
12 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

BespON: Extensible config files with multiline strings,
lossless round-tripping, and hex floats

Geoffrey M. Poore‡∗

F

Abstract—BespON is a human-editable data format focused on expressive syn-
tax, lossless round-tripping, and advanced features for scientific and technical
tasks. Nested data structures can be represented concisely without multiple
levels of either brackets or significant whitespace. The open-source Python
implementation of BespON can modify data values while otherwise perfectly
preserving config file layout, including comments. BespON also provides doc
comments that can be preserved through arbitrary data modification. Additional
features include integers (binary, octal, decimal, and hex), floats (decimal and
hex, including Infinity and NaN), multiline string literals that only preserve in-
dentation relative to delimiters, and an extensible design that can support user-
defined data types.

Index Terms—configuration, data serialization, data interchange

Introduction

Many software projects need a human-editable data format, of-
ten for configuration purposes. For Python programs, INI-style
files, JSON [JSON], and YAML [YAML] are popular choices.
More recently, TOML [TOML] has become an alternative. While
these different formats have their strengths, they also have some
significant weaknesses when it comes to scientific and technical
computing.

This paper introduces BespON [BespON], a new human-
editable data format focused on scientific and technical features,
and the bespon package for Python [pkg:bespon]. An overview
of INI-style files, JSON, YAML, and TOML provides the motiva-
tion for BespON as well as context for its particular feature set.

Though this overview focuses on the features of each format,
it also considers Python support for round-tripping—for loading
data, potentially modifying it, and then saving it. While round-
tripping will not lose data, it will typically lose comments and
fail to preserve data ordering and formatting. Since comments
and layout can be important in the context of configuration, some
libraries provide special support for preserving them under round-
tripping. That allows manual editing to be avoided while still
minimizing the differences introduced by modifying data.

INI-style formats

Python’s configparser module [py:configparser] supports a
simple config format similar to Microsoft Windows INI files. For
example:

* Corresponding author: gpoore@uu.edu
‡ Union University

Copyright © 2017 Geoffrey M. Poore. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

[key]
subkey = value

Because all values are interpreted as strings, any typed values
must be retrieved from the parsed data using getter functions
that perform type conversion, introducing significant potential
for ambiguity. Multiline string values that preserve newlines are
permitted, but all indentation and all trailing whitespace (including
a final newline) is stripped, so storing precise chunks of text for
tasks such as templating is difficult. Another issue is that the
format is not strictly specified, so that the Python 2 and Python
3 versions of the package are not fully compatible. This was a
primary reason for configparser being rejected in PEP 518
[PEP518] as a possible format for storing Python build system
requirements.

A more powerful and sophisticated INI-style format is pro-
vided by the configobj package [pkg:configobj]. All values
are still strings as with configparser, but the package also
provides a validator that allows the required format of a config file
to be specified, along with type conversions for each data element.
Multiline triple-quoted string literals are supported, though they
are somewhat limited since they lack backslash-escapes and thus
cannot contain triple-quoted strings or represent special char-
acters using escape sequences. One particularly nice feature of
configobj is round-trip support. Data can be loaded, modified,
and saved, while preserving the order of values and retaining
comments.

JSON

JSON [JSON] was designed as a lightweight interchange format.
Its focus on a small number of common data types has enabled
broad cross-language support, while its simple syntax is amenable
to fast parsing. With JSON syntax, the earlier example data
becomes:

{"key": {"subkey": "value"}}

Only dicts, lists, strings, numbers (floats), booleans, and null
(None) are supported, so binary data and other unsupported types
must be dealt with in an ad-hoc manner. As in the INI-style
formats, dict keys can only be strings.

For configuration purposes, JSON has disadvantages. It lacks
comments. Comments are not necessary in the common case of
exchanging JSON data between machines, but in human-edited
configuration data, they can be very useful. Similarly, JSON’s
brackets, braces, and quotation marks are sometimes criticized as
verbose for human editing (for example, [PEP518]). For scientific

mailto:gpoore@uu.edu

BESPON: EXTENSIBLE CONFIG FILES WITH MULTILINE STRINGS, LOSSLESS ROUND-TRIPPING, AND HEX FLOATS 13

and technical tasks, JSON’s lack of an integer type and of floating-
point Infinity and NaN can be an issue. In fact, Python’s standard
library JSON implementation [py:json] explicitly does not comply
with the JSON specification by adding extensions for integer,
Infinity, and NaN support, and enabling these by default. Another
drawback is that a string in JSON must be on a single line; there
are no multiline string literals.

JSON’s simplicity and limitations are an advantage when it
comes to round-tripping data. Since there are no comments, a
primary source of complexity is avoided altogether. Since there is
only a single possible representation of most data if whitespace is
ignored, lossless round-tripping primarily amounts to preserving
indentation, line break locations, and the exact manner in which
numerical values are represented.

YAML

YAML [YAML] was designed as a general serialization format.
It can create a text-based representation of essentially arbitrary
data structures, including some programming language-specific
types. As a result, it supports integers (decimal, octal, hex), Infinity
and NaN floating-point values, Base64-encoded binary data, and a
variety of other data types. It also allows non-string dict keys. Its
use of significant whitespace to avoid JSON’s brackets and braces
is reminiscent of Python’s own avoidance of braces. In YAML
syntax, the example data could be represented without quotation
marks or braces:

key:
subkey: value

The serialization capabilities of YAML can actually be a
disadvantage by blurring the distinction between data and exe-
cutable code. PyYAML [pkg:PyYAML], perhaps the most com-
mon Python YAML implementation, can execute arbitrary code
during deserialization unless the special yaml.safe_load()
function is used. For example, during YAML loading it is possible
to run the default Python and include its --help output:

>>> yaml.load("""
help: !!python/object/apply:subprocess.check_output

[['python', '--help']]
""")

YAML libraries in other languages can exhibit similar behavior by
default; YAML deserialization was the source of a major security
vulnerability in Ruby on Rails in 2013 [RoR].

