performing model with minimal training. Setting patience to
be high avoids interference with this scheme, protects against
both cases above, and errs on the side of giving models more
training time. In particular, it also provides a basic early stopping
mechanism for the least adaptive bracket of Hyperband.

Serial Simulations

This section is focused on the initial exploration of a model and it’s
hyperparameters on a personal laptop. This section shows a per-
formance comparison to illustrate the HyperbandSearchCV’s
utility. This comparison will use a rule-of-thumb to determine the
inputs to HyperbandSearchCV.

A synthetic dataset is used for a 4 class classification problem
on a personal laptop with 4 cores. This makes the hyperparameter
selection very serial and the number of partial_fit calls or
passes through the dataset a good proxy for time. Some detail is
mentioned in the appendix with complete details at https://github.
com/stsievert/dask-hyperband-comparison.
from dask_ml.model_selection import train_test_split
X, vy = make_4_circles (num=60e3)

X_train, X_test, y_train, y_test =
X, y, test_size=int (10e3))

train_test_split(

A visualization of this dataset is in Figure 1.

Model architecture & Hyperparameters

Scikit-learn’s fully-connected neural network is used, their
MLPClassifier which has several hyperparameters.
Only one affects the architecture of the best model:
hidden_layer_sizes, which controls the number of
layers and number of neurons in each layer.

There are 5 values for the hyperparameter. It is varied so the
neural network has 24 neurons but varies the network depth and
the width of each layer. Two choices are 12 neurons in 2 layers
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(a) The final validation accuracy over the different runs. Out of
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(b) The average best score from Hyperband’s early stopping
scheme (via hyperband) and randomized search without any
early stopping (via passive). The shaded regions correspond
to the 25% and 75% percentiles over the different runs. The
green dotted line indicates the time required to train 4 models
with 4 Dask workers.

Fig. 2: In this simulation, each call to partial_fit sees about
1/6th of examples in the complete train dataset. Each model completes
no more than 50 passes through the data. This experiment includes
200 runs of hyperband and passive and passive.

or 6 neurons in four layers. One choice has 12 neurons in the first
layer, 6 in the second, and 3 in third and fourth layers.

The other six hyperparameters control finding the best model
and do not influence model architecture. 3 of these hyperparame-
ters are continuous and 3 are discrete (of which there are 10 unique
combinations). Details are in the appendix. These hyperparameters
include the batch size, learning rate (and decay schedule) and a
regularization parameter:

from sklearn.neural network import MLPClassifier
model = MLPClassifier(...)

params = {'batch_size': [32, 64, ..., 512], ...}
print (params.keys())
# dict_keys ([
# "batch_size", # 5 choices
"learr rate”", # 2 choices
"hidden_layer_sizes", # 5 choices
"alpha", # cnts
"power_t", # cnts

o W W I W W

~

Usage: rule of thumb on HyperbandSearchCV'’s inputs

HyperbandSearchCV only requires two parameters besides the
model and data as discussed above: the number of partial_ fit
calls for each model (max_iter) and the number of examples
each call to partial_fit sees (which is implicit via the
Dask array chunk size chunks). These inputs control how many
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Fig. 3: A visualization of how the Dask prioritization scheme influ-
ences the Hyperband’s time to solution. Dask assigns prioritizes train-
ing models with higher scores (via high—scores). When Dask uses
the default priority scheme it fits models in the order they are received
by Dask Distributed’s scheduler (via £ifo). Only the prioritization
in the figure changes because both high—scores and fifo have
the same hyperparameters, train/validation data, and assign the same
internal random state to models. The hyperparameters are chosen
from a run in Figure 2b.

hyperparameter values are considered and how long to train the
models.

The values for max_iter and chunks can be specified by
a rule-of-thumb once the number of parameter to be sampled and
the number of examples required to be seen by at least one model,
n_examples. This rule of thumb is:
# The rule-of-thumb to determine inputs

max_iter = n_params
chunks = n_examples // n_params

In this example, n_examples = 50 x len(X_train) and
n_params = 299 . n_params is approximately the number
of hyperparameter sampled. The value of 299 is chosen to make
the Dask array evenly chunked and to sample approximately 4
hyperparameter combinations for unique combination of discrete
hyperparameters.

Creation of a HyperbandSearchCV object and the Dask
array is simple with this:
from dask_ml.model_selection import HyperbandSearchCvV
search = HyperbandSearchCV (

model, params,

max_iter=max_iter, aggressiveness=4)

chunks=chunks)
chunks=chunks)

X_train = da.from_array (X_train,
y_train = da.from_array(y_train,
search.fit (X_train, y_train)

aggressiveness=4 is chosen because this is my first time
optimizing these hyperparameters — I only made one small edit
to the hyperparameter search space'’. With max_iter, no
model sees more than n_examples examples as desired and
Hyperband evaluates (approximately) n_params hyperparameter

combinations'".

Performance

Two hyperparameter optimizations are compared, Hyperband and
random search and is shown in Figure 2b. Recall from above
that Hyperband is a principled early stopping scheme for ran-
dom search. The comparison mirrors that by sampling the same

10. For personal curiosity, I changed total number of neurons to 24 from 20
to allow the [12, 6, 3, 3] configuration.

11. Exact specification is available through the metadata attribute
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Fig. 4: The input and ground truth for the image denoising problem.
There are 70,000 images in the output, the original MNIST dataset.
For the input, random noise is added to images, and amount of data
grows to 350,000 input/output images. Each partial_fit calls
sees (about) 20,780 examples and each call to score uses 66,500
examples for validation.

ground
truth

hyperparameters'? and using the same validation set for each run.
The results of these simulations are in Figure 2.

Dask provides features that the Hyperband implementation
can easily exploit. Dask Distributed supports prioritizing different
jobs, so it’s simple to prioritize the training of different models
based on their most recent score. This will emphasize the more
adaptive brackets of Hyperband because they are scored more
frequently. Empirically, these are the highest performing brackets
of Hyperband [LID* 18, Section 2.3]. This highlights how Dask is
useful to Hyperband and is shown in Figure 3.

Dask’s priority of training high scoring models works best
in very serial environments: priority makes no difference in very
parallel environment when every job can be run. In moderately
parallel environments the different priorities may lead to longer
time to solution because of suboptimal scheduling. To get around
this, the worst performing P models all have the same priority for
each bracket when there are P Dask workers.

Parallel Experiments

This section will highlight a using a model implemented with
a popular deep learning library, and will will leverage Dask’s
parallelism and investigate how well HyperbandSearchCV
scales as the number of workers grows from 8 to 32.

The inputs and desired outputs are given in Figure 4. This is
an especially difficult problem because the noise variance varies
slightly between images. To protect against this, a shallow neural
network is used that’s slightly more complex than a linear model.
This means hyperparameter optimization is not simple.

Specifically, this section will find the best hyperparameters
for a model created in PyTorch13 [PGCT17] (with the wrapper
Skorch!#) for an image denoising task. Again, some detail is
mentioned in the appendix and complete details can be found at
https://github.com/stsievert/dask-hyperband-comparison.

Model architecture & Hyperparameters

Autoencoders are a type of neural network useful for image
denoising. They reduce the dimensionality of the input before
expanding to the original dimension, which is similar to a lossy
compression. Let’s create that model and the images it will
denoise:

12. As much as possible — Hyperband evaluates more hyperparameter val-
ues. The random search without early stopping evaluates every hyperparameter
value Hyperband evaluates.

13. https://pytorch.org

14. https://github.com/skorch-dev/skorch
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# custom model definition with PyTorch
from autoencoder import Autoencoder
from dask_ml.model selection import train_test_split

import skorch # scikit-learn API wrapper for PyTorch

model = skorch.NeuralNetRegressor (Autoencoder, ...)

X, y = noisy_mnist (augment=5)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.05)

Of course, this is a neural network so there are many hyper-
parameters to tune. Only one hyperparameter affects the model
architecture: estimator__activation, which specifies the
activation the neural network should use. This hyperparameter
is varied between 4 different choices, all different types of the
rectified linear unit (ReLU) [NH10], including the leaky ReLU
[MHN13], parametric ReLU [HZRS15a] and exponential linear
units (ELU) [CUHI15].

The other hyperparameters all control finding the optimal
model after the architecture is fixed. These hyperparameters in-
clude 3 discrete hyperparameters (with 160 unique combinations)
and 3 continuous hyperparameters. Some of these hyperparam-
eters include choices on the optimizer to use (SGD [Botl0]
or Adam [KB14]), initialization, regularization and optimizer
hyperparameters like learning rate or momentum. Here’s a brief
summary:

params = {'optimizer': ['SGD', 'Adam']l, ...}
print (params.keys())
# dict_keys ([
# "opt zer", # 2 choices
"ba ) size", # 5 choices
"module__init", # 4 choices
"module _activation", # 4 choices
"optimizer. 1r", # 1

11zer._momen

"optimizer___weight_decay"

e HH H R H R I

1)

Details are in the appendix.

Usage: plateau specification for non-improving models

HyperbandSearchCV supports specifying patience=True
to make a decision on how long to wait to see if
scores stop increasing, as mentioned above. Let’s create a
HyperbandSearchCV object that stops training non-improving
models.

from dask_ml.model_ selection import HyperbandSearchCVv
search = HyperbandSearchCV (

model, params, max_iter=max_iter,
search.fit (X_train, y_train)

patience=True)

The current implementation uses patience=True to choose a
high value of patience=max_iter // 3.Thisis mostuseful
for the least adaptive bracket of Hyperband (which trains a couple
models to completion) and mirrors the patience of the second least
adaptive bracket in Hyperband.

