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SPORCO: A Python package for standard and
convolutional sparse representations

Brendt Wohlberg‡∗

F

Abstract—SParse Optimization Research COde (SPORCO) is an open-source
Python package for solving optimization problems with sparsity-inducing regu-
larization, consisting primarily of sparse coding and dictionary learning, for both
standard and convolutional forms of sparse representation. In the current ver-
sion, all optimization problems are solved within the Alternating Direction Method
of Multipliers (ADMM) framework. SPORCO was developed for applications in
signal and image processing, but is also expected to be useful for problems in
computer vision, statistics, and machine learning.

Index Terms—sparse representations, convolutional sparse representations,
sparse coding, convolutional sparse coding, dictionary learning, convolutional
dictionary learning, alternating direction method of multipliers

Introduction

SPORCO is an open-source Python package for solving inverse
problems with sparsity-inducing regularization [MBP14]. This
type of regularization has become one of the leading techniques
in signal and image processing, with applications including image
denoising, inpainting, deconvolution, superresolution, and com-
pressed sensing, to name only a few. It is also a prominent
method in machine learning and computer vision, with applica-
tions including image classification, video background modeling,
collaborative filtering, and genomic data analysis, and is widely
used in statistics as a regression technique.

SPORCO was initially a Matlab library, but the implementa-
tion language was switched to Python for a number of reasons,
including (i) the substantial cost of Matlab licenses (particularly
in an environment that does not qualify for an academic discount),
and the difficulty of running large scale experiments on multiple
hosts with a limited supply of toolbox licenses, (ii) the greater
maintainability and flexibility of the object-oriented design possi-
ble in Python, (iii) the flexibility provided by NumPy in indexing
arrays of arbitrary numbers of dimensions (essentially impossible
in Matlab), and (iv) the superiority of Python as a general-purpose
programming language.

SPORCO supports a variety of inverse problems, including
Total Variation [ROF92] [All92] denoising and deconvolution,
and Robust PCA [CCS10], but the primary focus is on sparse
coding and dictionary learning, for solving problems with sparse
representations [MBP14]. Both standard and convolutional forms
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Fig. 1: Independent sparse coding of overlapping blocks
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Fig. 2: Convolutional sparse coding of an entire signal

of sparse representations are supported. In the standard form the
dictionary is a matrix, which limits the sizes of signals, images,
etc. that can be directly represented; the usual strategy is to
compute independent representations for a set of overlapping
blocks, as illustrated in Figure 1. In the convolutional form
[LS99][ZKTF10][Woh16d] the dictionary is a set of linear filters,
making it feasible to directly represent an entire signal or image.
The convolutional form is equivalent to sparse coding with a
structured dictionary constructed from translations of a smaller
generating dictionary, as illustrated in Figure 2. The support for
the convolutional form is one of the major strengths of SPORCO
since it is the only Python package to provide such a breadth of
options for convolutional sparse coding and dictionary learning.
Some features are not available in any other open-source package,
including support for representation of multi-channel images (e.g.
RGB color images) [Woh16b], and representation of arrays of
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arbitrary numbers of dimensions, allowing application to one-
dimensional signals, images, and video and volumetric data.

In the current version, all optimization problems are solved
within the Alternating Direction Method of Multipliers (ADMM)
[BPC+10] framework, which is implemented as flexible class
hierarchy designed to minimize the additional code that has to
be written to solve a specific problem. This design also simplifies
the process of deriving algorithms for solving variants of existing
problems, in some cases only requiring overriding one or two
methods, involving a few additional lines of code.

The remainder of this paper provides a more detailed overview
of the SPORCO library. A brief introduction to the ADMM opti-
mization approach is followed by a discussion of the design of the
classes that implement it. This is followed by a discussion of both
standard and convolutional forms of sparse coding and dictionary
learning, and some comments on the selection of parameters for
the inverse problems supported by SPORCO. The next section
addresses the installation of SPORCO, and is followed by some
usage examples. The remaining sections consist of a discussion of
the derivation of extensions of supported problems, a list of useful
support modules in SPORCO, and closing remarks.