YAML has been criticized for its complexity (for example,
[PEP518] and [TOML]). This is partially due to the comparatively
long YAML specification and the plethora of features it defines.
For instance, most characters are allowed unquoted, but in a
context-dependent manner. When YAML loads "a#comment", it
returns the string a#comment, but add a space before the #, and
this becomes the string a followed by a line comment. Similarly,
Python’s None may be represented as null, Null, NULL, ~, or
as an empty value (for example, "k:" is identical to "k: null").
Some YAML issues were resolved in the transition from the ver-
sion 1.1 specification (2005) to version 1.2 (2009). Among other
things, the treatment of Yes, No, On, Off, and their lowercase
and titlecase variants as boolean values was removed. However,
since PyYAML is still based on the version 1.1 specification, the
impact of version 1.2 for Python users has been minimal, at least
until the ruamel.yaml package [pkg:ruamel.yaml] defaulted to
the version 1.2 specification in 2016.

YAML does provide multiline string literals. For example:

key: |
a multiline string
in which line breaks are preserved

The multiline string begins on the line after the pipe |, and
contains all text indented relative to the parent node (key in this
case). This is a simple and efficient approach with minimal syntax
for short snippets of text. It can become complex, however, if
whitespace or indentation are important. Since the multiline string
has no explicit ending delimiter, by default all trailing whitespace
except for the final line break is stripped. This may be customized
by using |- (remove all trailing whitespace, including the last line
break) or |+ (keep all trailing whitespace). Unfortunately, the |+
case means that the string content depends on the relative positive
of the next data element (or the end of the file, if the string is
not followed by anything). Similarly, there are complications if all
lines of the string contain leading whitespace or if the first line of
the string is indented relative to subsequent lines. In such cases,
the pipe must be followed immediately by an integer that specifies
the indentation of the string relative to the parent node (key in the
example).

All line breaks in multiline strings are normalized to line feeds
(\n). Because backslash-escapes are not allowed in multiline
strings, there is no way to wrap long lines, to specify other line
break characters explicitly, or to use code points that are prohibited
as literals in YAML files (for example, most control characters).

PyYAML provides no round-tripping support. The
ruamel.yaml package does provide round-trip features.
It can maintain comments, key ordering, and most styling so long
as dict keys and list values are not deleted. While it supports
modifying dict and list values, it does not provide built-in support
for renaming dict keys.

TOML

TOML [TOML] is a more recent INI-inspired format. In TOML,
the example data could be represented as:

[key]
subkey = "value"

TOML supports dicts (only with string keys), lists (only with all
elements of the same type), strings, floats, integers, and booleans,
plus date and time data. There are multiline string literals, both
raw (delimited by ''') and with backslash-escapes (delimited by
"""). Though these are very similar to Python multiline strings,
they do have the difference that a line feed (\n) immediately
following the opening delimiter is stripped, while it is retained
otherwise, even if only preceded by a space.

String keys may be unquoted if they match the pattern for
an ASCII identifier, and sections support what might be called
"key paths." This allows nested data to be represented in a very
compact manner without either brackets and braces or significant
indentation. For example:

[key.subkey]
subsubkey = "value"

would be equivalent to the JSON

{"key": {"subkey": {"subsubkey": "value"}}}

TOML aims to be obvious, minimal, and more formally stan-
dardized than typical INI-style formats. In many ways it succeeds.
It is used by Rust’s Cargo package manager [Cargo] and in May
2016 was accepted as the future format for storing Python build
system dependencies in PEP 518 [PEP518].

14 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

For scientific and technical tasks, TOML has some drawbacks.
While there are integers, only decimal integers are supported.
Decimal floats are supported, but with the notable exception of
Infinity and NaN. Unlike YAML, multiline strings cannot be
indented for clarity, because any indentation becomes part of the
literal string content. There is no built-in support for any form of
encoded binary data, and no extension mechanism for unsupported
data types. These limitations may make sense in a format whose
expanded acronym contains "obvious" and "minimal," but they do
make TOML less appropriate for some projects.

In addition to these issues, some current features have the
potential to be confusing. Inline dicts of the form

{"key" = "value"}

are supported, but they are not permitted to break over multiple
lines. Meanwhile, inline lists are permitted to span multiple lines.
When unquoted true appears as a dict key, it is a string, because
only strings are allowed as keys. However, when it appears as a
value, it is boolean true. Thus, true = true is a mapping of a
string to a boolean.

Two of the more popular TOML implementations for Python
are the toml package [pkg:toml] and the pytoml package
[pkg:pytoml], which is being used in PEP 518. Currently, neither
provides any round-trip support.