In these experiments, patience=max_iter // 3 hasno
effect on performance. If patience=max_iter // 6 for
these experiments, there is a moderate effect on performance
(patience=max_iter // 6 obtains a model with validation
loss 0.0637 instead of 0.0630 like patience=max_iter //
3 and patience=False).

Performance

This section will focus on how HyperbandSearchCV scales as
the number of workers grow.
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(a) The time required to complete the HyperbandSearchCV search
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(c) The effect that specifying patience=True has on

HyperbandSearchCV for different number of Dask workers.

Fig. 5: In these experiments, the models are trained to completion and
their history is saved. Simulations are performed with this history that
consume 1 second for a partial_fit call and 1.5 seconds for a
score call. In this simulations, only the number of workers change:
the models are static so Hyperband is deterministic. The model trained
the longest requires 243 seconds to be fully trained, and additional
time for scoring.

The speedups HyperbandSearchCV can achieve begin to
saturate between 16 and 24 workers, at least in this experi-
ment as shown in Figure 5b. Figures 5b and 5c show that
HyperbandSearchCV spends significant amount of time with
a low number of workers without improving the score. Luckily,
HyperbandSearchCV will soon support keyboard interruptions
and can exit early if the user desires.

Specifying patience=True for HyperbandSearchCV
has a larger effect on time-to-solution when fewer workers are
used as shown in Figure 5a. A stop-on-plateau scheme will have
most effect in very serial environments, similar to the priority
scheme used by Dask.

Future work

The biggest area for improvement is using another application
of the Hyperband algorithm: controlling the dataset size as the
scarce resource. This would treat every model as a black box and
vary the amount of data provided. This would not require the
model to implement partial_fit and would only require a
fit method.
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Future work might also include providing an option to further
reduce time to solution. This might involve choosing which
brackets of HyperbandSearchCV to run. Empirically, the best
performing brackets are not passive [LJD 18, Section 2.3].

Future work specifically does not include implementing the
asynchronous version of successive halving [LJR"18] in Dask.
This variant of successive halving is designed to reduce the waiting
time in very parallel environments. It does this by stopping a
model’s training only if it’s in the worst performing fraction of
models received so far and does not wait for all models to be
collected. Dask’s advanced task scheduling helps resolves this
issue for HyperbandSearchCV.

Regardless of these potential improvements, the implemen-
tation of Hyperband in Dask-ML allows efficient computa-
tion of hyperparameter optimization. The implementation of
HyperbandSearchCV specifically leverages the abilities of
Dask Distributed and can handle distributed datasets.

Appendix

This section expands upon the example given above. Complete de-
tails can be found at https://github.com/stsievert/dask-hyperband-
comparison.

Serial Simulation

Here are some of the other hyperparameters tuned, alongside
descriptions of their default values and the values chosen for
tuning.

e alpha, a regularization term that can affect generaliza-
tion. This value defaults to 10~* and is tuned logarithmi-
cally between 10~¢ and 1073

¢ Dbatch_size, the number of examples used to approxi-
mate the gradient at each optimization iteration. This value
defaults to 200 and is chosen to be one of [32,64,...,512].

e learning_rate controls the learning rate decay
scheme, either constant or via the "invscaling"
scheme, which has the learning rate decay like 9 /t” where
p and 7y are also tuned. 9 defaults to 1073 and is tuned
logarithmically between 10~* and 1072, p defaults to 0.5
and is tuned between 0.1 and 0.9.

¢ momentum, the amount of momentum to include in Nes-
terov’s momentum [Nes13]. This value is chosen between
0O and 1.

The learning rate scheduler used is not Adam [KB14] because
it claims to be most useful without tuning and has reportedly has
marginal gain [WRS*17].

Parallel Experiments
Here are some of the other hyperparameters tuned:

e optimizer: which optimization method should be used
for training? Choices are stochastic gradient descent
(SGD) [Bot10] and Adam [KB14]. SGD is chosen with
5/7th probability.

e estimator___init: how should the estimator be ini-
tialized before training? Choices are Xavier [GB10] and
Kaiming [HZRS15b] initialization.

e batch_size: how many examples should the opti-
mizer use to approximate the gradient? Choices are
[32,64,...,512].
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¢ weight_decay: how much of a particular type of regu-
larization should the neural net have? Regularization helps
control how well the model performs on unseen data. This
value is chosen to be zero 1/6th of the time, and if not
zero chosen uniformly at random between 107> and 103
logarithmically.

e optimizer__ 1lr: what learning rate should the opti-
mizer use? This is the most basic hyperparameter for the
optimizer. This value is tuned between 10~ and 10! after
some initial tuning.

e optimizer_ momentum, which is a hyper-parameter
for the SGD optimizer to incorporate Nesterov momentum
[Nes13]. This value is tuned between O and 1.
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Visualization of Bioinformatics Data with Dash Bio

Shammamah Hossain**

Abstract—Plotly’s Dash is a library that empowers data scientists to create
interactive web applications declaratively in Python. Dash Bio is a bioinformatics-
oriented suite of components that are compatible with Dash. Visualizations of
data that are often found in the field of bioinformatics can now be integrated into
Dash applications. We present the Dash Bio suite of components and parts of an
auxiliary library that contains tools that parse files from common bioinformatics
databases.

Index Terms—uvisualization, bioinformatics, sequence analysis, Dash

Introduction

The emergent field of bioinformatics is an amalgamation of
computer science, statistics, and biology; it has proven itself
revolutionary in biomedical research. As scientific techniques in
areas such as genomics and proteomics improve, experimentalists
in bioinformatics may find themselves needing to interpret large
volumes of data. In order to use this data to efficiently provide
meaningful solutions to biological problems, it is important to
have robust data visualization tools.

Many bioinformaticians have already created analysis and
visualization tools with Dash and plotly.py, but only through sig-
nificant workarounds and modifications made to preexisting graph
types. We present an interface to create single-line declarations
of charts for complex datasets such as hierarchical clustering
and multiple sequence alignment. In addition, we introduce sev-
eral new chart types, three-dimensional and interactive molecule
visualization tools, and components that are specifically related
to genomic and proteomic sequences. In a separate library, we
present a set of simple parsing scripts that handle some of the most
common file types found in bioinformatics-related databases.

This paper outlines the contents of the Dash Bio package. With
this package, we hope to impart the powerful data-visualization
tools and flexibility of Dash to the flourishing bioinformatics
community.

Dash

Plotly’s dash library provides a declarative Python in-
terface for developing full-stack web applications ("Dash
apps"). [Dash] In addition to the main dash library, the
dash-html-components and dash-core—-components
packages comprise the building blocks of a Dash app.
dash-html-components provides an interface for building
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Fig. 1: A simple Dash application.

the layout of a Dash application that mimics the process of
building the layout of a website; dash-core—components is a
suite of common tools used for interactions with a Dash app (e.g.,
dropdowns, text inputs, and sliders) and includes a dcc.Graph
component for interactive graphs made with plotly.py.

A minimal Dash application that comprises a string on a
webpage can be produced with the following code.

import dash
import dash_html_components as html

dash.Dash ()
html.Div ('Hello,

app =

app.layout = world!")

app.run_server ()

Upon running the above code, a 1ocalhost address is specified
in the console. Visiting this address in the browser yields a simple
webpage that contains the text "Hello, world!" (see Fig. 1).

Interactivity is implemented with callbacks. These allow for
reading the values of inputs in the Dash app (e.g., text inputs,
dropdowns, and sliders), which can subsequently be used to
compute the value of one or more "outputs", i.e., properties of
other components in the app. The function that computes the
outputs is wrapped in a decorator that specifies the aforementioned
inputs and outputs; together, they form a callback. The callback is
triggered whenever one of the specified inputs changes in value.

For instance, the dash_core_components. Input ()
component controls the children property of a
dash_html_components.Div () component in the
following code.
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®® 5§ Dash

< C @ localhost:8050
HELLO, WORLD!

Hello, world!

Fig. 2: A simple Dash application that showcases interactivity. Text
that is entered into the input component is converted to uppercase and
displayed in the app.

import dash
import dash html_components as html
import dash core_components as dcc

app = dash.Dash{()

app.layout = html.Div(children=][
html.Div (id="output-div"),
dcc.Input (id="text-input')

1)

@app.callback (
dash.dependencies.Output ('output-div',

[dash.dependencies.Input ('text—-input', 'value')]

)
def capitalize_user_input (text):
return text.upper ()

app.run_server ()

The output of the code is shown in Fig. 2.

React.js and Python

Some of the components in the Dash Bio package are wrappers
around pre-existing JavaScript or React libraries. The development
process for JavaScript-based components is fairly straightforward;
the only thing that needs to be added in many cases is an interface
for Dash to access the state of the component and read or write
to its properties. This provides an avenue for interactions with the
components from within a Dash app.

The package also contains three Python-based compo-
nents: Clustergram, ManhattanPlot, and VolcanoPlot. Un-
like the JavaScript-based components, the Python-based com-
ponents are essentially functions that return JSON data
that is in the format of the figure argument for a
dash_core_components.Graph component.