ADMM

The ADMM [BPC+10] framework addresses optimization prob-
lems of the form

argminx,y f (x)+g(y) such that Ax+By = c . (1)

This general problem is solved by iterating over the following
three update steps:

x( j+1) = argminx f (x)+
ρ

2

∥∥∥Ax−
(
−By( j)+ c−u( j)

)∥∥∥2

2

y( j+1) = argminy g(y)+
ρ

2

∥∥∥By−
(
−Ax( j+1)+ c−u( j)

)∥∥∥2

2

u( j+1) = u( j)+Ax( j+1)+By( j+1)− c

which we will refer to as the x, y, and u, steps respectively.
The feasibility conditions (see Sec. 3.3 [BPC+10]) for the

ADMM problem are

Ax∗+By∗− c = 0

0 ∈ ∂ f (x∗)+ρ
−1AT u∗

0 ∈ ∂g(u∗)+ρ
−1BT u∗ ,

where ∂ denotes the subdifferential operator. It can be shown
that the last feasibility condition above is always satisfied by the
solution of the y step. The primal and dual residuals [BPC+10]

r = Ax( j+1)+By( j+1)− c

s = ρAT B(y( j+1)−y( j)) ,

which can be derived from the feasibility conditions, provide a
convenient measure of convergence, and can be used to define
algorithm stopping criteria. The u step can be written in terms of
the primal residual as

u( j+1) = u( j)+ r( j+1) .

It is often preferable to use normalized versions of these residuals
[Woh17], obtained by dividing the definitions above by their
corresponding normalization factors

rn = max(‖Ax( j+1)‖2,‖By( j+1)‖2,‖c‖2)

sn = ρ‖AT u( j+1)‖2 .

These residuals can also be used in a heuristic scheme [Woh17]
for selecting the critical penalty parameter ρ .

SPORCO ADMM Classes

SPORCO provides a flexible set of classes for solving problems
within the ADMM framework. All ADMM algorithms are derived
from class admm.admm.ADMM, which provides much of the
infrastructure required for solving a problem, so that the user need
only override methods that define the constraint components A,
B, and c, and that compute the x and y steps. This infrastructure
includes the computation of the primal and dual residuals, which
are used as convergence measures on which termination of the
iterations can be based.

These residuals are also used within the heuristic scheme,
referred to above for, automatically setting the penalty pa-
rameter. This scheme is controlled by the AutoRho entry in
the algorithm options dictionary object that is used to spec-
ify algorithm options and parameters. For example, to en-
able or disable it, set opt['AutoRho', 'Enabled'] to
True or False respectively, where opt is an instance of
admm.admm.ADMM.Options or one of its derived classes. It
should be emphasized that this method is not always successful,
and can result in oscillations or divergence of the optimization.
The scheme is enabled by default for classes for which it is
expected to give reasonable performance, and disabled for those
for which it is not, but these default settings should not be
considered to be particularly reliable, and the user is advised to
explicitly select whether the method is enabled to disabled.

Additional class attributes and methods can be defined to
customize the calculation of diagnostic information, such as the
functional value, at each iteration. The SPORCO documentation
includes a detailed description of the required and optional meth-
ods to be overridden in defining a class for solving a specific
optimization problem.

The admm.admm module also includes classes that are de-
rived from admm.admm.ADMM to specialize to less general
cases; for example, class admm.admm.ADMMEqual assumes
that A = I, B =−I, and c = 0, which is a very frequently occurring
case, allowing derived classes to avoid overriding methods that
specify the constraint. The most complex partial specialization
is admm.admm.ADMMTwoBlockCnstrnt, which implements
the commonly-occurring ADMM problem form with a block-
structured y variable,

argminx,y0,y1
f (x)+g0(y0)+g0(y1)

such that
(

A0
A1

)
x−

(
y0
y1

)
=

(
c0
c1

)
,

for solving problems that have the form

argminx f (x)+g0(A0x)+g1(A1x)

prior to variable splitting. The block components of the y variable
are concatenated into a single NumPy array, with access to the
individual components provided by methods block_sep0 and
block_sep1.

Defining new classes derived from admm.admm.ADMM or
one of its partial specializations provides complete flexibility in
constructing a new ADMM algorithm, while reducing the amount
of code that has to be written compared with implementing the
entire ADMM algorithm from scratch. When a new ADMM
algorithm is closely related to an existing algorithm, it is often

http://sporco.rtfd.io/en/latest/admm/admm.html
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much easier to derived the new class from that of the existing
algorithm, as described in the section Extending SPORCO.