Introducing BespON

"BespON" is short for Bespoken, or custom-made, Object No-
tation. It originally grew out of a need for a config format
with a key=value syntax that also offers excellent multiline
string support. I am the creator of PythonTeX [PythonTeX],
which allows executable code in Python and several other
programming languages to be embedded within LaTeX docu-
ments. Future PythonTeX-related software will need a LaTeX-
style key=value syntax for configuration. Because PythonTeX
involves a significant amount of templating with Python code,
a config format with multiline strings with obvious indentation
would also be very useful. Later, BespON was influenced by
some of my other software projects and by my work as a physics
professor. This resulted in a focus on features related to scientific
and technical computing.

• Integers, with binary, octal, and hexadecimal integers in
addition to decimal integers.

• Full floating-point support including Infinity and NaN, and
support for hexedecimal floating-point numbers.

• Multiline strings designed with templating and similar
tasks in mind.

• A binary data type.
• Support for lossless round-tripping including comment

preservation, at least when data is only modified.
• An extensible design that can allow for user-defined data

types.

The bespon package for Python [pkg:bespon] was first
released in April 2017, after over a year of development. It is
used in all examples below. Like Python’s json module [py:json],
bespon provides load() and loads() functions for loading
data from file-like objects or strings, and dump() and dumps()
functions for dumping data to file-like objects or strings. bespon
is compatible with Python 2.7 and 3.3+.

None and booleans

Python’s None and boolean values are represented in BespON as
none, true, and false. As in JSON and TOML, all keywords
are lowercase. For example:

>>> import bespon
>>> bespon.loads("[none, true, false]")
[None, True, False]

Numbers

Integers

BespON supports binary, octal, decimal, and hexadecimal inte-
gers. Non-decimal integers use 0b, 0o, and 0x base prefixes.
Underscores are allowed between adjacent digits and after a base
prefix, as in numbers in Python 3.6+ [PEP515]. For example:

>>> bespon.loads("[0b_1, 0o_7, 1_0, 0x_f]")
[1, 7, 10, 15]

Floats

Decimal and hexadecimal floating point numbers are supported,
with underscores as in integers. Decimal numbers use e or E for
the exponent, while hex use p or P, just as in Python float literals
[py:stdtypes]. Infinity and NaN are represented as inf and nan.

>>> bespon.loads("[inf, nan, 2.3_4e1, 0x5_6.a_fp-8]")
[inf, nan, 23.4, 0.3386077880859375]

The support for hexadecimal floating-point numbers is partic-
ularly important in scientific and technical computing. Dumping
and then loading a floating-point value in decimal form will
typically involve small rounding errors [py:stdtypes]. The hex
representation of a float allows the value to be represented exactly,
since both the in-memory and serialized representation use base 2.
This allows BespON files to be used in fully reproducible floating-
point calculations. When the bespon package dumps data, the
hex_floats keyword argument may be used to specify that all
floats be saved in hex form.

Strings

BespON provides both inline strings, which do not preserve literal
line breaks, and multiline strings, which do.

Raw and escaped versions of both are provided. Raw strings
preserve all content exactly. Escaped strings allow code points to
be represented with backslash-escapes. BespON supports Python-
style \xhh, \uhhhh, and \Uhhhhhhhh escapes using hex digits
h, as well as standard shorthand escapes like \r and \n. It also
supports escapes of the form \u{h...h} containing 1 to 6 hex
digits, as used in Rust [rs:tokens] and some other languages.

In addition, single-word identifier-style strings are allowed
unquoted.

Inline strings

Raw inline strings are delimited by a single backtick `, double
backticks ``, triple backticks ```, or a longer sequence that is a
multiple of three. This syntax is inspired by [Markdown]; the case
of single backticks is similar to Go’s raw strings [Go]. A raw inline
string may contain any sequence of backticks that is either longer
or shorter than its delimiters. If the first non-space character in a
raw string is a backtick, then the first space is stripped; similarly,

BESPON: EXTENSIBLE CONFIG FILES WITH MULTILINE STRINGS, LOSSLESS ROUND-TRIPPING, AND HEX FLOATS 15

if the last non-space character is a backtick, then the last space
is stripped. This allows, for example, the sequence ` ``` `
to represent the literal triple backticks ```, with no leading or
trailing spaces.

The overall result is a raw string syntax that can enclose
essentially arbitrary content while only requiring string modi-
fication (adding a leading or trailing space) in one edge case.
Other common raw string syntaxes avoid any string modification,
but either cannot enclose arbitrary content or require multiple
different delimiting characters. For example, Python does not
allow r"\". It does allow r"""\""", but this is not a complete
string representing the backslash; rather, it is the start of a raw
string that will contain the literal sequence \""" and requires """
as a closing delimiter [py:lexical]. Meanwhile, Rust represents the
literal backslash as r#"\"# in raw string syntax, while literal \#
would require r##"\#"## [rs:tokens].

Escaped inline strings are delimited by single quotation char-
acters, either a single quote ' or double quote ". These end at
the first unescaped delimiting character. Escaped inline strings
may also be delimited by triple quotation mark sequences '''
or """, or longer sequences that are a multiple of three. In these
cases, any shorter or longer sequence of the delimiting character
is allowed unescaped. This is similar to the raw string case, but
with backslash-escapes.

Inline strings may be wrapped over multiple lines, in a manner
similar to YAML. This allows BespON data containing long,
single-line strings to be embedded within a LaTeX, Markdown,
or other document without requiring either lines longer than 80
characters or the use of multiline strings with newline escapes.
When an inline string is wrapped over multiple line, each line
break is replaced with a space unless it is preceded by a code
point with the Unicode White_Space property [UAX44], in
which case it is stripped. For example:

>>> bespon.loads("""
'inline value
that wraps'
""")
'inline value that wraps'

When an inline string is wrapped, the second line and all subse-
quent lines must have the same indentation.