Dash Bio Components

Dash Bio components fall into one of three categories.

e Custom chart types: Specialized chart types that allow
for intuitive visualizations of complex data. This category
includes Circos, Clustergram, Ideogram, ManhattanPlot,
NeedlePlot, and VolcanoPlot.

'children'),
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o Three-dimensional visualization tools: Structural diagrams
of biomolecules that support a wide variety of user
interactions and specifications. This category includes
Molecule3dViewer and Speck.

o Sequence analysis tools: Interactive and searchable ge-
nomic and proteomic sequences, with additional features
such as multiple sequence alignment. This category in-
clude AlignmentChart, OncoPrint, and SequenceViewer.

The documentation for all of the Dash Bio components, includ-
ing example code, can be found at https://dash.plot.ly/dash-bio.

Circos

W gy

N\
&

Fig. 3: A simple Dash Bio Circos component with chords connecting
pairs of data points. Data taken from [Ghr] and converted to JSON
in the CircosdJs repository [Circos].

Circos is a circular graph. It can be used to highlight relation-
ships between, for example, different genes by drawing chords
that connect the two (see Fig. 3).

The Dash Bio Circos component is a wrapper of the
CircosJds [Circos] library, which supports additional graph
types like heatmaps, scatter plots, histograms, and stacked charts.
Input data to Circos take the form of a dictionary, and are supplied
to the layout parameter of the component. Additional data,
such as a list of chords, are specified in the t racks parameter.
Multiple tracks can be plotted on the same Circos graph. Hover
data and click data on all Circos graph types are captured and are
available to Dash apps.

Clustergram

A clustergram is a combination heatmap-dendrogram that is com-
monly used in gene expression data. The hierarchical clustering
that is represented by the dendrograms can be used to identify
groups of genes with related expression levels.

The Dash Bio Clustergram component is a Python-based
component that uses plotly.py to generate a figure. It takes as
input a two-dimensional numpy array of floating-point values.
Imputation of missing data and computation of hierarchical clus-
tering both occur within the component itself. Clusters that meet
or exceed a user-defined threshold of similarity comprise single
traces in the corresponding dendrogram, and can be highlighted
with annotations (see Fig. 4).

The user can specify additional parameters to customize the
metrics and methods used to compute parts of the clustering, such
as the pairwise distance between observations and the linkage
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Fig. 4: A Dash Bio clustergram component displaying hierarchical
clustering of gene expression data from two lung cancer subtypes. A
cluster from the row dendrogram (displayed to the left of the heatmap)
is annotated. Data taken from [KR09].

matrix. Hover data and click data are accessible from within the
Dash app for the heatmap and both dendrograms that are shown
in Fig. 4.

Ideogram
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Fig. 5: A Dash Bio ideogram component demonstrating the ho-
mology feature with two human chromosomes. Data taken from the
ideogram. js repository [Ideo].

An ideogram is a schematic representation of genomic data.
Chromosomes are represented as strands, and the locations of
specific genes are denoted by bands on the chromosomes.

The Dash Bio Ideogram component is built on top of the
ideogram. js library [Ideo], and includes features like an-
notations, histograms, and homology (see Fig. 5). Annotations
can be made to different segments of each chromosome and
displayed in the form of bands, and relationships between different
chromosomes can be highlighted by using the homology feature to
connect a region on one chromosome to a region on another (see
Fig. 5). Upon hovering over an annotated part of the chromosome,
the annotation data is readable from within a Dash app. Addition-
ally, information from the the "brush" feature, which allows the
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user to highlight a subset of the chromosome, is accessible from
within the Dash application. This information includes the starting
position and ending position of the brush, as well as the length (in
base pairs) of the selection made with the brush.

Manhattan Plot

Manhattan Plot
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Fig. 6: A Dash Bio ManhattanPlot component. The threshold level
is denoted by the red line; all points of interest are colored red. The
purple line is the suggestive line. Data taken from the manhattanly
repository [Man].

A Manhattan plot is a plot commonly used in genome-wide
association studies; it can highlight specific nucleotides that, when
changed to a different nucleotide, are associated with certain
genetic conditions.

The Dash Bio ManhattanPlot component is built with plotly.py.
Input data take the form of a pandas dataframe. The two lines on
the plot (see Fig. 6) represent, respectively, the threshold level and
the suggestive line.! The y-values of these lines can be controlled
by the user. Hover data and click data are accessible from within
the Dash app.

Needle Plot
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Fig. 7: A Dash Bio NeedlePlot component that shows the prop-
erties of mutations in a genomic strand. Data taken from the
muts-needle-plot repository [Muts].

A needle plot is a bar plot in which each bar has been
replaced with a marker at the top and a line from the x-axis to

1. Information about the meaning of these two lines can be found in [ER15].
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the aforementioned marker. Its primary use-case is visualization
of dense datasets that would appear too crowded to be interpreted
effectively when represented with a bar plot. In bioinformatics, a
needle plot may be used to annotate the positions on a genome at
which genetic mutations happen (see Fig. 7).

The Dash Bio NeedlePlot component was built using plotly.js.
It receives input data as a dictionary. Different colors and marker
styles can be used to distinguish different types of mutations, and
the domains of specific genes can be demarcated on the plot.

Volcano Plot

Volcano Plot

-log10(p)
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Fig. 8: A Dash Bio VolcanoPlot component. Points of interest are col-
ored in red, and the effect size and statistical significance thresholds
are represented by dashed lines. Data taken from the manhattanly
repository [Man].

A volcano plot is a plot used to concurrently display the
statistical significance and a defined "effect size" (e.g., the fold
change?) of a dataset. This type of plot is incredibly useful when
visualizing a large number of data points that represent replicate
data; it facilitates identification of data that simultaneously have
statistical significance and a large effect.

The Dash Bio VolcanoPlot component was built using
plotly.py. It takes a pandas dataframe as input data. Lines that
represent the threshold for effect size (both positive and negative)
and a threshold for statistical significance can be defined by the
user (see Fig. 8). Hover data and click data are accessible from
within the Dash app.

Molecule 3D Viewer

The Dash Bio Molecule3dViewer component was built on top of
the molecule-3d-for-react [Mol3D] library. Its purpose is
to display molecular structures. These types of visualizations can
show the shapes of proteins and provide insight into the way that
they bind to other molecules. This renders them invaluable when
communicating the mechanics of biomolecular processes.
Molecule3dViewer receives input data as a dictionary which
specifies the layout and style of each atom in the molecule. It can
render molecules in a variety of styles, such as ribbon diagrams,
and allows for mouse-click selection of specific atoms or residues
(see Fig. 9) that can be read from or written to within a Dash app.

Speck
The Dash Bio Speck component is a WebGL-based 3D renderer
that is built on top of Speck [Speck]. It uses techniques like

2. This refers to the ratio of a measurement to its preceding measurement.
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Fig. 9: A Dash Bio Molecule3DViewer component displaying the
ribbon structure of a section of DNA. A selected residue is highlighted
in cyan. Structural data taken from the Protein Data Bank [1bna].

Fig. 10: A Dash Bio Speck component displaying the atomic structure
of a strand of DNA in a ball-and-stick representation. Ambient
occlusion is used to provide realistic shading on the atoms. Structural
data taken from the Speck repository [Speck].

ambient occlusion and outlines to provide a rich view of molecular
structures (see Fig. ).

The Dash Bio Speck component receives input data as a
dictionary that contains, for each atom, the atomic symbol and
the position in space (given as x, y, and z coordinates). Param-
eters related to the rendering of the molecule, such as the atom
sizes, levels of ambient occlusion, and outlines, can optionally be
specified in another dictionary supplied as an argument.

Alignment Chart

An alignment chart is a tool for viewing multiple sequence
alignment. Multiple related sequences of nucleotides or amino
acids (e.g., the amino acid sequences of proteins from different
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Fig. 11: A Dash Bio AlignmentChart component displaying the
P53 protein’s amino acid sequences from different organisms. A
conservation barplot is displayed on top, and the bottom row of the
heatmap contains the consensus sequence. Data taken from UniProt
[UniP].

organisms that appear to serve the same function) are displayed in
the chart to show their similarities.

The Dash Bio AlignmentChart component is built on top of
react-alignment-viewer [Align]. It takes a FASTA file
as input and computes the alignment. It can optionally display
a barplot that represents the level of conservation of a particular
amino acid or nucleotide across each sequence defined in the input
file (see Fig. 11). Hover data and click data are accessible from
within the Dash app.
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Fig. 12: A Dash Bio OncoPrint component that shows mutation events
for the genomic sequences that encode different proteins. Data taken
from cBioPortal [cBio], [c¢Bio2].

An OncoPrint graph is a type of heatmap that facilitates the
visualization of multiple genomic alteration events (see Fig. 12).

The Dash Bio OncoPrint component is built on top of
react-oncoprint [Onco]. Input data for the component takes
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the form of a list of dictionaries that each define a sample,
gene, alteration, and mutation type. Hover data and click data are
accessible from within the Dash app.

Sequence Viewer
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Fig. 13: A Dash Bio SequenceViewer component that is showing the
amino acid sequence for insulin. A coverage has been applied to the
sequence to emphasize subsequences of amino acids that form certain
structures, like alpha helices or beta sheets. Data taken from NeXtProt
[nXP].

The Dash Bio SequenceViewer component is a simple tool that
allows for annotating genomic or proteomic sequences. It is based
on the react-sequence-viewer library [SeqV].

