
20 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

LabbookDB: A Wet-Work-Tracking Database
Application Framework

Horea-Ioan Ioanas‡∗, Bechara John Saab§, Markus Rudin‡

https://youtu.be/yDBu_wSyw-g

F

Abstract—LabbookDB is a relational database application framework for life sci-
ences—providing an extendable schema and functions to conveniently add and
retrieve information, and generate summaries. The core concept of LabbookDB
is that wet work metadata commonly tracked in lab books or spreadsheets is
more efficiently and more reliably stored in a relational database, and more
flexibly queried. We overcome the flexibility limitations of designed-for-analysis
spreadsheets and databases by building our schema around atomized physical
object interactions in the laboratory (and providing plotting- and/or analysis-
ready dataframes as a compatibility layer). We keep our database schema more
easily extendable and adaptable by using joined table inheritance to manage
polymorphic objects and their relationships. LabbookDB thus provides a wet
work metadata storage model excellently suited for explorative ex-post reporting
and analysis, as well as a potential infrastructure for automated wet work
tracking.

Index Terms—laboratory notebook, labbook, wet work, record keeping, inter-
net of things, reports, life science, biology, neuroscience, behaviour, relational
database, normalization, SQL

Introduction

The laboratory notebook (more commonly, lab book) is a long-
standing multi-purpose record—serving as a primary data trace,
as a calendar, diary, legal document, memory aid, organizer,
timetable, and also proposed as a rapid science communication
medium [Bra07]. It is of notable popularity in the natural sciences,
especially in the life sciences—where research largely consists
of “wet work” (i.e. real-world manipulation), which generally
leaves no data trace unless explicitly recorded. With the advent of
electronic data acquisition and storage, however, the lab book has
increasingly lost significance as a repository for actual data, and
has transformed into a metadata record. Notably, the modern lab
book has become a general repository of information, for which
simple array formats (e.g. tables, spreadsheets, or data matrices)
do not provide an adequate input and/or storage format.

Some scientists and science service providers seek to emu-
late the seemingly convenient lab book format in the electronic
medium—even providing support for sketching and doodling (e.g.
eLabFTW [CNM12]). Storing information in free-text or pictorial

* Corresponding author: ioanas@biomed.ee.ethz.ch
‡ Institute for Biomedical Engineering, ETH and University of Zurich
§ Preclinical Laboratory for Translational Research into Affective Disorders,
DPPP, Psychiatric Hospital, University of Zurich

Copyright © 2017 Horea-Ioan Ioanas et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

form, however, exacerbates the incompatibility with electronic
data analysis and reporting (which commonly requires consistent
array formats). This approach, rather than merely retarding infor-
mation flow by increasing the need for manual lookup and input,
can also increase the incidence of biased evaluation—most easily
as a consequence of notes being more often or more attentively
consulted, and judged by varied but not explicitly documented
standards, depending on the expectations of the researcher.

Conversely, researchers often force multidimensional and
relationship-rich experimental metadata into the familiar and
analysis-apt spreadsheet format. Under a list-like model, however,
relationships become spread over many cell combinations while
remaining untracked. This leads to information replication in
multiple entries, which in turn renders e.g. the task of updating
the correspondence between related cells non-trivial. These issues
are known as information redundancy and update anomalies,
respectively—and are prone to damage data integrity over time.
The temptation also arises to truncate input to only what is
considered essential at the time of the experiment. This runs the
risk of omitting information which may have been easily recorded
(even automatically) given a proper data structure, and which may
become crucial for closer ex-post deliberation of results.

The crux of the issue, which neither of these approaches
adequately addresses, is to store experimental metadata in a
fashion which befits its relationship-rich nature, while provid-
ing array-formatted data output for analysis, and spreadsheet-
formatted data for human inspection. Solutions which provide
such functionality for a comprehensive experimental environment
are few, and commonly proprietary and enterprise oriented (e.g.
iRATS, REDCap [HTT+09]). One notable exception is MouseDB
[Bri11], a database application framework built around mouse
tracking. This package is considerably more mature than our
present endeavour, yet more closely intended as a lab management
tool rather than a general lab book replacement. It makes a number
of differing structure choices, but given the permissive license
(BSD [Ini99]) of both projects, it is conceivable for functionalities
from one to be merged into another in the future.