Multiline strings

Multiline strings also come in raw and escaped forms. Syntax
is influenced by heredocs in shells and languages like Ruby
[rb:literals]. The content of a multiline string begins on the line
after the opening delimiter, and ends on the line before the
closing delimiter. All line breaks are preserved as literal line feeds
(\n); even if BespON data is loaded from a file using Windows
line endings \r\n, newlines are always normalized to \n. The
opening delimiter consists of a pipe | followed immediately by
a sequence of single quotes ', double quotes ", or backticks
` whose length is a multiple of three. Any longer or shorter
sequence of quote/backtick characters is allowed to appear literally
within the string without escaping. The quote/backtick determines
whether backslash-escapes are enabled, following the rules for
inline strings. The closing delimiter is the same as the opening
delimiter with a slash / appended to the end. This enables opening
and closing delimiters to be distinguished easily even in the
absence of syntax highlighting, which is convenient when working
with long multiline strings.

In a multiline string, total indentation is not preserved. Rather,
indentation is only kept relative to the delimiters. For example:

>>> bespon.loads("""
|'''
first line
second line

|'''/
""")
' first line\n second line\n'

This allows the overall multiline string to be indented for clarity,
without the indentation becoming part of the literal string content.

Unquoted strings

BespON also allows unquoted strings. By default, only ASCII
identifier-style strings are allowed. These must match the regular
expression:

_*[A-Za-z][0-9A-Z_a-z]*

There is the additional restriction that no unquoted string may
match a keyword (none, true, false, inf, nan) or related
reserved word when lowercased. This prevents an unintentional
miscapitalization like FALSE from becoming a string and then
yielding true in a boolean test.

Unquoted strings that match a Unicode identifier pattern essen-
tially the same as that in Python 3.0+ [PEP3131] may optionally
be enabled. These are not used by default because they introduce
potential usability and security issues. For instance, boolean false
is represented as false. When unquoted Unicode identifier-
style strings are enabled, the final e could be replaced with the
lookalike code point \u0435, CYRILLIC SMALL LETTER IE.
This would represent a string rather than a boolean, and any
boolean tests would return true since the string is not empty.

Lists

Lists are supported using an indentation-based syntax similar to
YAML as well as a bracket-delimited inline syntax like JSON or
TOML.

In an indentation-style list, each list element begins with an
asterisk * followed by the element content. For example:

>>> bespon.loads("""
* first
* second
* third
""")
['first', 'second', 'third']

Any indentation before or after the asterisk may use spaces or tabs,
although spaces are preferred. In determining indentation levels
and comparing indentation levels, a tab is never treated as identical
to some number of spaces. An object that is indented relative to
its parent object must share its parent object’s indentation exactly.
This guarantees that in the event that tabs and spaces are mixed,
relative indentation will always be preserved.

In an inline list, the list is delimited by square brackets [],
and list elements are separated by commas. A comma is permitted
after the last list element (dangling comma), unlike JSON:

>>> bespon.loads("[first, second, third,]")
['first', 'second', 'third']

An inline list may span multiple lines, as long as everything it
contains and the closing bracket are indented at least as much as

16 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

the line on which the list begins. When inline lists are nested,
the required indentation for all of the lists is simply that of the
outermost list.

Dicts

Dicts also come in an indentation-based form similar to YAML as
well as a brace-delimited inline syntax like JSON or TOML.

In an indentation-style list, keys and values are separated by
an equals sign, as in INI-style formats and TOML. For example:

>>> bespon.loads("""
key =

subkey = value
""")
{'key': {'subkey': 'value'}}

The rules for indentation are the same as for lists. A dict value
that is a string or collection may span multiple lines, but it must
always have at least as much indentation as its key if it starts on
the same line as the key, or more indentation if it starts on a line
after the key. This may be demonstrated with a multiline string:

>>> bespon.loads("""
key = |```

first line
second line

|```/
""")
{'key': ' first line\n second line\n'}

Because the multiline string starts on the same line as key, the
opening and closing delimiters are not required to have the same
indentation, and the indentation of the string content is relative to
the closing deliter.

In an inline dict, the dict is delimited by curly braces {}, and
key-value pairs are separated by commas:

>>> bespon.loads("""
{key = {subkey = value}}
""")
{'key': {'subkey': 'value'}}

As with inline lists, a dangling comma is permitted, as is spanning
multiple lines so long as all content is indented at least as much
as the line on which the dict begins. When inline dicts are nested,
the required indentation for all of the dicts is simply that of the
outermost dict.

Dicts support none, true, false, integers, and strings as
keys. Floats are not supported as keys by default, since this could
produce unexpected results due to rounding.

Key paths and sections

The indentation-based syntax for dicts involves increasing levels
of indentation, while the inline syntax involves accumulating
layers of braces. BespON provides a key-path syntax that allows
this to be avoided in some cases. A nested dict can be created with
a series of unquoted, period-separated keys. For example:

>>> bespon.loads("""
key.subkey.subsubkey = value
""")
{'key': {'subkey': {'subsubkey': 'value'}}}

Key path are scoped, so that once the indentation or brace level
of the top of the key path is closed, no dicts created by the key
path can be modified. Consider a nested dict three levels deep,
with the lowest level accessed via key paths:

>>> bespon.loads("""
key =

subkey.a = value1
subkey.b = value2

""")
{'key': {'subkey': {'a': 'value1', 'b': 'value2'}}}

Key paths starting with subkey can be used multiple times at the
indentation level where subkey is first used. Using subkey.c
at this level would be valid. However, returning to the indentation
level of key and attempting to use key.subkey.c would result
in a scope error. Scoping ensures that all data defined via key paths
with common nodes remains relatively localized.