Sparse Coding

Sparse coding in SPORCO is based on the Basis Pursuit DeNois-
ing (BPDN) problem [CDS98]

argminX (1/2)‖DX−S‖2
F +λ‖X‖1 ,

were D is the dictionary, S is the signal matrix, each column of
which is a distinct signal, X is the sparse representation, and
λ is the regularization parameter controlling the sparsity of the
solution. BPDN is solved via the equivalent ADMM problem

argminX (1/2)‖DX−S‖2
F +λ‖Y‖1 such that X = Y .

This algorithm is effective because the Y step can be solved in
closed form, and is computationally relatively cheap. The main
computational cost is in solving the X step, which involves solving
the potentially-large linear system

(DT D+ρI)X = DT S+ρ(Y −U) .

SPORCO solves this system efficiently by precomputing an LU
factorization of (DT D+ρI) which enables a rapid direct-method
solution at every iteration (see Sec. 4.2.3 in [BPC+10]). In
addition, if (DDT + ρI) is smaller than (DT D+ ρI), the matrix
inversion lemma is used to reduce the size of the system that is
actually solved (see Sec. 4.2.4 in [BPC+10]).

The solution of the BPDN problem is implemented by class
admm.bpdn.BPDN. A number of variations on this problem are
supported by other classes in module admm.bpdn.

Dictionary Learning

Dictionary learning is based on the problem

argminD,X (1/2)‖DX−S‖2
F +λ‖X‖1 s.t ‖dm‖2 = 1 ,

which is solved by alternating between a sparse coding stage, as
above, and a constrained dictionary update obtained by solving the
problem

argminD(1/2)‖DX−S‖2
2 s.t ‖dm‖2 = 1 .

This approach is implemented by class
admm.bpdndl.DictLearn. An unusual feature of this
dictionary learning algorithm is the adoption from convolutional
dictionary learning [BEL13] [Woh16d] [GCW17] of the very
effective strategy of alternating between a single step of each of
the sparse coding and dictionary update algorithms. To the best
of this author’s knowledge, this strategy has not previously been
applied to standard (non-convolutional) dictionary learning.

Convolutional Sparse Coding

Convolutional sparse coding (CSC) is based on a convolutional
form of BPDN, referred to as Convolutional BPDN (CBPDN)
[Woh16d]

argmin{xm}
1
2

∥∥∥∥∑
m

dm ∗xm− s
∥∥∥∥2

2
+λ ∑

m
‖xm‖1 ,

which is implemented by class admm.cbpdn.ConvBPDN. Mod-
ule admm.cbpdn also contains a number of other classes im-
plementing variations on this basic form. As in the case of
standard BPDN, the main computational cost of this algorithm

is in solving the x step, which can be solved very efficiently
by exploiting the Sherman-Morrison formula [Woh14]. SPORCO
provides support for solving the basic form above, as well as a
number of variants, including one with a gradient penalty, and two
different approaches for solving a variant with a spatial mask W
[HHW15][Woh16a]

argmin{xm}
1
2

∥∥∥∥W
(

∑
m

dm ∗xm− s
)∥∥∥∥2

2
+λ ∑

m
‖xm‖1 .

SPORCO also supports two different methods for convolutional
sparse coding of multi-channel (e.g. color) images [Woh16b]. The
one represents a multi-channel input with channels sc with single-
channel dictionary filters dm and multi-channel coefficient maps
xc,m,

argmin{xc,m}
1
2 ∑

c

∥∥∥∥∑
m

dm ∗xc,m− sc

∥∥∥∥2

2
+λ ∑

c
∑
m
‖xc,m‖1 ,

and the other uses multi-channel dictionary filters dc,m and single-
channel coefficient maps xm,

argmin{xm}
1
2 ∑

c

∥∥∥∥∑
m

dc,m ∗xm− sc

∥∥∥∥2

2
+λ ∑

m
‖xm‖1 .

In the former case the representation of each channel
is completely independent unless they are coupled via an
`2,1 norm term [Woh16b], which is supported by class
admm.cbpdn.ConvBPDNJoint.