It includes a search function that allows the user to search
the sequence using regular expressions. In addition, the sequence
can be annotated using a selection defined by a starting point, an
end point, and a color, or a coverage that can encode additional
information that is revealed once a subsequence is clicked. The
selection and coverage are available for reading from and writing
to in the Dash app, and the mouse selection and search results are
also accessible.

File Parsers

The dash-bio—-utils package was developed in tandem with
the dash—-bio package. It contains parsers for common filetypes
used in bioinformatics analyses. The parsers in the package trans-
late the data encoded in those files to inputs that are compatible
with Dash Bio components.

FASTA data

FASTA files are commonly used to represent one or more genomic
or proteomic sequences. Each sequence may be preceded by a line
starting with the > character which contains information about
the sequence, such as the name of the gene or organism; this is
the description of the sequence. Sections of the description are
separated with pipes (|).

The protein_reader file in the dash-bio-utils
package accepts a file path to, or a string representation of, a
FASTA file, and returns a dictionary that contains the sequence
and any metadata that are specified in the file. SeqIO from
the Biopython [BioP] package was used to extract all of the
sequences from the file into a list of dictionaries, each of which
contained the sequence description and the sequence itself, both
in string format.

Different databases (e.g., neXtProt, GenBank, and SWISS-
PROT) encode the sequence description metadata in different
ways. The database from which a FASTA file is retrieved is
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specified in the first line. In the protein_reader file, the code
for the database is translated into the information that is encoded
in the first line for that particular database. [NCBI]

From there, string splitting (or, if necessary, regex) is used
on the description line of the file to generate a dictionary of the
sequence metadata.

This parser enables quick access to all of the information
contained in a FASTA file, which in turn can make the information
more human-readable. This is a feature that supplements the ease-
of-use of the dash-bio package.

For instance, in the code snippet below, the parser is used on
a string with the contents of a FASTA file for the albumin protein
[nXP]:
>>> from dash_bio_utils import protein_reader as pr

>>> fasta_string = \
""'">nxp |[NX_P02768-1|ALB|Serum albumin/Iso 1

MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAF
AQYLOQCPFEDHVKLVNEVIEFAKTCVADESAENCDKSLHTLFGDKLCTVA
TLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHD
NEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLP
KLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEV
SKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKP
LLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYE
YARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEP
ONLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGS
KCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRP
CFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKP
KATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL "'’
>>> albumin = pr.read_fasta/(
data_string=fasta_string
) [0]

>>> albumin('description']
{'identifier': 'NX_P02768-1",

'gene name': 'ALB',

'protein name': 'Serum albumin',

'isoform name': 'Iso 1'}
>>> albumin|'sequence'] [:10]

'MKWVTFISLL'

Gene Expression Data

Gene expression data take the form of two-dimensional arrays
that measure expression levels for sets of genes under varying
conditions.

A common format that is used to represent gene expression
data is the SOFT format. These files can be found in large
databases such as the Gene Expression Omnibus (GEO), [GEO]
which contains gene expression data from thousands of experi-
ments. SOFT files contain the expression data, as well as descrip-
tive information pertaining to the specific genes and conditions
that are in the dataset.

The gene_expression_reader file in the
dash-bio-utils package accepts a path to, or a string
representation of, a SOFT file or TSV file containing gene
expression data. It can parse the contents of SOFT and TSV files,
and return the numerical data and metadata that they contain.
In addition, selection of a subset of the data (given by lists of
selected rows and selected columns supplied to the parser) can be
returned.

The GEOparse package [GEOP] was used to extract the
numeric gene expression data to a pandas dataframe, in addition
to the metadata, in SOFT files:
geo_file = gp.get_GEO(

filepath=filepath,
geotype="GDS'

)
df = geo_file.table
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pandas was used to do the same with TSV files:
df = pd.read_csv(

filepath, sep='\t'
)

Both file parsers by default return a tuple comprising the file
metadata, all of the row names, and all of the column names.

If the parameter return_filtered_data is setto True,
the parameters rows and columns (lists that contain the names
of, respectively, the selected rows and selected columns) must be
specified. The dataframe df is then filtered according to these
selections, and a two-dimensional numpy array containing the
filtered data is returned.

In the case of SOFT files, there is additional information about
subsets of the dataset (e.g., the expression data that are recorded
with and without inducing a particular gene). This information
becomes another element in the tuple.

In the code snippet below, the parser is used to extract
information from a dataset related to the miR-221 RNA molecule
[miR]:
>>> from dash bio_utils import gene_expression_reader
>>> data = gene_expression_reader.read_soft_file(

filepath="'GDS5373.so0ft"
>>> ;ata[O]
{'title': [
'"'"'"miR-221 expression effect on prostate cancer

cell line'''

]I

'description': [

"'"'Analysis of PC-3 prostate cancer cells
expressing pre-miR-221. miR-221 is frequently
downregulated in primary prostate cancer.
Results provide insight into the role of
miR-221 in the pathogenesis of prostate

cancer.''"'
]I
'type': ['Expression profiling by array'],
'pubmed_id': ['24607843'],
'platform': ['GPL570'],

'platform_organism': ['Homo sapiens'],
'platform_technology_type':
'feature_count': ['54675'],
'sample_organism': ['Homo sapiens'],

'sample_type': ['RNA'],
'channel_count': ['1'],
'sample_count': ['4'],

'value_type': ['count'],

'reference_series':
'order': ['none'],
'update_date': ['Nov 03 2014']}
>>> datall]

['GSE45627'],

{'GDS5373_1"': {'dataset_id': ['GDS5373'],
'description': ['miR-122 expression'],
'sample_id': ['GSM1110879,GSM1110880'],
'type': ['protocol'l},
'GDS5373_2"': {'dataset_id': ['GDS5373'],
'description': ['control'],
'sample_id': ['GSM1110881,GSM1110882'],
'type': ['protocol'l}}
>>> data[2][:10]
['1007_s_at', '1053_at', '117_at', '121_at"',
'1255_g_at', '1294_at', '1316_at', '1320_at’',
'1405_i_at', '1431_at']

>>> datal[3]
['GSM1110879"', 'GsSM1110880', 'GSM1110881',
>>> selected = gene_expression_reader.read_soft_file(
filepath='GDS5373.soft"',
rows=['1255_g at', '"1316_at'],
columns=['GSM1110879', 'GSM1110881'],
return_filtered_data=True
)

>>> selected

["in situ oligonucleotide'],

'GSM1110882"']
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array ([[22.7604,
[21.416 ,

23.03217,
21.010711)

Molecule Structural Data

The Protein Data Bank (PDB) [PDB] is a database of files that
describe macromolecular structural data. All of the files on PDB
are in the PDB format.

In the dash_bio_utils package, the create_data
function in pdb_parser generates a JSON string from the
contents of a specified PDB file. This string contains information
about the atoms and the bonds in the molecular structure.

The PDB format is standardized; properties of each atom such
as its position in space and the chain and residue to which it
belongs are found within specific column indices for each row.
[PdbF] pdb_parser uses this information to parse each line, and
creates a list of dictionaries, each of which contains information
about the aforementioned properties for each atom in the PDB file.

The parmed library [Par] was used to read the bond informa-
tion from the PDB file. Using the bond information from parmed,
a list of dictionaries is created; each dictionary contains the indices
of the pair of atoms that form a bond.

In the code snippet below, this parser is used to extract data
from a PDB file that contains structural information for a small
section of DNA: [1bna]

>>> import json

>>> from dash_bio_utils import pdb_parser
>>> pdb_string = pdb_parser.create_data('lbna.pdb")
>>> pdb_lbna = json.loads (pdb_string)
>>> pdb_lbna['atoms'] [:3]

[{'name': "O5'", 'chain': 'A',
'positions': [18.935, 34.195, 25.617],
'residue_index': 1, 'element': 'O',
'residue_name': 'DC1l', 'serial': 0},
{'name': "C5'", 'chain': 'A"',
'positions': [19.13, 33.921, 24.219],
'residue_index': 1, 'element': 'C',
'residue_name': 'DC1l', 'serial': 1},
{'name': "C4'", 'chain': 'A'",
'positions': [19.961, 32.668, 24.1]7,
'residue_index': 1, 'element': 'C',
'residue_name': 'DC1l', 'serial': 2}]
>>> pdb_lbnal[ 'bonds"] [:3]
[{'atom2_index': 0, 'atoml_index': 1},
{'atom2_index': 1, 'atoml_index': 2},
{'atom2_index': 2, 'atoml_index': 3}]

Comparisons with Existing Tools
GenomeDiagram

The GenomeDiagram package [Geno] provides a way to visualize
comparative genomics data in a circular format (see Fig. 14); sup-
ported chart types include line charts, bar graphs, and heatmaps.

GenomeDiagram can additionally export high-quality vector
diagrams of the charts that are generated, which can in turn be
used in research papers. It can be used in conjunction with the
BioPython module to interface with GenBank.

GenomeDiagram shares many similarities with the Circos
component; both are circular representations of genomic data, and
both support multiple "tracks", or traces, of multiple chart types.
The key difference between the two, and the advantage of Dash
Circos, is flexibility and interactivity; Dash Circos supports click
and hover interactions, and GenomeDiagram does not.