Key paths can also be used in sections similar to INI-style
formats and TOML. A section consists of a pipe followed imme-
diately by three equals signs (or a longer series that is a multiple
of three), followed by a key path. Everything until the next section
definition will be placed under the section key path. For example:

>>> bespon.loads("""
|=== key.subkey
subsubkey = value
""")
{'key': {'subkey': {'subsubkey': 'value'}}}

This allows both indentation and layers of braces to be avoided,
while not requiring the constant repetition of the complete path to
the data that is being defined (key.subkey in this case).

Instead of ending a section by starting a new section, it is
also possible to return to the top level of the data structure using
an end delimiter of the form |===/ (with the same number of
equals signs as the opening section delimiter).

Tags

All of the data types discussed so far are implicitly typed; there
is no explicit type declaration. BespON provides a tag syntax that
allows for explicit typing and some other features. This may be
illustrated with the bytes type, which can be applied to strings
to create byte strings (Python bytes):

>>> bespon.loads("""
(bytes)> "A string in binary"
""")
b'A string in binary'

Similarly, there is a base16 type and a base64 type:

>>> bespon.loads("""
(base16)> "01 89 ab cd ef"
""")
b'\x01\x89\xab\xcd\xef'
>>> bespon.loads("""
(base64)> "U29tZSBCYXNlNjQgdGV4dA=="
""")
b'Some Base64 text'

When applied to strings, tags also support keyword argu-
ments indent and newline. indent is used to specify a
combination of spaces and tabs by which all lines in a string
should be indented to produce the final string. newline takes
any code point sequence considered a newline in the Unicode
standard [UnicodeNL], or the empty string, and replaces all literal
line breaks with the specified sequence. This simplifies the use
of literal newlines other than the default line feed (\n). When
newline is applied to a byte string, only newline sequences in
the ASCII range are permitted.

BESPON: EXTENSIBLE CONFIG FILES WITH MULTILINE STRINGS, LOSSLESS ROUND-TRIPPING, AND HEX FLOATS 17

>>> bespon.loads(r"""
(bytes, indent=' ', newline='\r\n')>
|'''
A string in binary
with a break
|'''/
""")
b' A string in binary\r\n with a break\r\n'

Aliases and inheritance

For configuration purposes, it would be convenient to have some
form of inheritance, so that settings do not need to be duplicated
in multiple dicts. The tag label keyword argument allows lists,
list elements, dicts, and dict values to be labeled. Then they can
be referenced later using aliases, which consist of a dollar sign $
followed by the label name. Aliases form the basis for inheritance.

Dicts support two keywords for inheritance. init is used to
specify one or more dicts with which to initialize a new dict. The
keys supplied by these dicts must not be overwritten by the keys
put into the new dict directly. Meanwhile, default is used to
specify one or more dicts whose keys are added to the new dict
after init and after values that are added directly. default
keys are only added if they do not exist; they are fallback values.

>>> d = bespon.loads("""
initial =

(dict, label=init)>
first = a

default =
(dict, label=def)>
last = z
k = default_v

settings =
(dict, init=$init, default=$def)>
k = v

""")
>>> d['settings']
{'first': 'a', 'k': 'v', 'last': 'z'}

If there multiple values for init or default, these could be
provided in an inline list of aliases:

[$alias1, $alias2, ...]

In similar manner, init can be used to specify initial ele-
ments in a list, and extend to add elements at the end. Other
features that make use of aliases are under development.

Immutability, confusability, and other considerations

BespON and the bespon package contain several features de-
signed to enhance usability and prevent confusion.

Nested collections more than 100 levels deep are prohibited by
default. In such cases, the bespon package raises a nesting depth
error. This reduces the potential for runaway parsing.

BespON requires that dict keys be unique; keys are never
overwritten. Similarly, there is no way to set and then modify
list elements. In contrast, the JSON specification only specifies
that keys "SHOULD be unique" [JSON]. Python’s JSON module
[py:json] allows duplicate keys, with later keys overwriting earlier
ones. Although YAML [YAML] specifies that keys are unique,
in practice PyYaml [pkg:PyYAML] allows duplicate keys, with
later keys overwriting earlier ones. TOML [TOML] also specifies
unique keys, and this is enforced by the toml [pkg:toml] and
pytoml [pkg:pytoml] packages.