An important issue that has received surprisingly little atten-
tion in the literature is the need to explicitly consider the represen-
tation of the smooth/low frequency image component when con-
structing convolutional sparse representations. If this component is
not properly taken into account, convolutional sparse representa-
tions tend to give poor results. As briefly mentioned in [Woh16d]
(Sec. I), the simplest approach is to lowpass filter the image to be
represented, computing the sparse representation on the highpass
residual. In this approach the lowpass component forms part of the
complete image representation, and should, of course, be added
to the reconstruction from the sparse representation in order to
reconstruct the image being represented. SPORCO supports this
separation of an image into lowpass/highpass components via
the function util.tikhonov_filter, which computes the
lowpass component of s as the solution of the problem

argminx (1/2)‖x− s‖2
2 +(λ/2)∑

i
‖Gix‖2

2 ,

where Gi is an operator computing the derivative along axis i of
the array represented as vector x, and λ is a parameter controlling
the amount of smoothing. In some cases it is not feasible to
handle the lowpass component via such a pre-processing strategy,
making it necessary to include the lowpass component in the CSC
optimization problem itself. The simplest approach to doing so
is to append an impulse filter to the dictionary and include a
gradient regularization term on corresponding coefficient map in
the functional [Woh16c] (Sec. 3). This approach is supported by
class admm.cbpdn.ConvBPDNGradReg, the use of which is
demonstrated in section Removal of Impulse Noise via CSC.

Convolutional Dictionary Learning

Convolutional dictionary learning is based on the problem

argmin{dm},{xk,m}
1
2 ∑

k

∥∥∥∥∑
m

dm ∗xk,m− sk

∥∥∥∥2

2
+λ ∑

k
∑
m
‖xk,m‖1

s.t dm ∈C ,
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where C is the feasible set, consisting of filters with unit norm and
constrained support [Woh16d]. It is solved by alternating between
a convolutional sparse coding stage, as described in the previous
section, and a constrained dictionary update obtained by solving
the problem

argmin{dm}
1
2 ∑

k

∥∥∥∥∑
m

dm ∗xk,m− sk

∥∥∥∥2

2
s.t. dm ∈C .

This approach is implemented by class ConvBPDNDictLearn
in module admm.cbpdndl. Dictionary learning with a spatial
mask W ,

argmin{dm},{xk,m}
1
2 ∑

k

∥∥∥∥W
(

∑
m

dm ∗xk,m− sk

)∥∥∥∥2

2
+λ ∑

k
∑
m
‖xk,m‖1

s.t dm ∈C

is also supported by class ConvBPDNMaskDcplDictLearn in
module admm.cbpdndl.

Convolutional Representations

SPORCO convolutional representations are stored within NumPy
arrays of dimN + 3 dimensions, where dimN is the number of
spatial/temporal dimensions in the data to be represented. This
value defaults to 2 (i.e. images), but can be set to any other
reasonable value, such as 1 (i.e. one-dimensional signals) or 3
(video or volumetric data). The roles of the axes in these multi-
dimensional arrays are required to follow a fixed order: first
spatial/temporal axes, then an axis for multiple channels (singleton
in the case of single-channel data), then an axis for multiple input
signals (singleton in the case of only one input signal), and finally
the axis corresponding to the index of the filters in the dictionary.

Sparse Coding

For the convenience of the user, the D (dictionary) and S
(signal) arrays provided to the convolutional sparse coding
classes need not follow this strict format, but they are in-
ternally reshaped to this format for computational efficiency.
This internal reshaping is largely transparent to the user,
but must be taken into account when passing weighting ar-
rays to optimization classes (e.g. option L1Weight for class
admm.cbpdn.ConvBPDN). When performing the reshaping
into internal array layout, it is necessary to infer the intended
roles of the axes of the input arrays, which is performed by class
admm.cbpdn.ConvRepIndexing (this class is expected to be
moved to a different module in a future version of SPORCO). The
inference rules, which are described in detail in the documenta-
tion for class admm.cbpdn.ConvRepIndexing, are relatively
complex, depending on both the number of dimensions in the D
and S arrays, and on parameters dimK and dimN.

Dictionary Update

The handling of convolutional representations by the dictionary
update classes in module admm.ccmod are similar to those for
sparse coding, the primary difference being the the dictionary
update classes expect that the sparse representation inputs X are
already in the standard layout as described above since they are
usually obtained as the output of one of the sparse coding classes,
and therefore already have the required layout. The inference
of internal dimensions for these classes is handled by class
admm.ccmod.ConvRepIndexing (which is also expected to
be moved to a different module in a future version of SPORCO).