Furthermore, Dash Circos can be interactively modified with
respect to the data that are displayed, as well as the appearance of
the graph itself. This allows for the implementation of many useful
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Fig. 14: An example of a circular diagram that can be generated with
GenomeDiagram. Source: [Geno]
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Fig. 15: Part of a multiple sequence alignment displayed as a Plotly
heatmap. Source: [JCViz]

functions, such as cross-filtering. Instead of needing to re-create
the image every time a change is made, updates to the Circos
component are reflected immediately within a Dash app.

Plotly.py

Plotly’s Python plotting library has been used to create charts that
are visually similar to those that are used to display certain types
of bioinformatics data [JCViz]. For instance, a sequence alignment
viewer can be created with a Plotly heatmap (see Fig. 15).

The Dash Bio AlignmentViewer component applies a similar
approach; the React.js component uses a plotly.js heatmap to
display the alignment. However, the API of AlignmentViewer
differs from that of the Plotly.py heatmap. The latter requires the
user to define properties of the graph that don’t have anything to do
with the alignment itself. Annotations must be specified, as well
as a custom heatmap colorscale in which the values correspond
to bases and not percentiles of a dataset. It also requires pre-
processing of the FASTA data, and translation into a format that
can be fit into the parameters of a Plotly heatmap.

In contrast, AlignmentViewer includes support for information
that is specific to multiple sequence alignment. The gap and
conservation, for instance, can be optionally included as barplots;
the method of conservation can also be changed, and the consensus
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sequence can be displayed on the chart. Data in the form of
FASTA files can be used as input to the component without any
further processing required. This allows for the programmer to
more easily interact with the component, as it removes the need to
restructure data to fit a specific format for visualization.

Limitations and Future Directions
File Formats

Currently, the dash_bio_utils package only supports specific
data file formats (namely, PDB, FASTA, and SOFT). Additionally,
most of the components require JSON data as input; this file
format is not typically provided in datasets or studies. Future
developments to the package should therefore include processing
for other important file formats, such as SAM/BAM/BAI for
sequence alignment, or Genbank files (.gb).

Conclusion

The Dash Bio component suite facilitates visualization of common
types of datasets that are collected and analyzed in the field of
bioinformatics. It remains consistent with the declarative nature
of Plotly’s Dash, and permits users to create interactive and
responsive web applications that can be integrated with other
Dash components. The dash-bio-utils package additionally
converts files from some of the most prominent bioinformatics
databases into familiar Python data types such as dictionaries.
When used in conjunction with the dash-bio package, this
enables bioinformaticians to quickly and concisely communicate
information among one another, and to the rest of the scientific
community.
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PMDA - Parallel Molecular Dynamics Analysis

Shuijie Fan'®, Max Linkell*, loannis Paraskevakos**, Richard J. Gowers?¥, Michael Gecht!l, Oliver Beckstein'*

Abstract—MDAnalysis is an object-oriented Python library to analyze trajecto-
ries from molecular dynamics (MD) simulations in many popular formats. With
the development of highly optimized MD software packages on high perfor-
mance computing (HPC) resources, the size of simulation trajectories is growing
up to many terabytes in size. However efficient usage of multicore architecture
is a challenge for MDAnalysis, which does not yet provide a standard interface
for parallel analysis. To address the challenge, we developed PMDA, a Python li-
brary that builds upon MDAnNalysis to provide parallel analysis algorithms. PMDA
parallelizes common analysis algorithms in MDAnalysis through a task-based
approach with the Dask library. We implement a simple split-apply-combine
scheme for parallel trajectory analysis. The trajectory is split into blocks, analysis
is performed separately and in parallel on each block ("apply"), then results from
each block are gathered and combined. PMDA allows one to perform parallel
trajectory analysis with pre-defined analysis tasks. In addition, it provides a
common interface that makes it easy to create user-defined parallel analysis
modules. PMDA supports all schedulers in Dask, and one can run analysis in
a distributed fashion on HPC machines, ad-hoc clusters, a single multi-core
workstation or a laptop. We tested the performance of PMDA on single node
and multiple nodes on a national supercomputer. The results show that paral-
lelization improves the performance of trajectory analysis and, depending on the
analysis task, can cut down time to solution from hours to minutes. Although
still in alpha stage, it is already used on resources ranging from multi-core
laptops to XSEDE supercomputers to speed up analysis of molecular dynamics
trajectories. PMDA is available as open source under the GNU General Public
License, version 2 and can be easily installed via the pip and conda package
managers.

Index Terms—Molecular Dynamics Simulations, High Performance Computing,
Python, Dask, MDAnalysis

Introduction

Classical molecular dynamics (MD) simulations have become
an invaluable tool to understand the function of biomolecules
[KMO02], [DDGT12], [SB14], [Orol4], [BLL18], [HBD*19] (of-
ten with a view towards drug discovery [BS12]) and diverse
problems in materials science [Rot09], [LS15], [VMMCT'15],
[LJYH18], [KAHCI18], [FPM18]. Systems are modeled as par-
ticles (for example, atoms) whose interactions are approximated
with a classical potential energy function [FS02], [BGM " 18].
Forces on the particles are derived from the potential and Newton’s
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equations of motion for the particles are solved with an integrator
algorithm, typically using highly optimized MD codes that run
on high performance computing (HPC) resources or workstations
(often equipped with GPU accelerators). The resulting trajectories,
the time series of particle positions r(¢) (and possibly veloci-
ties), are analyzed with statistical mechanics approaches [Tuc10],
[BGM " 18] to obtain predictions or to compare to experimentally
measured quantities. Currently simulated systems may contain
millions of atoms and the trajectories can consist of hundreds of
thousands to millions of individual time frames, thus resulting in
file sizes ranging from tens of gigabytes to tens of terabytes. Pro-
cessing and analyzing these trajectories is increasingly becoming
a rate limiting step in computational workflows [CR15], [BFJ18].
Modern MD packages are highly optimized to perform well on
current HPC clusters with hundreds of cores such as the XSEDE
supercomputers [TCD™ 14] but current general purpose trajectory
analysis packages [Gio19] were not designed with HPC in mind.

In order to scale up trajectory analysis from workstations to
HPC clusters with the MDAnalysis Python library [MADWBI11],
[GLB " 16] we leveraged Dask [Roc15], [Das16], a task-graph par-
allel framework, together with Dask’s various schedulers (in par-
ticular distributed), and created the Parallel MDAnalysis (PMDA)
library. By default, PMDA follows a simple split-apply-combine
[Wicl1] approach for trajectory analysis, whereby each task ana-
lyzes a single trajectory segment and reports back the individual
results that are then combined into the final result [KPJB17]. Our
previous work established that Dask worked well with MDAnal-
ysis [KPJB17] and that this approach was competitive with other
task-parallel approaches [PLK " 18]. However, we did not provide
a general purpose framework to write parallel analysis tools
with MDAnalysis. Here we show how the split-apply-combine
approach lends itself to a generalizable Python implementation
that makes it straightforward for users to implement their own
parallel analysis tools. At the heart of PMDA is the idea that
the user only needs to provide a function that analyzes a single
trajectory frame. PMDA provides the remaining framework via the
ParallelAnalysisBase class to split the trajectory, apply
the user’s function to trajectory frames, run the analysis in parallel
via Dask/distributed, and combines the data. It also contains a
growing library of ready-to-use analysis classes, thus enabling
users to immediately accelerate analysis that they previously
performed in serial with the standard MDAnalysis analysis classes
[GLBT16].

Methods

At the core of PMDA is the idea that a common interface makes
it easy to create code that can be easily parallelized, especially
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if the analysis can be split into independent work over multiple
trajectory slices and a final step, in which all data from the
trajectory slices are combined. We first describe typical steps in
analyzing MD trajectories and then outline the approach taken in
PMDA.

Trajectory analysis

A trajectory with 7 saved time steps consists of a sequence
of coordinates { (ri(r),r2(t),...xn(1)) },_,.; where r;(r) are the
Cartesian coordinates of particle i at time step ¢ with N particles
in the simulated system, i.e., 7 x N x 3 floating point numbers in
total. To simplify notation, we consider ¢ as an integer that indexes
the trajectory frames; each frame index corresponds to a physical
time in the trajectory that we could obtain if needed. In general,
the coordinates are passed to a function .27 ({r;(¢)}) to compute a
time-dependent quantity

Ar) = o ({ri(1) })- (1

This quantity does not have to be a simple scalar; it may be a
vector or a function of another parameter. In many cases, the time
series A(r) is the desired result. It is, however, also common to
perform some form of reduction on the data, which can be as
simple as a time average to compute a thermodynamic average
(A)=A=T""Y | A(t). Such an average can be easily calculated
in a post-analysis step after the time series has been obtained. An
example of a more complicated reduction is the calculation of a
histogram such as a radial distribution function (RDF) [FS02],
[Tuc10] between two types of particles with numbers N, and Np,

1 Ny Np
g(r)_<NNbZZ(S(|rLLi_rb,j|_r)> 2

i=1j=1

where the Dirac delta function counts the occurrences of particles
i and j at distance r. To compute a RDF, we could generate a time
series of histograms along the spatial coordinate r, i.e., A(¢;r) for
each frame, and then perform the average in post-analysis. How-
ever, storage of such histograms becomes problematic, especially
if instead of 1-dimensional RDFs, densities on 3-dimensional
grids are being calculated. It is therefore better to reformulate
the algorithm to perform a partial average (or reduction) during
the analysis on a per-frame basis. For histograms, this could mean
building a partial histogram and updating counts in the bins after
every frame. PMDA supports the simple time series data collection
and the per-frame reduction.