When the last line of an inline or unquoted string contains
one or more Unicode code points with Bidi_Class R or AL

(right-to-left languages) [UAX9], by default no other data objects
or comments are allowed on the line on which the string ends. This
prevents a right-to-left code point from interacting with following
code points to produce ambiguous visual layout as a result of
the Unicode bidirectional algorithm [UAX9] that is implemented
in much text editing software. Consider an indentation-based dict
mapping Hebrew letters to integers (valid BespON):

"ℵ" =
1

"i" =
2

There is no ambiguity in that case. Now consider the same
data, but represented with an inline dict (still valid BespON):

{"\u05D0" = 1, "\u05D1" = 2}

There is still no ambiguity, but the meaning is less clear due to
the Unicode escapes. If the literal letters are substituted, this is the
rendering in most text editors (now invalid BespON):

{"2 = "i" ,1 = "ℵ}

Because the quotation marks, integers, comma, and equals
signs have no strong left-to-right directionality, everything after
the first quotation mark until the final curly brace is visually
laid out from right to left. When the data is loaded, though, it
will produce the correct mapping, since loading depends on the
logical order of the code points rather than their visual rendering.
By default, BespON prevents the potential for confusion as a
result of this logical-visual mismatch, by prohibiting data objects
or comments from immediately following an inline or unquoted
string with one or more right-to-left code points in its last line. For
the same reason, code points with the property Bidi_Control
[UAX9] are prohibited from appearing literally in BespON data;
they can only be produced via backslash-escapes.

Round-tripping

BespON has been designed with round-tripping in mind. Cur-
rently, the bespon package supports replacing keys and values
in data. For example:

>>> ast = bespon.loads_roundtrip_ast("""
key.subkey.first = 123 # Comment
key.subkey.second = 0b1101
key.subkey.third = `literal \string`
""")
>>> ast.replace_key(['key', 'subkey'], 'sk')
>>> ast.replace_val(['key', 'sk', 'second'], 7)
>>> ast.replace_val(['key', 'sk', 'third'],

'\\another \\literal')
>>> ast.replace_key(['key', 'sk', 'third'], 'fourth')
>>> print(ast.dumps())

key.sk.first = 123 # Comment
key.sk.second = 0b111
key.sk.fourth = `\another \literal`

This illustrates several features of the round-trip capabilities.

• Comments, layout, and key ordering are preserved exactly.
• Key renaming works even with key paths, when a given

key name appears in multiple locations.
• When a number is modified, the new value is expressed in

the same base as the old value by default.
• When a quoted string is modified, the new value is quoted

in the same style as the old value (at least when practical).

18 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

• As soon as a key is modified, the new key must be used
for further modifications. The old key is invalid.

In the future, the bespon package will add additional round-
trip capabilities beyond replacing keys and values. One of the
challenges in round-tripping data is dealing with comments. Be-
spON supports standard line comments of the form #comment.
While these can survive round-tripping when data is added or
deleted, dealing with them in those cases is difficult, because line
comments are not uniquely associated with individual data objects.
To provide an alternative, BespON defines a doc comment that is
uniquely associated with individual data objects. Each data object
may have at most a single doc comment. The syntax is inspired
by string and section syntax, involving three hash symbols (or a
multiple of three). Both inline and multiline doc comments are
defined, and must come immediately before the data with which
they are associated (or immediately before its tag, for tagged data):

key1 = ### inline doc comment for value 1 ###
value1

key2 = |###
multiline doc comment

for value2
|###/
value2

Because doc comments are uniquely associated with individual
data elements, they will make possible essentially arbitrary ma-
nipulation of data while retaining all relevant comments.

Performance

Since the beginning, performance has been a concern for BespON.
The bespon package is pure Python. YAML’s history suggested
that this could be a significant obstacle to performance. PyYAML
[pkg:PyYAML] can be much slower than Python’s json module
[py:json] for loading equivalent data, in part because the JSON
module is implemented in C while the default PyYAML is pure
Python. PyYAML can be distributed with LibYAML [LibYAML],
a C implementation of YAML 1.1, which provides a significant
performance improvement.

So far, bespon performance is promising. The package uses
__slots__ and avoids global variables extensively, but other-
wise optimizations are purely algorithmic. In spite of this, under
CPython it can be only about 50% slower than PyYAML with
LibYAML. Under PyPy [PyPy], the alternative Python implemen-
tation with a just-in-time (JIT) compiler, bespon can be within
an order of magnitude of json’s CPython speed.

Figure 1 shows an example of performance in loading data.
This was generated with the BespON Python benchmarking code
[bespon:benchmark]. A sample BespON data set was assembled
using the template below (whitespace reformatted to fit column
width), substituting the template field {num} for integers in
range(1000) and then concatenating the results.

key{num} =
first_subkey{num} =
"Some text that goes on for a while {num}"

second_subkey{num} =
"Some more text that also goes on and on {num}"

third_subkey{num} =
* "first list item {num}"
* "second list item {num}"
* "third list item {num}"

Analogous data sets were generated for JSON, YAML, and
TOML, using the closest available syntax. Python’s json mod-

0.0 0.2 0.4 0.6 0.8 1.0

time (s)

yaml

pytoml

toml

bespon

yaml (PyPy)

yaml, CLoader

bespon (PyPy)

json

0.9900

0.4384

0.1622

0.0936

0.0619

0.0589

0.0131

0.0015 JSON
BespON
YAML
TOML

Fig. 1: Performance of Python’s json module and the PyYAML,
toml, pytoml, and bespon packages in loading sample data. All
tests were performed under Ubuntu 16.04. All tests used Anaconda
Python 3.6.1 (64-bit) except those designated with "PyPy," which
used PyPy3.5 5.7.1 (64-bit). PyYAML was tested with its C library
implementation (CLoader) when available.

ule and the PyYAML, toml, pytoml, and bespon packages
were then used to load their corresponding data from strings 10
times. Load times were measured with Python’s timeit module
[py:timeit], and the minimum time for each package was recorded
and plotted in the figure.