Problem Parameters

Most of the inverse problems supported by SPORCO have at
least one problem parameter (e.g. regularization parameter λ in
the BPDN and CBPDN problems) that determines the balance
between the different terms in the functional to be minimized. Of
these, the only problem that has a relatively reliable default value
for its parameter is RPCA (see class admm.rpca.RobustPCA).
Most of the classes implementing BPDN and CBPDN problems
do have default values for regularization parameter λ , but these
defaults should not be expected to provide even close to optimal
performance for specific applications, and may be removed in
future versions.

SPORCO does not support any statistical parameter esti-
mation techniques such as GCV [GHW79] or SURE [Ste81],
but the grid search function util.grid_search can be
very helpful in selecting problem parameters when a suitable
data set with ground truth is available. This function effi-
ciently evaluates a user-specified performance measure, in par-
allel, over a single- or multi-dimensional grid sampling the pa-
rameter space. Usage of this function is illustrated in the ex-
ample scripts examples/stdsparse/demo_bpdn.py and
examples/stdsparse/demo_bpdnjnt.py, which "cheat"
by evaluating performance by using the ground truth for the actual
problem being solved. In a more realistic setting, one would
optimize the parameters using the ground truth for a separate set
of data with the same properties as those of the data for the test
problem.

Installing SPORCO

The primary requirements for SPORCO are Python itself (version
2.7 or 3.x), and modules numpy, scipy, future, pyfftw, and mat-
plotlib. Module numexpr is not required, but some functions will
be faster if it is installed. If module mpldatacursor is installed,
plot.plot and plot.imview will support the data cursor
that it provides. Additional information on the requirements are
provided in the installation instructions.

SPORCO is available on GitHub and can be installed via pip:

pip install sporco

SPORCO can also be installed from source, either from the de-
velopment version from GitHub, or from a release source package
downloaded from PyPI.

To install the development version from GitHub do

git clone https://github.com/bwohlberg/sporco.git

followed by

cd sporco
python setup.py build
python setup.py test
python setup.py install

The install command will usually have to be performed with root
permissions, e.g. on Ubuntu Linux

sudo python setup.py install

The procedure for installing from a source package downloaded
from PyPI is similar.

A summary of the most significant changes between SPORCO
releases can be found in the CHANGES.rst file. It is strongly
recommended to consult this summary when updating from a
previous version.

http://www.numpy.org
https://www.scipy.org
http://python-future.org
https://hgomersall.github.io/pyFFTW
http://matplotlib.org
http://matplotlib.org
https://github.com/pydata/numexpr
https://github.com/joferkington/mpldatacursor
http://sporco.rtfd.io/en/latest/install.html
https://github.com/bwohlberg/sporco
https://github.com/bwohlberg/sporco
https://pypi.python.org/pypi/sporco/
https://github.com/bwohlberg/sporco
https://pypi.python.org/pypi/sporco/
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SPORCO includes a large number of usage examples, some
of which make use of a set of standard test images, which can be
installed using the sporco_get_images script. To download
these images from the root directory of the source distribution (i.e.
prior to installation) do

bin/sporco_get_images --libdest

after setting the PYTHONPATH environment variable to point to
the root directory of the source distribution; for example, in a
bash shell

export PYTHONPATH=$PYTHONPATH:`pwd`

from the root directory of the package. To download the images
as part of a package that has already been installed, do

sporco_get_images --libdest

which will usually have to be performed with root privileges.

Using SPORCO

The simplest way to use SPORCO is to make use of one of
the many existing classes for solving problems that are already
supported, but SPORCO is also designed to be easy to extend
to solve custom problems, in some cases requiring only a few
lines of additional code to extend an existing class to solve a
new problem. This latter, more advanced usage is described in the
section Extending SPORCO.

Detailed documentation is available. The distribution includes
a large number of example scripts and a selection of Jupyter
notebook demos, which can be viewed online via nbviewer, or
run interactively via mybinder.