Split-apply-combine

The split-apply-combine strategy can be thought of as a simplified
map-reduce [Wicl 1] that provides a conceptually simple approach
to operate on data in parallel. It is based on the fundamental
assumption that the data can be partitioned into blocks that can
be analyzed independently. The trajectory is split along the time
axis into M blocks of approximately equal size, T =T /M. One
trajectory block can be viewed as a slice of a trajectory, e.g., for
block &, {(r1(t)7r2(t)7...rN(t))}tkSKtka with 1, frames in the
block. Each block & is analyzed in parallel by applying the function
&/ to the frames in each block. Finally, the results from all blocks
are gathered and combined.

The advantage of this approach is its simplicity. Many typical
analysis tasks are based on calculations of time series from single
trajectory frames as in Eq. 1 and it is this calculation that varies
from task to task while the book-keeping and trajectory slicing
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split _prepare()
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combine _conclude()
Fig. 1: High-level view of the split-apply-combine algo-
rithm in PMDA. Steps are labeled with the methods in

pmda.parallel.ParallelAnalysisBase that perform the
corresponding function. Methods in red (_single_frame () and
_conclude ()) must be implemented for every analysis function
because they are not general. The blue method _reduce () must
be implemented unless a simple time series is being calculated. The
_prepare () method is optional and provides a hook to initialize
custom data structures.

is the same. Given a function 7 that performs the single frame
calculation, PMDA provides code to perform the other necessary
steps (Fig. 1).

As explained in more detail later, a class derived
from pmda.parallel.ParallelAnalysisBase encapsu-
lates one trajectory analysis calculation. Individual methods cor-
respond to different steps and in the following (and in Fig. 1) we
will mention the names of the relevant methods to make clear how
PMDA abstracts parallel analysis. The calculation with M parallel
workers is prepared by setting up data structures to hold the final
result (method _prepare () ). The indices for the M trajectory
slices are created in such a way that the number of frames 7; are
balanced and do not differ by more than 1. For each slice or block
k, the single frame analysis function 2/ (_single_frame ())
is sequentially applied to all frames in the slice. The result, A(z),
is reduced, i.e., added to the results for this block. For time series,
A(t) is simply appended to a list to form a partial time series for
the block. More complicated reductions (method _reduce ())
can be implemented, for example, the data may be histogrammed
and added to a partial histogram for the block (as necessary for
the implementation of the parallel RDF Eq. 2).

Implementation

PMDA is written in Python and, through MDAnalysis [GLB " 16],
reads trajectory data from the file system into NumPy arrays
[O1i07], [VDWCV11]. Dask’s delayed () function is used to
build a task graph that is then executed using any of the schedulers
available to Dask [Das16].

MDAnalysis combines a trajectory file (frames of coordinates
that change with time) and a topology file (list of particles, their
names, charges, bonds — all information that does not change with
time) into a Universe (topology, trajectory) object.
Arbitrary selections of particles (often atoms) are made available
as an AtomGroup and the common approach in MDAnalysis is
to work with these objects [GLB " 16]; for instance, all coordinates
of an AtomGroup with N atoms named protein are accessed
as the N x 3 NumPy array protein.positions.
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pmda.parallel.ParallelAnalysisBase is the base
class for defining a split-apply-combine parallel multi frame
analysis in PMDA. It requires a Universe to operate on and
any AtomGroup instances that will be used. A parallel analysis
class must be derived from ParallelAnalysisBase and
at a minimum, must implement the _single_frame (ts,
agroups) and _conclude () methods. The arguments
of _single_frame(ts, agroups) are a MDAnalysis
Timestep instance and a tuple of At omGroup instances so that
the following code could be run (the code is a simplified version
of the current implementation):

1 @delayed

2 def analyze_block (blockslice):

3 result = []

4 for ts in u.trajectory[blockslice]:

5 A = self._single_frame(ts, agroups)
6 result.append (A7)

7 return result

The task graph is constructed by wrapping the above code into
delayed () and appending a delayed instance for each trajectory
slice to a (delayed) list:

7 blocks = delayed([analyze_block (blockslice)

8 for blockslice in slices])
9 results = blocks.compute (x*scheduler_kwargs)

Calling the compute () method of the delayed list object hands
the task graph over to the scheduler, which then executes the graph
on the available Dask workers. For example, the multiprocessing
scheduler can be used to parallelize task graph execution on a
single multiprocessor machine while the distributed scheduler is
used to run on multiple nodes of a HPC cluster. After all workers
have finished, the variable results contains a list of results
from the individual blocks. PMDA actually stores these raw results
as ParallelAnalysisBase._results and leaves it to the
_conclude () method to process the results; this can be as
simple as numpy.hstack (self._results) to generate a
time series by concatenating the individual time series from each
block.

The default _reduce () method appends the results and is
equivalent to line 6. In general, line 6 reads

6 result = self._reduce(result, A)

where variable result should have been properly initialized in
_prepare (). In order to be parallelizable, the _reduce ()
method must be a static method that does not access any class
variables but returns its modified first argument. For example, the
default "append" reduction is

@staticmethod

def _reduce(res, result_single_frame):

res.append (result_single_frame)
return res

In general, the ParallelAnalysisBase controls
access to instance attributes via a context manager
ParallelAnalysisBase.readonly_attributes/().

It sets them to "read-only" for all parallel parts to prevent the
common mistake to set an instance attribute in a parallel task,
which breaks under parallelization as the value of an attribute in
an instance in a parallel process is never communicated back to
the calling process.

Using PMDA

PMDA allows one to perform parallel trajectory analysis with pre-
defined analysis tasks. In addition, it provides a common interface
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that makes it easy to create user-defined parallel analysis modules.
Here, we will introduce some basic usages of PMDA.

Pre-defined Analysis

PMDA contains a growing number of pre-defined
analysis classes that are modeled after functionality in
MDAnalysis.analysis and that can be wused right

away. Current examples are pmda.rms for RMSD analysis,
pmda.contacts for native contacts analysis, pmda.rdf
for radial distribution functions, and pmda.leaflet for the
LeafletFinder analysis tool [MADWB11], [PLK " 18] for the topo-
logical analysis of lipid membranes. While the first three modules
are based on pmda.parallel.ParallelAnalysisBase
as described above and follow the strict split-apply-combine
approach, pmda . leaflet is an example of a more complicated
task-based algorithm that can also easily be implemented with
MDAnalysis and Dask [PLK " 18]. All PMDA classes can be used
in a similar manner to classes in MDAnalysis.analysis,
which makes it easy for users of MDAnalysis to switch to
parallelized versions of the algorithms. One example is the
calculation of the root mean square distance (RMSD) of Cqy
atoms of the protein with pmda . rms.RMSD. An analysis class
object is instantiated with the necessary input data such as the
AtomGroup containing the C, atoms and a reference structure.
To perform the analysis, the run () method is called.

import MDAnalysis as mda

from pmda import rms

# Create a Universe based on simulation topology

# and trajectory
u = mda.Universe (top, trj)
# Select all the C alpha atoms

ca = u.select_atoms ('name CA'")

# Take the initial frame as the reference
u.trajectory[0]

ref = u.select_atoms ('name CA')

# Build the parallel rms object, and run
# t
rmsd =

h 4 workers and 4 blocks.

e analysis witl
rms .RMSD (ca,

ref)
rmsd.run (n_jobs=4, n_blocks=4)
# The results can be accessed in rmsd.rmsd.

print (rmsd. rmsd)

Here the only difference between using the serial version and
the parallel version is that the run () method takes additional
arguments n_jobs and n_blocks, which determine the level
of parallelization. When using the multiprocessing scheduler (the
default), n_jobs is the number of processes to start and typically
the number of blocks n_blocks is set to the number of available
CPU cores. When the distributed scheduler is used, Dask will
automatically learn the number of available Dask worker processes
and n_jobs is meaningless; instead it makes more sense to set
the number of trajectory blocks that are then spread across all
available workers.

User-defined Analysis

PMDA makes it easy to create analysis classes such as the
ones discussed above. If the per-frame analysis can be expressed
as a simple function, then an analysis class can be created
with a factory function. Otherwise, a class has to be derived
from pmda.parallel.ParallelAnalysisBase. Bothap-
proaches are described below.