An extended example

All examples shown so far have been short snippets loaded from
Python strings using bespon.loads(). Any of those examples
could instead have been saved in a text file, say data.bespon,
and loaded as

with open('data.bespon', encoding='utf8') as f:
data = bespon.load(f)

A longer example of a BespON file that could be loaded in this
manner is shown below. It illustrates most BespON features.

Line comments can be round-tripped if data
elements are only modified, not added or removed.

This doc comment can always be round-tripped.###
Only one doc comment is allowed per data element.
The doc comment above belongs to the key below.
"key (\x5C escapes)" = 'value (\u{5C} escapes)'

`key (no \ escapes)` = ``value (no `\` escapes)``

Unquoted ASCII identifier-style strings.
unquoted_key = unquoted_value

Trailing commas are fine.
inline_dict = {key1 = value1, key2 = value2,}

Decimal, hex, octal, and binary integers.
inline_list_of_ints = [1, 0x12, 0o755, 0b1010]

list_of_floats =
* 1.2e3
* -inf # Infinity and NaN are supported.
* 0x4.3p2 # Hex floats to avoid rounding.

BESPON: EXTENSIBLE CONFIG FILES WITH MULTILINE STRINGS, LOSSLESS ROUND-TRIPPING, AND HEX FLOATS 19

wrapped_string = """String with no whitespace
lines, with line breaks converted to spaces,
and "quotes" allowed by delimiters."""

multiline_raw_string = |```
Linebreaks are kept (as '\n') and leading
indentation is preserved relative to
delimiters (which are on lines by themselves).

|```/

multiline_escaped_string = |"""
The same idea as the raw multiline string,
but with backslash-escapes.
|"""/

typed_string = (bytes)> "byte string"

Key-path style; same as "key1 = {key2 = true}"
key1.key2 = true

Same as "section = {subsection = {key = value}}"
|=== section.subsection
key = value
|===/ # Back to root level. Can be omitted

if sections never return to root.

Conclusion

BespON and the bespon package remain under development.
The bespon package is largely complete as far as loading

and dumping data are concerned. The standard, default data types
discussed above are fully supported, and it is already possible to
enable a limited selection of optional types.

The primary focus of future bespon development will be on
improving round-tripping capabilities. Eventually, it will also be
possible to enable optional user-defined data types with the tag
syntax.

BespON as a configuration format will primarily be refined in
the future through the creation of a more formal specification. The
Python implementation is written in such a way that a significant
portion of the grammar already exists in the form of Python
template strings, from which it is converted into functions and
regular expressions. A more formal specification will bring the
possibility of implementations in additional languages.

Working with BespON will also be improved through addi-
tional revision of the programming language-agnostic test suite
[bespon:test] and the syntax highlighting extension for Microsoft
Visual Studio Code [bespon:vscode]. The language-agnostic test
suite is a set of BespON data files containing hundreds of snippets
of BespON that is designed to test implementations for confor-
mance. It is used for testing the Python implementation before
each release. The VS Code syntax highlighting extension provides
a TextMate grammar [TextMate] for BespON, so it can provide a
basis for BespON support in other text editors in the future.

REFERENCES

[BespON] G. Poore. "BespON – Bespoken Object Notation," https:
//bespon.org/.

[bespon:benchmark] G. Poore. "Benchmark BespON in Python," https://
github.com/bespon/bespon_python_benchmark.

[bespon:test] G. Poore. "Language-agnostic tests for BespON," https:
//github.com/bespon/bespon_tests.

[bespon:vscode] G. Poore. "BespON syntax highlighting for VS Code,"
https://github.com/bespon/bespon_vscode.

[Cargo] "CARGO: packages for Rust," https://crates.io/.
[Go] "The Go Programming Language Specification,"

November 18, 2016, https://golang.org/ref/spec.

[JSON] T. Bray. "The JavaScript Object Notation (JSON) Data
Interchange Format," https://tools.ietf.org/html/rfc7159.

[LibYAML] "LibYAML," http://pyyaml.org/wiki/LibYAML.
[Markdown] J. Gruber. "Markdown: Syntax," https://daringfireball.

net/projects/markdown/syntax.
[PEP515] G. Brandl, S. Storchaka. "PEP 515 -- Underscores

in Numeric Literals," https://www.python.org/dev/peps/
pep-0515/.

[PEP518] B. Cannon, N. Smith, D. Stufft. "PEP 518 -- Specify-
ing Minimum Build System Requirements for Python
Projects," https://www.python.org/dev/peps/pep-0518/.

[PEP3131] M. von Löwis. "PEP 3131 -- Supporting Non-
ASCII Identifiers," https://www.python.org/dev/peps/
pep-3131/.

[pkg:bespon] G. Poore, "bespon package for Python," https://github.
com/gpoore/bespon_py.

[pkg:configobj] M. Foord, N. Larosa, R. Dennis, E. Courtwright. "Wel-
come to configobj’s documentation!" http://configobj.
readthedocs.io/en/latest/index.html.

[pkg:pytoml] "pytoml," https://github.com/avakar/pytoml.
[pkg:PyYAML] "PyYAML Documentation," http://pyyaml.org/wiki/

PyYAMLDocumentation.
[pkg:ruamel.yaml] A. van der Neut. "ruamel.yaml," http://yaml.readthedocs.

io/en/latest/index.html.
[pkg:toml] "TOML: Python module which parses and emits

TOML," https://github.com/uiri/toml.
[PythonTeX] G. Poore. "PythonTeX: reproducible documents with

LaTeX, Python, and more," Computational Science &
Discovery 8 (2015) 014010, http://stacks.iop.org/1749-
4699/8/i=1/a=014010.