A Simple Usage Example

Each optimization algorithm is implemented as a separate class.
Solving a problem is straightforward, as illustrated in the follow-
ing example, which assumes that we wish to solve the BPDN
problem

argminx (1/2)‖Dx− s‖2
F +λ‖x‖1

for a given dictionary D and signal vector s, represented by NumPy
arrays D and s respectively. After importing the appropriate
modules

import numpy as np
from sporco.admm import bpdn

we construct a synthetic problem consisting of a random dictio-
nary and a test signal that is generated so that it has a very sparse
representation, x0, on that dictionary

np.random.seed(12345)
D = np.random.randn(8, 16)
x0 = np.zeros((16, 1))
x0[[3,11]] = np.random.randn(2,1)
s = D.dot(x0)

Now we create an object representing the desired algorithm
options

opt = bpdn.BPDN.Options({'Verbose' : True,
'MaxMainIter' : 500,
'RelStopTol' : 1e-6})

initialize the solver object

lmbda = 1e-2
b = bpdn.BPDN(D, s, lmbda, opt)

and call the solve method

x = b.solve()

leaving the result in NumPy array x. Since the optimizer objects
retain algorithm state, calling solve again gives a warm start on
an additional set of iterations for solving the same problem (e.g. if
the first solve terminated because it reached the maximum number
of iterations, but the desired solution accuracy was not reached).

Removal of Impulse Noise via CSC

We now consider a more detailed and realistic usage exam-
ple, based on using CSC to remove impulse noise from a
color image. First we need to import some modules, including
print_function for Python 2/3 compatibility, NumPy, and a
number of modules from SPORCO:

from __future__ import print_function

import numpy as np
from scipy.misc import imsave

from sporco import util
from sporco import plot
from sporco import metric
from sporco.admm import cbpdn

Boundary artifacts are handled by performing a symmetric exten-
sion on the image to be denoised and then cropping the result to the
original image support. This approach is simpler than the boundary
handling strategies described in [HHW15] and [Woh16a], and for
many problems gives results of comparable quality. The functions
defined here implement symmetric extension and cropping of
images.

def pad(x, n=8):

if x.ndim == 2:
return np.pad(x, n, mode='symmetric')

else:
return np.pad(x, ((n, n), (n, n), (0, 0)),

mode='symmetric')

def crop(x, n=8):

return x[n:-n, n:-n]

Now we load a reference image (see the discussion on the
script for downloading standard test images in section Installing
SPORCO), and corrupt it with 33% salt and pepper noise. (The
call to np.random.seed ensures that the pseudo-random noise
is reproducible.)

img = util.ExampleImages().image('standard',
'monarch.png', zoom=0.5, scaled=True,
idxexp=np.s_[:, 160:672])

np.random.seed(12345)
imgn = util.spnoise(img, 0.33)

We use a color dictionary, as described in [Woh16b]. The impulse
denoising problem is solved by appending some additional filters
to the learned dictionary D0, which is one of those distributed
with SPORCO. The first of these additional components is a set of
three impulse filters, one per color channel, that will represent the
impulse noise, and the second is an identical set of impulse filters
that will represent the low frequency image components when
used together with a gradient penalty on the coefficient maps, as
discussed below.

http://sporco.rtfd.io
https://nbviewer.jupyter.org/github/bwohlberg/sporco/blob/master/index.ipynb
http://mybinder.org/repo/bwohlberg/sporco
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D0 = util.convdicts()['RGB:8x8x3x64']
Di = np.zeros(D0.shape[0:2] + (3, 3))
np.fill_diagonal(Di[0, 0], 1.0)
D = np.concatenate((Di, Di, D0), axis=3)

The problem is solved using class ConvBPDNGradReg in mod-
ule admm.cbpdn, which implements the form of CBPDN with
an additional gradient regularization term,

argmin{xm}
1
2

∥∥∥∥∑
m

dm ∗xm− s
∥∥∥∥2

2
+λ ∑

m
‖xm‖1 +

µ

2 ∑
i

∑
m
‖Gixm‖2

2

where Gi is an operator computing the derivative along index i,
as described in [Woh16c]. The regularization parameters for the
`1 and gradient terms are lmbda and mu respectively. Setting
correct weighting arrays for these regularization terms is critical
to obtaining good performance. For the `1 norm, the weights on
the filters that are intended to represent the impulse noise are tuned
to an appropriate value for the impulse noise density (this value
sets the relative cost of representing an image feature by one of
the impulses or by one of the filters in the learned dictionary), the
weights on the filters that are intended to represent low frequency
components are set to zero (we only want them penalized by the
gradient term), and the weights of the remaining filters are set to
unity. For the gradient penalty, all weights are set to zero except
for those corresponding to the filters intended to represent low
frequency components, which are set to unity.