The need for a wet work metadata system providing a better
internal data model and consistently structured outputs, is com-
pounded by the fact that such a system may also be better suited
for (semi)automatic record keeping. Rudimentary semiautomatic
tracking (via barcode-scanning) is already available for at least
one commercial platform (iRATS), and the concept is likely to
become of even more interest, as the internet of things reaches
the laboratory. This makes a well-formed open source relational

https://youtu.be/yDBu_wSyw-g
mailto:ioanas@biomed.ee.ethz.ch


LABBOOKDB: A WET-WORK-TRACKING DATABASE APPLICATION FRAMEWORK 21

schema of object interactions accurately representing the physical
world pivotal in the development of laboratory record keeping.

Methods

Database Management System

In order to cast complex laboratory metadata into tractable re-
lationships with high enough entry numbers for statistical anal-
ysis, as well as in order to reduce data redundancy and the
risk of introducing anomalies, we opt for a relational database
management system, as interfaced with via SQLAlchemy. The
scalability and input flexibility advantages of noSQL databases do
not apply well to the content at hand, as experimental metadata
is small, reliable, and slowly obtained enough to make scala-
bility a secondary concern and schema quality and consistency
a principal concern. Our robust but easily extendable schema
design encapsulates contributors’ wet work procedural knowledge,
and is valuable in excess of creating an efficient storage model;
as well-chosen predefined attributes facilitate reproducibility and
encourage standardization in reporting and comparability across
experiments.

Database Schema Design

The current database schema was generated from numerous bona
fide spreadsheet formats used at the Psychiatry University Clinic,
ETH, and University of Zurich. Iteratively, these spreadsheets are
being normalized to first, second, third, and fourth normal forms
(eliminating multivalued attributes, partial dependencies, transi-
tive dependencies, and multivalued dependencies, respectively)
[Cod74]. As the database schema of the current release (0.0.1)
consists of over 40 tables, and is expected to expand as more
facets of wet work are tracked, ensuring that relationships are
well-formed will remain an ongoing process. The perpetually non-
definitive nature of the database schema is also conditioned by the
continuous emergence of new wet work methods.

Record Keeping and Structure Migration

We use version tracking via Git to provide both a verifiable
primary input record, and the possibility to correct entries (e.g.
typos) in order to facilitate later database usage in analysis.
Version tracking of databases, however, is rendered difficult by
their binary format. To mitigate this issue, as well as the aforemen-
tioned continuous structure update requirement, we track modular
Python function calls which use the LabbookDB input application
programming interface (API) to generate a database—instead of
the database itself. We refer to this repository of Python function
calls as the “source code” of the database.

Input Design

The LabbookDB input API consists of Python functions which
interface with SQLAlchemy, and accept dictionary and string
parameters for new entry specification and existing entry iden-
tification, respectively. These Python functions are wrapped for
command line availability via argh—as sub-commands under the
master command LDB in order to conserve executable namespace.
Dictionaries are passed to the command line surrounded by sim-
ple quotes, and a LabbookDB-specific syntax was developed to
make entry identification considerably shorter than standard SQL
(though only arguably more readable).

Output Design

Outputs include simple human-readable command line reports
and spreadsheets, .pdf protocols, introspective graphs, and
dataframes. Dataframe output is designed to support both the
Pandas DataFrame format and export as .csv. The dataframe
conventions are kept simple and are perfectly understood by
BehavioPy [Chr16], a collection of plotting functions originally
developed as part of LabbookDB, but now branched off for more
general usage. The formatting of command line reports is built
by concatenating __str__ methods of queryable objects and
their immediate relationships, and is based on the most common
use cases for rapid monitoring. Contingent on the availability of
object-specific formatting guidelines, an interface is available for
generating human-readable, itemized .pdf protocols.