PMDA - PARALLEL MOLECULAR DYNAMICS ANALYSIS

pmda.custom.AnalysisFromFunction():

PMDA provides helper functions in pmda.custom to rapidly
build a parallel class for users who already have a single frame
function that 1. takes one or more AtomGroup instances as
input, 2. analyzes one frame in a trajectory and returns the result
for this frame. For example, if we already have a function to
calculate the radius of gyration [MM14] of a protein given in
AtomGroup ag, namely ag.radius_of_gyration () (as
available in MDAnalysis), then we can write a simple function
rgyr () that returns for each trajectory frame a tuple containing
the time at the current time step and the value of the radius of
gyration:

import MDAnalysis as mda

u = mda.Universe (top, traj)
protein = u.select_atoms ('protein')

def rgyr(ag):

return (ag.universe.trajectory.time,
ag.radius_of_gyration())
We can wrap rgyr () in the

pmda.custom.AnalysisFromFunction () class instance

factory function to build a parallel version of rgyr () :

import pmda.custom

parallel_rgyr = pmda.custom.AnalysisFromFunction (
rgyr, u, protein)

This new parallel analysis class can be run just as the existing

ones:

parallel_rgyr.run(n_jobs=4, n_blocks=4)

print (parallel_rgyr.results)

The time series of the results is stored in the attribute

parallel_rgyr.results; for our example where each per-

frame result is a tuple (time, Rgyr), the time series is stored

as a T x 2 array that can be plotted with

import matplotlib.pyplot as plt

data = parallel_rgyr.results

plt.plot (datal:, 0] , datal:, 11)
pmda.parallel.ParallelAnalysisBase: For

more general cases, one can write the parallel class with the help of

pmda.parallel.ParallelAnalysisBase, following the

schema in Fig. 1. To build a new analysis class, one should derive

a class from pmda.parallel.ParallelAnalysisBase

that implements

1) the single frame analysis method _single_frame ()

(required),

2) the final results conclusion method _conclude () (re-
quired),

3) the additional preparation method _prepare () (op-
tional),

4) the reduce method for frames within the same block
_reduce () (optional for time series, required for any-
thing else).

As an example, we show how one can build a class to
calculate the radius of gyration of a protein given in At omGroup
protein; of course, in this case the simple approach with
pmda.custom.AnalysisFromFunction () would be eas-
ier.

import numpy as np
from pmda.parallel import ParallelAnalysisBase

class RGYR(ParallelAnalysisBase) :
def _ _init__ (self, protein):
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universe = protein.universe
super (RGYR, self).__init__ (universe,
(protein,))
def _prepare(self):
self.rgyr = None
def _conclude (self):
self.rgyr = np.vstack(self._results)
The _conclude() method reshapes the attribute

self._results, which always holds the results from all
blocks, into a time series. The call signature for method
_single_frame () is fixed and ts must contain the current
MDAnalysis Timestep and agroups must be a tuple of
AtomGroup instances. The current frame number, time and
radius of gyration are returned as the single frame results:

def _single_frame(self, ts, atomgroups):
protein = atomgroups[0]
return (ts.frame, ts.time,

protein.radius_of_gyration())

Because we want to return a time series, it is not nec-
essary to define a _reduce () method. This class can be
used in the same way as the class that we defined with
pmda.custom.AnalysisFromFunction:

parallel_rgyr =

parallel_rgyr.run(n_jobs=4,
print (parallel_rgyr.results)

RGYR (protein)
n_blocks=4)

Performance Evaluation

In order to characterize the performance of PMDA on a typical
HPC machine we performed computational experiments for two
different analysis tasks, the RMSD calculation after optimum
superposition (RMSD) and the water oxygen radial distribution
function (RDF).

For the RMSD task we computed the time series of root mean
square distance after optimum superposition (RMSD) of all 564
C¢, atoms of a protein with the initial coordinates at the first frame
as reference, as implemented in class pmda.rms.RMSD. The
RMSD calculation with optimum superposition was performed
with the fast QCPROT algorithm [The05] as implemented in
MDAnalysis [MADWBI11].

As a second test case we computed the water oxygen-oxygen
radial distribution function (RDF, Eq. 2) in 75 bins up to a cut-off
of 5 A for all 24,239 oxygen atoms in the water molecules in our
test system, using the class pmda.rdf.InterRDF. The RDF
calculation is compute-intensive due to the necessity to calculate
and histogram a large number (&'(N) because of the use of a cut-
off) of distances for each time step; it additionally exemplifies a
non-trivial reduction.

These two common computational tasks differ in their com-
putational cost and represent two different requirements for data
reduction and thus allow us to investigate two distinct use cases.
We investigated a long (9000 frames) and a short trajectory (900
frames) to assess to which degree parallelization remained practi-
cal. The computational experiments were performed in different
scenarios to assess the influence of different Dask schedulers
(multiprocessing and distributed) and the role of the file storage
system (shared Lustre parallel file system and local SSD), as
described below and summarized in Table 1.

Test system, benchmarking environment, and data files

We tested PMDA 0.2.1, MDAnalysis 0.20.0 (development ver-
sion), Dask 1.2.0, and NumPy 1.15.4 under Python 3.6. All
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configuration label file scheduler max max

storage nodes pro-
cesses

Lustre-distributed- Lustre distributed 3 72

3nodes

Lustre-distributed- Lustre distributed 6 72

6nodes

Lustre-multiprocessing ~ Lustre multiprocessing 1 24

SSD-distributed SSD distributed 1 24

SSD-multiprocessing SSD multiprocessing 1 24

TABLE 1: Testing configurations on SDSC Comet. max nodes is
the maximum number of nodes that were tested; the multiprocessing
scheduler is limited to a single node. max processes is the maximum
number of processes or Dask workers that were employed.

packages except PMDA and MDAnalysis were installed with the
conda package manager from the conda-forge channel. PMDA and
MDAnalysis development versions were installed from source in
a conda environment with pip install.

Benchmarks were run on the CPU nodes of XSEDE’s
[TCD*14] SDSC Comet supercomputer, a 2 PFlop/s cluster with
1,944 Intel Haswell Standard Compute Nodes in total. Each
node contains two Intel Xeon CPUs (E5-2680v3, 12 cores, 2.5
GHz) with 24 CPU cores per node, 128 GB DDR4 DRAM
main memory, and a non-blocking fat-tree InfiniBand FDR 56
Gbps node interconnect. All nodes share a Lustre parallel file
system and have access to node-local 320 GB SSD scratch
space. Jobs are run through the SLURM batch queuing system.
Our SLURM submission shell scripts and Python benchmark
scripts for SDSC Comet are available in the repository https:
//github.com/Becksteinlab/scipy2019-pmda-data and are archived
under DOI 10.5281/zenodo.3228422.

The test data files consist of a topology file
YiiP_system.pdb (with N = 111,815 atoms) and
two trajectory files YiiP_system_9ns_center.xtc
(Gromacs XTC format, T = 900 frames) and

YiiP_system_90ns_center.xtc (Gromacs XTC format,
T = 9000 frames) of the membrane protein YiiP in a lipid bilayer
together with water and ions. The test trajectories are made
available on figshare at DOI 10.6084/m9.figshare.8202149.

We tested different combinations of Dask schedulers (dis-
tributed, multiprocessing) with different means to read the trajec-
tory data (either from the shared Lustre parallel file system or from
local SSD) as shown in Table 1. Using either the multiprocessing
scheduler or the SSD restrict runs to a single node (maximum 24
CPU cores). With distributed (and Lustre) we tested fully utilizing
all cores on a node and also only occupying half the available
cores, while doubling the total number of nodes. In all cases the
trajectory were split in as many blocks as there were available
processes or Dask workers. We performed five independent repeat
runs for all scenarios in Table 1 and plotted the mean of the
reported timing quantity together with the standard deviation from
the mean to indicate the variance of the runs.

Measured timing quantities

The ParallelAnalysisBase class collects detailed timing
information for all blocks and all frames and makes these data
available in the attribute ParallelAnalysisBase.timing:
We measured the time PP for _prepare (), the time t,?’a“
that each task k waits until it is executed by the scheduler, the
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Fig. 2: Strong scaling performance of the RMSD analysis task with
short (900 frames) and long (9000) frames trajectories on SDSC
Comet, where a single node contains 24 cores. The total time to
completion 1! was measured for different testing configurations
(Table 1). A and D: 1" as a function of processes or Dask workers,
i.e., the number of CPU cores that were actually used. The number of
trajectory blocks was the same as the number of CPU cores. B and E:
efficiency E. The ideal case is E = 1. C and F: speed-up S. The dashed
line represents ideal strong scaling S(M) = M. Points represent the
mean over five repeats with the standard deviation shown as error
bars.

time 1JMVere o create a new Universe for each Dask task
(which includes opening the shared trajectory and topology files
and loading the topology into memory), the time t,g? to read each
frame ¢ in each block k from disk into memory, the time t,:?mpme to
perform the computation in _single_frame () and reduction
in _reduce (), the time t,§°“°1“de to perform the final processing
of all data in _conclude (), and the total wall time to solution
ttotal'

We analyzed the total time to completion as a function of
the number of CPU cores, which was equal to the number of
trajectory blocks, so that each block could be processed in parallel.
We quantified the strong scaling behavior by calculating the speed-
up for running on M CPU cores with M parallel Dask tasks as
S(M) = °@l(1) /r°@ (M), where 1°%!(1) is the performance of
the PMDA code using the serial scheduler. The efficiency was
calculated as E(M) = S(M) /M. The errors of these quantities were
derived by the standard error propagation.

To gain better insight into the performance-limiting steps in
our algorithm (Fig. 1) we plotted the maximum times over all
ranks because the overall time to completion cannot be faster than
the slowest parallel process. For example, for the read I/O time
we calculated the total read I/O time for each rank k as t,I(/O =
Z?‘:J;Z * z,{{? and then reported max; z//°.