lmbda = 2.8e-2
mu = 3e-1
w1 = np.ones((1, 1, 1, 1, D.shape[-1]))
w1[..., 0:3] = 0.33
w1[..., 3:6] = 0.0
wg = np.zeros((D.shape[-1]))
wg[..., 3:6] = 1.0
opt = cbpdn.ConvBPDNGradReg.Options(

{'Verbose': True, 'MaxMainIter': 100,
'RelStopTol': 5e-3, 'AuxVarObj': False,
'L1Weight': w1, 'GradWeight': wg})

Now we initialize the cbpdn.ConvBPDNGradReg object and
call the solve method.

b = cbpdn.ConvBPDNGradReg(D, pad(imgn), lmbda, mu,
opt=opt, dimK=0)

X = b.solve()

The denoised estimate of the image is just the reconstruction from
all coefficient maps except those that represent the impulse noise,
which is why we subtract the slice of X corresponding the impulse
noise representing filters from the result of reconstruct.

imgdp = b.reconstruct().squeeze() \
- X[..., 0, 0:3].squeeze()

imgd = crop(imgdp)

Now we print the PSNR of the noisy and denoised images, and
display the reference, noisy, and denoised images. These images
are shown in Figures 3, 4, and 5 respectively.

print('%.3f dB %.3f dB' % (sm.psnr(img, imgn),
sm.psnr(img, imgd)))

fig = plot.figure(figsize=(21, 7))
plot.subplot(1,3,1)
plot.imview(img, fgrf=fig, title='Reference')
plot.subplot(1,3,2)
plot.imview(imgn, fgrf=fig, title='Noisy')
plot.subplot(1,3,3)
plot.imview(imgd, fgrf=fig, title='CSC Result')
fig.show()

Fig. 3: Reference image

Fig. 4: Noisy image

Finally, we save the low frequency image component estimate as
an NPZ file, for use in a subsequent example.

imglp = X[..., 0, 3:6].squeeze()
np.savez('implslpc.npz', imglp=imglp)

Extending SPORCO

We illustrate the ease of extending or modifying existing algo-
rithms in SPORCO by constructing an alternative approach to
removing impulse noise via CSC. The previous method gave good
results, but the weight on the filter representing the impulse noise
is an additional parameter that has to be tuned. This parameter
can be avoided by switching to an `1 data fidelity term instead of
including dictionary filters to represent the impulse noise, as in the
problem [Woh16c]

argmin{xm}

∥∥∥∥∑
m

dm ∗xm− s
∥∥∥∥

1
+λ ∑

m
‖xm‖1 . (2)

Ideally we would also include a gradient penalty term to assist
in the representation of the low frequency image component.
While this relatively straightforward, it is a bit more complex to
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Fig. 5: Denoised image (first method)

implement, and is omitted from this example. Instead of including
a representation of the low frequency image component within
the optimization, we use the low frequency component estimated
by the previous example, subtracting it from the signal passed
to the CSC algorithm, and adding it back to the solution of this
algorithm.

An algorithm for the problem in Equation (2) is not included
in SPORCO, but there is an existing algorithm that can easily be
adapted. CBPDN with mask decoupling, with mask array W ,

argmin{xm}
1
2

∥∥∥∥W
(

∑
m

dm ∗xm− s
)∥∥∥∥2

2
+λ ∑

m
‖xm‖1 , (3)

is solved via the ADMM problem

argminx,y0,y1
(1/2)‖Wy0‖2

2 +λ‖y1‖1

such that
(

D
I

)
x−

(
y0
y1

)
=

(
s
0

)
, (4)

where x =
(

xT
0 xT

1 . . .
)T and Dx = ∑m dm ∗ xm. We can

express Equation (2) using the same variable splitting, as

argminx,y0,y1
‖Wy0‖1 +λ‖y1‖1

such that
(

D
I

)
x−

(
y0
y1

)
=

(
s
0

)
. (5)

(We don’t need the W for the immediate problem at hand, but
there isn’t a good reason for discarding it.) Since Equation (5)
has no f (x) term (see Equation (1)), and has the same constraint
as Equation (4), the x and u steps for these two problems are
the same. The y step for Equation (4) decomposes into the two
independent subproblems

y( j+1)
0 = argminy0

1
2
‖Wy0‖2

2 +
ρ

2

∥∥∥y0−(Dx( j+1)− s+u( j)
0 )

∥∥∥2

2

y( j+1)
1 = argminy1

λ‖y1‖1 +
ρ

2

∥∥∥y1− (x( j+1)+u( j)
1 )

∥∥∥2

2
.