Scope

To accommodate for a developing schema, reduce dependencies,
and reduce usage difficulty, we opt to showcase LabbookDB as
a personal database system, using SQLite as an engine. As such,
the database is stored locally, managed without a client-server
model, and accessed without the need for authentication. The
scope thus extends to maximally a few users, which trust each
other with full access. This is an appropriate scope for most
research groups. Additionally, this design choice enables single
researchers or clusters of researchers within a larger group to
autonomously try out, test, contribute to, or adopt LabbookDB
without significant overhead or the need for a larger institutional
commitment.

Quality Control

LabbookDB provides an outline for unit testing which ships in
the form of a submodule. Currently this is populated with a
small number of simple example tests for low-level functionality,
and is intended to grow as individual code units become more
hardened. Additionally, we provide extensive integration testing
which assures that the higher-level functionality of LabbookDB
remains consistent, and that databases can be regenerated from
updated source code as needed. The ever-increasing data required
for extensive integration testing is distributed independently of
LabbookDB and PIP, in a separate Git repository named Demolog
[Chr17b]. Both unit and integration tests are currently run contin-
uously with TravisCI.

Development Model

The database schema draws from ongoing input, testing, and the
wet work experience of many researchers associated with the
Institute of Biomedical Engineering and the Animal Imaging Cen-
ter at the ETH and University of Zurich. The development team
currently consists of one programmer (corresponding author), who
will maintain and actively develop LabbookDB at least until
2019—independently of community involvement. Beyond that
time point development may become contingent on the established
impact of the project, including number of contributors, academic
recognition of the metadata management system, adoption in the
scientific Python or biomedical community, or the prospect of
developing commercial tools to leverage the open source schema
and API.



22 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Documentation

Project documentation is published via Read the Docs, and con-
tains a general project description, alongside installation instruc-
tions and a browsable listing of the API. The documentation model
is based primarily on docstrings, but also contains example func-
tions and example input stored in the corresponding submodule.
A number of fully reproducible minimal input (working with the
Demolog data only) versions of these functions are also presented
in this paper.

Capabilities

The aforementioned integration testing data reposited as Demolog
[Chr17b] demonstrates the capabilities of this first LabbookDB
release in a concise fashion. Contingent on the presence of
LabbookDB 0.0.1 [Chr17a] and its dependencies on the system,
an example database can be built—and correspondingly described
subsequent entries can be executed locally. To set up the example
database, the following should be run from the terminal:
mkdir ~/src
cd ~/src
git clone https://bitbucket.org/TheChymera/demolog
cd demolog/from_python_code
./generate_db.py
mkdir ~/syncdata
cp meta.db ~/syncdata

Note that, for the examples to work, it is mandatory to create the
src and syncdata directories under the user’s home path.

Entry Insertion and Update

The Python API allows for clearly laid out entry insertion, via the
add_generic() function:
add_generic(db_location, parameters={

"CATEGORY":"Animal",
"sex":"m",
"ear_punches":"L",
"license":"666/2013",
"birth_date":"2016,7,21",
"external_ids":[

{"CATEGORY":"AnimalExternalIdentifier",
"database":"ETH/AIC",
"identifier":"5682",
},

{"CATEGORY":"AnimalExternalIdentifier",
"database":"UZH/iRATS",
"identifier":"M2889"
},

],
"genotypes":["Genotype:code.datg"],
})

Technically, all entries could be created in such a fashion. How-
ever, in order to better organize logging (e.g. quarterly, as in the
Demolog submodules), we provide an additional function for entry
update. Instead of editing the original animal input file to set e.g.
the death date, the animal entry can be updated via a separate
function call:
append_parameter(db_location,

entry_identification="Animal:external_ids."
"AnimalExternalIdentifier:database."
"ETH/AIC&#&identifier.5682",

parameters={
"death_date":"2017,5,13,17,25",
"death_reason":"end of experiment",
}

)

In this example an existing entry is selected in a compact fashion
using custom LabbookDB syntax.

Compact Syntax for Entry Selection

In order to compactly identify related for data input, we have de-
veloped a custom LabbookDB syntax. This syntax is automatically
parsed by the labbookdb.db.add.get_related_ids()
function, which is called internally by input functions. Notably,
understanding of this syntax is not required in order to use
reporting functions, and plenty of examples of its usage for input
can be seen in Demolog.