RMSD analysis task

The parallelized RMSD analysis in pmda.rms.RMSD scaled
well only to about half a node (12 cores), as shown in Fig. 2 A, D,
regardless of the length of the trajectory. The efficiency dropped
below 0.8 (Fig. 2 B, E) and the maximum achievable speed-up
remained below 10 for the short trajectory (Fig. 2 C) and below
20 for the long one (Fig. 2 F). Overall, using the multiprocessing
scheduler and either Lustre or SSD gave the best performance and
shortest time to solution. The distributed scheduler with SSD gave
widely variable results as seen by large standard deviations over
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Fig. 3: Detailed per-task timing analysis for parallel components of
RMSD analysis task. Individual times per task were measured for
different testing configurations (Table 1). A and D: Maximum waiting
time for the task to be executed by the Dask scheduler. B and E:
Maximum total compute time per task. C and F: Maximum total read
I/0 time per task. Points represent the mean over five repeats with the
standard deviation shown as error bars.

multiple repeats. It still performed better than when the Lustre file
system was used but overall, for a single node, the multiprocessing
scheduler always gave better performance with less variation in
run time. These results were consistent with findings in our earlier
pilot study where we had looked at the RMSD task with Dask
and had found that multiprocessing with both SSD and Lustre had
given good single node performance but, using distributed, had
not scaled well beyond a single SDSC Comet node [KPJB17].

A detailed look at the maximum times (Fig. 3) that the Dask
worker processes spent on waiting to be executed, performing
the RMSD calculation with data in memory, and reading the
trajectory frame data from the file into memory showed that the
waiting time (Fig. 3 A, D) either increased from about 0.02
s to 0.1 s for multiprocessing or was roughly a constant 1 s
for distributed (on Lustre). For reasons that were not clear, the
distributed scheduler with SSD had on average the largest wait
times, with large fluctuations, ranging from 0.1 s to 10 s (red lines
in Fig. 3 A, D). The computation itself scaled very well (Fig.
3 B, E) with only small variations, indicating that split-apply-
combine is a robust approach to parallelization, once the data are
in memory. The reading time scaled fairly well but exhibited some
variation beyond a single node (24 cores) and an unexplained
decline in performance for the longer trajectory, as seen in Fig.
3 C, E. The read I/O results indicated that both Lustre and SSD
can perform equally well. Beyond 12 cores, the waiting time
started approaching the time for read I/O (compute was an order of
magnitude less than I/O) and hence parallel speed-up was limited
by the wait time.

The second major component that limited scaling performance
was the time to create the Universe data structure (Fig. 4 A, D).
The time to read the topology and open the trajectory file on the
shared file system typically increased from 1 s to about 2 s and
thus, for the given total trajectory lengths, also became comparable
to the time for read I/0. The other components (prepare and
conclude, see Fig. 4) remained negligible with times below 103
S.

The parallelizable fraction of the workload consisted of the
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Fig. 4: Detailed timing analysis for other components of the RMSD
analysis task. Individual times per task were measured for different
testing configurations (Table 1). A and D: Maximum time for a task to
load the Universe. B and E: Time tP"P¥° to execute _prepare ().
C and F: Time t,f”””l”de to execute _conclude (). Points represent
the mean over five repeats with the standard deviation shown as error
bars.
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Fig. 5: Fraction of the total run time taken by individual steps
in the parallel RMSD calculation for distributed on up to three
nodes (Lustre-distributed-3nodes). Compute (green) and read 1/O
(red) represent the parallelizable fraction of the program; all other
components are effectively serial. A Trajectory with 900 frames. B
Trajectory with 9000 frames.

compute and read I/O steps. Because this fraction was relatively
small and was dominated by the wait time from the Dask scheduler
and the time to initialize the Universe data structure (Fig. 5), the
overall performance gain by parallelization remained modest, as
explained by Amdahl’s law [Amd67]. Thus, for a highly optimized
and fast computation such as the RMSD calculation, the best
performance (speed-up on the order of 10 fold) could already
be achieved on the equivalent of a modern workstation. The
multiprocessing scheduler seemed to be the more consistent and
better performing choice in this scenario; therefore PMDA defaults
to multiprocessing. Performance would likely improve with longer
trajectories because the "fixed" serial costs (waiting, Universe
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Points represent the mean over five repeats with the standard deviation
shown as error bars.

creation) would decrease in relevance to the time spent on com-
putation and data ingestion (see Fig. 5 B), which benefit from
parallelization [Gus88]. However, all things considered, a single
node seemed sufficient to accelerate RMSD analysis.

RDF analysis task

Unlike the RMSD analysis task, the parallelized RDF analysis in
pmda.rdf.InterRDF showed decreasing total time to solution
up to the highest number of CPU cores tested (see Fig. 6 A, D).
The efficiency on a single node remained above 0.6 for almost
all cases (Fig. 6 B, E) and remained above 0.6 for the best
case (distributed on Lustre and half-filling of nodes for the long
trajectory), up to 3 nodes (72 cores, Fig. 6 E). Even when filling
complete nodes, the efficiency for the long trajectory remained
above 0.5 (Fig. 6 E). Consequently, a sizable speed-up could
be maintained that approached 40 fold in the best case (Fig. 6
F), which cut down the time to solution from about 40 min to
under 1 min. On a single node, all approaches performed similarly
well, with the distributed scheduler now having a slight edge over
multiprocessing (Fig. 6), with the exception of the combination of
distributed with the SSD, which for unknown reasons performed
much worse than everything else (similar to the situation observed
for the RMSD case).

The detailed analysis of the individual components in Fig.
7 clearly showed that the RDF analysis task required much
more computational effort than the RMSD task and that it was
dominated by the compute component (Fig. 8), which scaled
very well to the highest core numbers (Fig. 7 B, E). However,
multiprocessing and especially distributed with SSD took longer
for the computational part at > 8 cores (one third of a single node),
indicating that in these cases some sort of competition reduced
performance. For comparison, serial computation required about
250 s while read I/O required less than 10 s, and this ratio was
approximately maintained as the read I/O also scaled reasonably
well (Fig. 7 C, F) Although the variance increased markedly when
multiple nodes were included such as when using six half-filled
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Fig. 7: Detailed per-task timing analysis for parallel components of
the RDF analysis task. Individual times per task were measured for
different testing configurations (Table 1). A and D: Maximum waiting
time for the task to be executed by the Dask scheduler. B and E:
Maximum total compute time per task. C and F: Maximum total read
I/0 time per task. Points represent the mean over five repeats with the
standard deviation shown as error bars.

nodes, this effect did not strongly impact overall performance
because 7, "¢ > V0. The differences between using all cores
on a node compared to only using half the cores on each node
were small but only using half a node was consistently better,
especially in the compute time, and hence the overall performance
of the latter approach was better. For the shorter trajectory, the
wait time was a factor in reducing performance at higher core
numbers (Fig. 7 A). The other components (t,?"i"erse < 2 s, pPrepare
<3x1073s, t,f"“d“de < 4x107* s) were similar or better (i.e.,
shorter) than the ones shown for the RMSD task in Fig. 4 and are
not shown; only the time to set up the Universe played a role in
reducing the scaling performance in the Lustre-distributed-3nodes
scenario at 60 or more CPU cores.

In summary, the performance increase for a compute-intensive
task such as RDF was sizable and, although not extremely effi-
cient, was large enough (about 30-40) to justify the use of about
100 cores on a HPC supercomputer. Because scaling seemed
mostly limited by constant costs such as the scheduling wait time
(see Fig. 8), processing longer trajectories, for which more work
has to be done in the parallelizable compute and read I/O steps,
should improve the scaling behavior [Gus88].

Conclusions

The PMDA Python package provides a framework to parallelize
analysis of MD trajectories with a simple split-apply-combine
approach by combining Dask with MDAnalysis. Although still
in early development, it provides useful functionality for users
to speed up analysis, ranging from a growing library of in-
cluded tools to different approaches for users to write their
own parallel analysis. In simple cases, just wrapping a user
supplied function is enough to immediately use PMDA but
the package also provides a documented API to derive from
the pmda.parallel.ParallelAnalysisBase class. We
showed that performance depends on the type of analysis that
is being performed. Compute-intensive tasks such as the RDF
calculation can show good strong scaling up to about a hundred
cores on a typical supercomputer and speeding up the time to
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Fig. 8: Fraction of the total run time taken by individual steps in the
parallel RDF calculation for distributed on up to three nodes (Lustre-
distributed-3nodes). Compute (green) and read I/O (red) represent
the parallelizable fraction of the program; all other components are
effectively serial. A Trajectory with 900 frames. B Trajectory with
9000 frames.

solution from hours in serial to minutes in parallel should make
this an attractive solution for many users. For other analysis tasks
such as the RMSD calculation and other similar ones (e.g., simple
distance calculations), a single multi-core workstation seems suf-
ficient to achieve speed-ups on the order of 10 and HPC resources
would not be useful. But thanks to the design of Dask, running
a PMDA analysis on a laptop, workstation, or supercomputer
requires absolutely no changes in the code and users are free to
immediately choose the computational resource that best fits their

purpose.

Code availability and development process

PMDA is available in source form under the GNU General Public
License v2 from the GitHub repository MDAnalysis/pmda, and as
a PyPi package and conda package (via the conda-forge channel).
Python 2.7 and Python > 3.5 are fully supported and tested. The
package uses semantic versioning to make it easy for users to
judge the impact of upgrading. The development process uses
continuous integration (Travis CI): extensive tests are run on all
commits and pull requests via pytest, resulting in a current code
coverage of 97% and documentation is automatically generated
by Sphinx and published as GitHub pages. Users are supported
through the community mailing list (Google group) and the
GitHub issue tracker.
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