The only difference between the ADMM algorithms for Equations
(4) and (5) is in the y0 subproblem, which becomes

y( j+1)
0 = argminy0

‖Wy0‖1 +
ρ

2

∥∥∥y0−(Dx( j+1)− s+u( j)
0 )

∥∥∥2

2
.

Therefore, the only modifications we expect to make to the
class implementing the problem in Equation (3) are changing the
computation of the functional value, and part of the y step.

We turn now to the implementation for this example. The
module import statements and definitions of functions pad and
crop are the same as for the example in section Removal of
Impulse Noise via CSC, and are not repeated here. Our main task is
to modify cbpdn.ConvBPDNMaskDcpl, the class for solving
the problem in Equation (3), to replace the `2 norm data fidelity
term with an `1 norm. The y step of this class is

def ystep(self):
AXU = self.AX + self.U
Y0 = (self.rho*(self.block_sep0(AXU) - self.S)) \

/ (self.W**2 + self.rho)
Y1 = sl.shrink1(self.block_sep1(AXU),

(self.lmbda/self.rho)*self.wl1)
self.Y = self.block_cat(Y0, Y1)

super(ConvBPDNMaskDcpl, self).ystep()

where the Y0 and Y1 blocks of Y respectively represent y0 and
y1 in Equation (5). All we need do to change the data fidelity
term to an `1 norm is to modify the calculation of Y0 to be a soft
thresholding instead of the calculation derived from the existing
`2 norm. We also need to override method obfn_g0 so that the
functional values are calculated correctly, taking into account the
change of the data fidelity term. We end up with a definition of
our class solving Equation (2) consisting of only a few lines of
additional code

class ConvRepL1L1(cbpdn.ConvBPDNMaskDcpl):

def ystep(self):

AXU = self.AX + self.U
Y0 = sl.shrink1(self.block_sep0(AXU) - self.S,

(1.0/self.rho)*self.W)
Y1 = sl.shrink1(self.block_sep1(AXU),

(self.lmbda/self.rho)*self.wl1)
self.Y = self.block_cat(Y0, Y1)

super(cbpdn.ConvBPDNMaskDcpl, self).ystep()

def obfn_g0(self, Y0):

return np.sum(np.abs(self.W *
self.obfn_g0var()))

To solve the impulse denoising problem we load the reference
image and dictionary, and construct the test image as before. We
also need to load the low frequency component saved by the
previous example

imglp = np.load('implslpc.npz')['imglp']

Now we initialize an instance of our new class, solve, and
reconstruct the denoised estimate

lmbda = 3.0
b = ConvRepL1L1(D, pad(imgn) - imglp, lmbda,

opt=opt, dimK=0)
X = b.solve()
imgdp = b.reconstruct().squeeze() + imglp
imgd = crop(imgdp)

The resulting denoised image is displayed in Figure 6.

Support Functions and Classes

In addition to the main set of classes for solving inverse problems,
SPORCO provides a number of supporting functions and classes,
within the following modules:
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Fig. 6: Denoised image (second method)

• util: Various utility functions and classes, including a
parallel-processing grid search for parameter optimization,
access to a set of pre-learned convolutional dictionaries,
and access to a set of example images.

• plot: Functions for plotting graphs or 3D surfaces and vi-
sualizing images, providing simplified access to Matplotlib
functionality.

• linalg: Linear algebra and related functions, including
solvers for specific forms of linear system and filters for
computing image gradients.

• metric: Image quality metrics including standard met-
rics such as MSE, SNR, and PSNR.

• cdict: A constrained dictionary class that constrains
the allowed dict keys, and also initializes the dict with
default content on instantiation. All of the inverse problem
algorithm options classes are derived from this class.

Conclusion

SPORCO is an actively maintained and thoroughly documented
open source Python package for computing with sparse repre-
sentations. While the primary design goal is ease of use and
flexibility with respect to extensions of the supported algorithms,
it is also intended to be computationally efficient and able to solve
at least medium-scale problems. Standard sparse representations
are supported, but the main focus is on convolutional sparse
representations, for which SPORCO provides a wider range of
features than any other publicly available library. The set of
ADMM classes on which the optimization algorithms are based
is also potentially useful for a much broader range of convex
optimization problems.
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