Custom LabbookDB syntax is not written as a wrapper for
SQL, but rather specifically designed to satisfy LabbookDB entry
selection use cases in a minimum number of characters. This is
primarily provided to facilitate database manipulation from the
command line, though it also aids in making database source code
more clearly laid out

Consider the string used to identify the entry to be updated in
the previous code snippet (split to fit document formatting):
"Animal:external_ids.AnimalExternalIdentifier:datab"
"ase.ETH/AIC&#&identifier.5682"

Under the custom LabbookDB syntax, the selection string always
starts with the entry’s object name (in the string at hand, Animal).
The object name is separated from the name of the attribute to
be matched by a colon, and the attribute name is separated from
the value identifying the existing entry by a period. The value
can be either a string, or—if the string contains a colon—it is
presumed to be another object (which is then selected using the
same syntax). Multiple matching constraints can be specified,
by separating them via double ampersands. Inserting one or
multiple hashtags in between the ampersands indicates at what
level the additional constraint is to be applied. In the current
example, two ampersands separated by one hashtag mean that
an AnimalExternalIdentifier object is matched contin-
gent on a database attribute value of "ETH/AIC" and an
identifier attribute value of "5682". Had the ampersands
not been separated by a hashtag, the expression would have
prompted LabbookDB to apply the additional identifier
attribute constraint not to the AnimalExternalIdentifier
object, but one level higher, to the Animal object.

Command Line Reporting

Quick reports can be generated directly via the command line, e.g.
in order to get the most relevant aspects of an animal at a glance.
The following code should be executable locally in the terminal,
contingent on LabbookDB example database availability:
LDB animal-info -p ~/syncdata/meta.db 5682 ETH/AIC

The code should return an overview similar to the following,
directly in the terminal:
Animal(id: 15, sex: m, ear_punches: L):

license: 666/2013
birth: 2016-07-21
death: 2017-05-13 (end of experiment)
external_ids: 5682(ETH/AIC), M2889(UZH/iRATS)
genotypes: DAT-cre(tg)
cage_stays:

cage 31, starting 2016-12-06
cage 37, starting 2017-01-10

operations:
Operation(2017-03-04 10:30:00: virus_injection)
Operation(2017-03-20 13:00:00: optic_implant)

treatments:
measurements:

Weight(2016-12-22 13:35:00, weight: 29.6g)
Weight(2017-03-30 11:48:00, weight: 30.2g)
fMRI(2016-12-22 13:35:49, temp: 35.0)

http://labbookdb.readthedocs.io/en/latest/
https://github.com/TheChymera/LabbookDB/blob/master/labbookdb/report/examples.py


LABBOOKDB: A WET-WORK-TRACKING DATABASE APPLICATION FRAMEWORK 23

fMRI(2017-03-30 11:48:52, temp: 35.7)
Weight(2017-04-11 12:33:00, weight: 29.2g)
fMRI(2017-04-11 12:03:58, temp: 34.8)
Weight(2017-05-13 16:53:00, weight: 29.2g)

Human Readable Spreadsheets

LabbookDB can join tables from the database in order to construct
comprehensive human-readable spreadsheet overviews. Storing
information in a well-formed relational structure allows for ver-
satile and complex reporting formats. In the following model,
for instance, the “responsive functional measurements” column
is computed automatically from the number of fMRI measure-
ments and the number of occurrences of the "ICA failed to
indicate response to stimulus" irregularity on these
measurements.

Contingent on the presence of LabbookDB and the example
database, the following lines of code should generate a dataframe
formatted in the same fashion as Table 1, and return it directly in
the terminal, or save it in .html format, respectively:
LDB animals-info ~/syncdata/meta.db
LDB animals-info ~/syncdata/meta.db -s overview

An example of the .html output can be seen in the Demolog
repository under the outputs directory.