[py:configparser] Python Software Foundation. "configparser — Configu-
ration file parser", Apr 09, 2017, https://docs.python.org/
3.6/library/configparser.html.

[py:json] Python Software Foundation. "json — JSON encoder
and decoder," May 27, 2017, https://docs.python.org/3/
library/json.html.

[py:lexical] Python Software Foundation. "Lexical analysis," Mar
26, 2017, https://docs.python.org/3/reference/lexical_
analysis.html.

[py:stdtypes] Python Software Foundation. "Built-in Types," May 16,
2017, https://docs.python.org/3/library/stdtypes.html.

[py:timeit] Python Software Foundation. "timeit — Measure
execution time of small code snippets," Mar 26, 2017,
https://docs.python.org/3/library/timeit.html.

[PyPy] "Welcome to PyPy," http://pypy.org/.
[rb:literals] "Literals," https://ruby-doc.org/core-2.4.1/doc/syntax/

literals_rdoc.html.
[RoR] A. Patterson. "Multiple vulnerabilities in parameter

parsing in Action Pack (CVE-2013-0156),"
https://groups.google.com/forum/#!topic/rubyonrails-
security/61bkgvnSGTQ/discussion.

[rs:tokens] The Rust Project Developers. "Tokens," https://doc.rust-
lang.org/reference/tokens.html.

[TextMate] MacroMates Ltd. "Language Grammars," https://
manual.macromates.com/en/language_grammars.

[TOML] T. Preston-Werner. "TOML: Tom’s Obvious, Minimal
Language, v0.4.0," https://github.com/toml-lang/toml/.

[UAX9] M. Davis, A. Lanin, and A. Glass. "Unicode Stan-
dard Annex #9: UNICODE BIDIRECTIONAL ALGO-
RITHM," http://unicode.org/reports/tr9/.

[UAX44] Unicode, Inc., ed. M. Davis, L. Iancu, and K. Whistler.
"Unicode Standard Annex #44: UNICODE CHARAC-
TER DATABASE," http://unicode.org/reports/tr44/.

[UnicodeNL] The Unicode Consortium. The Unicode Standard, Ver-
sion 9.0.0, chapter 5.8, "Newline Guidelines," http:
//www.unicode.org/versions/Unicode9.0.0/.

[YAML] O. Ben-Kiki, C. Evans, I. döt Net. "YAML Ain’t Markup
Language (YAML) Version 1.2, 3rd Edition, Patched at
2009-10-01," http://www.yaml.org/spec/1.2/spec.html.

https://bespon.org/
https://bespon.org/
https://github.com/bespon/bespon_python_benchmark
https://github.com/bespon/bespon_python_benchmark
https://github.com/bespon/bespon_tests
https://github.com/bespon/bespon_tests
https://github.com/bespon/bespon_vscode
https://crates.io/
https://golang.org/ref/spec
https://tools.ietf.org/html/rfc7159
http://pyyaml.org/wiki/LibYAML
https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
https://www.python.org/dev/peps/pep-0515/
https://www.python.org/dev/peps/pep-0515/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-3131/
https://www.python.org/dev/peps/pep-3131/
https://github.com/gpoore/bespon_py
https://github.com/gpoore/bespon_py
http://configobj.readthedocs.io/en/latest/index.html
http://configobj.readthedocs.io/en/latest/index.html
https://github.com/avakar/pytoml
http://pyyaml.org/wiki/PyYAMLDocumentation
http://pyyaml.org/wiki/PyYAMLDocumentation
http://yaml.readthedocs.io/en/latest/index.html
http://yaml.readthedocs.io/en/latest/index.html
https://github.com/uiri/toml
http://stacks.iop.org/1749-4699/8/i=1/a=014010
http://stacks.iop.org/1749-4699/8/i=1/a=014010
https://docs.python.org/3.6/library/configparser.html
https://docs.python.org/3.6/library/configparser.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/reference/lexical_analysis.html
https://docs.python.org/3/reference/lexical_analysis.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/timeit.html
http://pypy.org/
https://ruby-doc.org/core-2.4.1/doc/syntax/literals_rdoc.html
https://ruby-doc.org/core-2.4.1/doc/syntax/literals_rdoc.html
https://groups.google.com/forum/#!topic/rubyonrails-security/61bkgvnSGTQ/discussion
https://groups.google.com/forum/#!topic/rubyonrails-security/61bkgvnSGTQ/discussion
https://doc.rust-lang.org/reference/tokens.html
https://doc.rust-lang.org/reference/tokens.html
https://manual.macromates.com/en/language_grammars
https://manual.macromates.com/en/language_grammars
https://github.com/toml-lang/toml/
http://unicode.org/reports/tr9/
http://unicode.org/reports/tr44/
http://www.unicode.org/versions/Unicode9.0.0/
http://www.unicode.org/versions/Unicode9.0.0/
http://www.yaml.org/spec/1.2/spec.html

	Introduction
	INI-style formats
	JSON
	YAML
	TOML

	Introducing BespON
	None and booleans
	Numbers
	Integers
	Floats

	Strings
	Inline strings
	Multiline strings
	Unquoted strings

	Lists
	Dicts
	Key paths and sections
	Tags
	Aliases and inheritance
	Immutability, confusability, and other considerations
	Round-tripping
	Performance
	An extended example
	Conclusion
	References