Printable Protocol Output

LabbookDB can create .pdf outputs to serve as portable step-by-
step instructions suitable for computer-independent usage. This
capability, paired with the database storage of e.g. protocol
parameters means that one can store and assign very many
protocol variants internally (with a minuscule storage footprint),
and conveniently print out a preferred protocol for collaborators,
technicians, or students, without encumbering their workflow with
any unneeded complexity. The feature can be accessed from
the labbookdb.report.examples module. The following
code should be executable locally, contingent on LabbookDB and
example database availability:
from labbookdb.report.examples import protocol

class_name = "DNAExtractionProtocol"
code = "EPDqEP"
protocol("~/syncdata/meta.db", class_name, code)

This should create a DNAExtractionProtocol_EPDqEP.pdf
file identical to the one tracked in Demolog.

Introspection

LabbookDB ships with a module which generates graphi-
cal representations of the complex relational structures im-
plemented in the package. The feature is provided by the
labbookdb.introspection.schema module. The follow-
ing code should be executable locally, contingent on LabbookDB
availability:
from labbookdb.introspection.schema import generate

extent=[
"Animal",
"FMRIMeasurement",
"OpenFieldTestMeasurement",
"WeightMeasurement",
]

save_plot = "~/measurements_schema.pdf"
generate(extent, save_plot=save_plot)

This example should generate Figure 1 in .pdf format (though
.png is also supported).

Animal

★ id INTEGER

⚪ birth_date DATETIME

⚪ death_date DATETIME

⚪ death_reason VARCHAR

⚪ ear_punches VARCHAR

⚪ license VARCHAR

⚪ maximal_severtity INTEGER

⚪ sex VARCHAR

⚪ biopsies PROPERTY

⚪ cage_stays PROPERTY

⚪ external_ids PROPERTY

⚪ genotypes PROPERTY

⚪ measurements PROPERTY

⚪ observations PROPERTY

⚪ operations PROPERTY

⚪ treatments PROPERTY

FMRIMeasurement

★ id INTEGER

☆ anesthesia_id INTEGER

☆ animal_id INTEGER

☆ cage_id INTEGER

☆ operator_id INTEGER

☆ scanner_setup_id INTEGER

⚪ date DATETIME

⚪ temperature FLOAT

⚪ type VARCHAR(50)

⚪ anesthesia PROPERTY

⚪ irregularities PROPERTY

⚪ laser_stimulations PROPERTY

⚪ operator PROPERTY

⚪ scanner_setup PROPERTY

animal_id

Measurement

OpenFieldTestMeasurement

★ id INTEGER

☆ animal_id INTEGER

☆ arena_id INTEGER

☆ cage_id INTEGER

☆ operator_id INTEGER

⚪ center_luminostiy INTEGER

⚪ corner_luminostiy INTEGER

⚪ date DATETIME

⚪ edge_luminostiy INTEGER

⚪ type VARCHAR(50)

⚪ evaluations PROPERTY

⚪ irregularities PROPERTY

⚪ operator PROPERTY

animal_id

WeightMeasurement

★ id INTEGER

☆ animal_id INTEGER

☆ cage_id INTEGER

☆ operator_id INTEGER

☆ weight_unit_id INTEGER

⚪ date DATETIME

⚪ type VARCHAR(50)

⚪ weight FLOAT

⚪ irregularities PROPERTY

⚪ operator PROPERTY

⚪ weight_unit PROPERTY

animal_id

Fig. 1: LabbookDB schema section, illustrating the polymorphic rela-
tionship between Animal objects and different Measurement variants.

Polymorphic Mapping and Schema Extension

In current research, it is common to subject animals to experimen-
tal procedures which are similar in kind, but which can be split
into categories with vastly different attributes. Prime examples
of such procedures are Measurements and Operations.
In Figure 1 we present how LabbookDB uses SQLAlchemy’s
joined table inheritance to link different measurement types to the
measurements attribute of the Animal class. Attributes com-
mon to all measurement types are stored on the measurements
table, as are relationships common to multiple measurements
(e.g. the relationship to the Animal class, instantiated in the
animal_id attribute).

One of the foremost requirements for a relational database
application to become a general purpose lab book replace-
ment is an easily extendable schema. The Measurement and
Operation base classes demonstrate how inheritance and poly-
morphic mapping can help extend the schema to cover new types
of work without changing existing classes. Polymorphism can
be extended to more classes, to further propagate this feature.
For instance, all measurement subjects in LabbookDB databases
are currently recorded as Animal objects. This is adequate for
most rodents, however it remains inadequate for e.g. human
subjects. The issue would best be resolved by creating a Subject
class, with attributes (including relationships) common to multiple
types of subjects, and then creating derived classes, such as
HumanSubject or MouseSubject to track more specific at-
tributes. Measurement and Operation assignments would be
seamlessly transferable, as relationships between objects derived
from the Subject base class and e.g. the Operation base class
would be polymorphic.

https://bitbucket.org/TheChymera/demolog/raw/9ce8ca3b808259a1cfe74169d7a91fb40e4cfd90/outputs/DNAExtractionProtocol_EPDqEP.pdf


24 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Animal_id ETH/AIC UZH/iRATS Genotype_code Animal_death_date responsive functional measurements

45 6258 M5458 datg 2017-04-20 18:30:00 0/0
44 6262 M4836 eptg None 2/2
43 6261 M4835 eptg 2017-04-09 18:35:00 0/0
42 6256 M4729 epwt None 0/0
41 6255 M4728 eptg None 2/2

TABLE 1: Example of a human-readable overview spreadsheet generated via the LabbookDB command line functionality.

Atomized Relationships

We use the expression “atomized relationships” to refer to the
finest grained representation of a relationship which can feasibly
be observed in the real world. In more common relational model
terms, higher atomization would correspond to higher normal
forms—though we prefer this separate nomenclature to emphasize
the preferential consideration of physical interactions, with an
outlook towards more easily automated wet work tracking. Simi-
larly to higher normal forms, increasingly atomized relationships
give rise to an increasingly complex relational structure of objects
with decreasing numbers of attributes. LabbookDB embraces the
complexity thus generated and the flexibility and exploratory
power it facilitates. Database interaction in LabbookDB is by
design programmatic, an thus ease of human readability of the
raw relational structure is only of subordinate concern to reporting
flexibility.

An example of relationship atomization is showcased in Fig-
ure 2. Here the commonplace one-to-many association between
Cage and Animal objects is replaced by a CageStay junction
table highlighting the fact that the relationship between Cage
and Animal is bounded by time, and that while it is many-
to-one at any one time point, in the overarching record it is,
in fact, many-to-many. This structure allows animals to share
a cage for a given time frame, and to be moved across cages
independently—reflecting the physical reality in animal housing
facilities. This complexity is seamlessly handled by LabbookDB
reporting functions, as seen e.g. in the command line reporting
example previously presented.

Conversely, atomization can result in a somewhat simpler
schema, as higher level phenomena may turn out to be special
cases of atomized interactions. By design (and in contrast to the
MouseDB implementation), we would not track breeding cages as
a separate entity, as the housing relationships are not distinct from
those tracked by the CageStay object. A separate object may
rather be introduced for breeding events—which need not overlap
perfectly with breeding cages.

Irregularity and Free Text Management

The atomized schema seeks to introduce structure wherever pos-
sible, but also provides a bare minimum set of free-text fields,
to record uncategorizable occurrences. Irregular events associated
with e.g. Measurement or Operation instances are stored
in the irregularities table, and linked by a many-to-many
relationship to the respective objects. This not only promotes
irregularity re-use, but also facilitates rudimentary manual pattern
discovery, and the organic design of new objects within the
schema.

Irregular events can also be recorded outside of predetermined
interventions, via Observation objects. These objects have
their own date attribute, alongside free-text attributes, and a

Animal

★ id INTEGER

⚪ birth_date DATETIME

⚪ death_date DATETIME

⚪ death_reason VARCHAR

⚪ ear_punches VARCHAR

⚪ license VARCHAR

⚪ maximal_severtity INTEGER

⚪ sex VARCHAR

⚪ biopsies PROPERTY

⚪ cage_stays PROPERTY

⚪ external_ids PROPERTY

⚪ genotypes PROPERTY

⚪ measurements PROPERTY

⚪ observations PROPERTY

⚪ operations PROPERTY

⚪ treatments PROPERTY

CageStay

★ id INTEGER

☆ cage_id INTEGER

⚪ single_caged VARCHAR

⚪ start_date DATETIME

⚪ animals PROPERTY

⚪ cage PROPERTY

report_animals() METHOD

Cage

★ id INTEGER

⚪ environmental_enrichment VARCHAR

⚪ id_local VARCHAR

⚪ location VARCHAR

⚪ handling_habituations PROPERTY

⚪ measurements PROPERTY

⚪ stays PROPERTY

⚪ treatments PROPERTY

cage_id

cage_stay_associations

☆ animals_id INTEGER

☆ cage_stays_id INTEGER

animals_id cage_stays_id

Fig. 2: LabbookDB schema section, illustrating a more complex and
accurate representation of the relational structure linking animals and
cages in the housing facility.

value attribute, to more appropriately record a quantifiable trait
in the observation.

Plotting via BehavioPy

LabbookDB provides a number of powerful data selection
and processing functions, which produce consistently structured
dataframes that seamlessly integrate with the BehavioPy [Chr16]
plotting API. The forced swim test, for instance, is a preclinically
highly relevant behavioural assay [PDCB05], which LabbookDB
can document and evaluate. The following example code should be
executable locally, contingent on LabbookDB, example database,
and example data (included in Demolog) availability:

https://github.com/davebridges/mousedb/blob/49b0a2c4eb7008fb8ed663d6a05a96d52d2a6d6d/mousedb/animal/models.py#L276
https://github.com/davebridges/mousedb/blob/49b0a2c4eb7008fb8ed663d6a05a96d52d2a6d6d/mousedb/animal/models.py#L276


LABBOOKDB: A WET-WORK-TRACKING DATABASE APPLICATION FRAMEWORK 25

ID Immobility Ratio Interval [1 min] Treatment

28 0.2635 3 Control
28 0.1440 2 Control
30 0.6813 3 Control
1 0.6251 6 Fluoxetine
32 0.6695 5 Fluoxetine
2 0.6498 6 Fluoxetine

TABLE 2: Example of LabbookDB processed data output for the
forced swim test. The format precisely matches the requirements of
BehavioPy plotting functions.

1 2 3 4 5 6

Interval [1 min]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Im
m

o
b
ili

ty
 R

a
ti

o

Control

Fluoxetine

Fig. 3: Timecourse plot of the forced swim test performed on mice in
different treatment groups—automatically generated by LabbookDB,
using plotting bindings from BehavioPy.

import matplotlib.pyplot as plt
from labbookdb.report.behaviour import forced_swim

start_dates = ["2017,1,31,22,0","2016,11,24,21,30"]
forced_swim("~/syncdata/meta.db", "tsplot",

treatment_start_dates=start_dates
save_df="~/fst_df.csv")

plt.show()

The above code prompts LabbookDB to traverse the complex
relational structure depicted in Figure 4, in order to join the values
relevant to evaluation of the forced swim test. Animal objects
are joined to Treatment.code values via their relationships
to Cage and CageStay objects. This relational structure is de-
termined by the administration of drinking water treatments at the
cage level, and thus their contingence on the presence of animals in
cages at the time of the treatment. Further, Evaluation.path
values are joined to Animal objects (via their respective rela-
tionships to Measurement objects) in order to determine where
the forced swim test evaluation data is stored for every animal.
Subsequently, the annotated event tracking data is processed into
desired length time bins (here, 1 minute), and immobility ratios are
calculated per bin. Finally, the data is cast into a consistent and
easily readable dataframe (formatted in the same fashion as Table
2) which can be both saved to disk, or passed to the appropriate
BehavioPy plotting function, to produce Figure 3.

Discussion and Outlook

Record Keeping

Version tracking of database generation source code adequately
addresses the main record keeping challenges at this stage of the
project. Additionally, it has a number of secondary benefits, such
as providing comprehensive and up-to-date usage examples. Not
least of all, this method provides a very robust backup—as the
database can always be rebuilt from scratch. A very significant
drawback of this approach, however, is poor scalability.

As the amount of metadata reposited in a LabbookDB database
increases, the time needed for database re-generation may reach
unacceptable levels. Disk space usage, while of secondary con-
cern, may also become an issue. Going forward, better solutions
for record keeping should be implemented.

Of available options we would preferentially consider input
code tracking (if possible in a form which is compatible with
incremental execution) rather than output code tracking (e.g. in the
form of data dumps). This is chiefly because output code tracking
would be dependent not only of the data being tracked, but also
of the version of LabbookDB used for database creation—ideally
these versioning schemes would not have to become convoluted.

Structure Migration

The long-term unsustainability of database source code tracking
also means that a more automated means of structure migration
should be developed, so that LabbookDB databases can be re-
cast from older relational structures into improved and extended
newer structures—instead of relying on source code editing and
regeneration from scratch. Possibly, this could be handled by
shipping an update script with every release—though it would be
preferable if this could be done in a more dynamic, rolling release
fashion.

Data Input

Data input via sequential Python function calls requires a signif-
icant amount of boilerplate code, and appears very intransparent
for users unaccustomed to the Python syntax. It also requires inter-
facing with an editor, minding syntax and formatting conventions,
and browsing directory trees for the appropriate file in which to
reposit the function calls.

While LabbookDB provides a command line interface to input
the exact same data with the exact same dictionary and string
conventions with arguably less boilerplate code, this input format
has not been implemented for the full database generation source
code. The main concern precluding this implementation is that the
syntax, though simplified form standard SQL, is not nearly simple
enough to be relied on for the robustness of thousands of manual
input statements generated on-site.

A better approach may be to design automated recording work-
flows, which prompt the researcher for values only, while applying
structure internally, based on a number of templates. Another
possibility would be to write a parser for spreadsheets, which
applies known LabbookDB input structures, and translates them
into the internal relational representation. This second approach
would also benefit from the fact that spreadsheets are already a
very popular way in which researchers record their metadata—and
could give LabbookDB the capability to import large numbers of
old records, with comparatively little manual intervention.

Not least of all, the ideal outlook for LabbookDB is to
automatically handle as much of the data input process as possible,



26 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Animal

★ id INTEGER

⚪ birth_date DATETIME

⚪ death_date DATETIME

⚪ death_reason VARCHAR

⚪ ear_punches VARCHAR

⚪ license VARCHAR

⚪ maximal_severtity INTEGER

⚪ sex VARCHAR

⚪ biopsies PROPERTY

⚪ cage_stays PROPERTY

⚪ external_ids PROPERTY

⚪ genotypes PROPERTY

⚪ measurements PROPERTY

⚪ observations PROPERTY

⚪ operations PROPERTY

⚪ treatments PROPERTY

ForcedSwimTestMeasurement

★ id INTEGER

☆ animal_id INTEGER

☆ cage_id INTEGER

☆ operator_id INTEGER

⚪ date DATETIME

⚪ recording VARCHAR

⚪ recording_bracket VARCHAR

⚪ temperature FLOAT

⚪ type VARCHAR(50)

⚪ evaluations PROPERTY

⚪ irregularities PROPERTY

⚪ operator PROPERTY

animal_id

Cage

★ id INTEGER

⚪ environmental_enrichment VARCHAR

⚪ id_local VARCHAR

⚪ location VARCHAR

⚪ handling_habituations PROPERTY

⚪ measurements PROPERTY

⚪ stays PROPERTY

⚪ treatments PROPERTY

cage_id

Measurement

★ id INTEGER

☆ animal_id INTEGER

☆ cage_id INTEGER

☆ operator_id INTEGER

⚪ date DATETIME

⚪ type VARCHAR(50)

⚪ irregularities PROPERTY

⚪ operator PROPERTY

Evaluation

★ id INTEGER

☆ author_id INTEGER

☆ measurement_id INTEGER

⚪ path VARCHAR

⚪ author PROPERTY

measurement_id

CageStay

★ id INTEGER

☆ cage_id INTEGER

⚪ single_caged VARCHAR

⚪ start_date DATETIME

⚪ animals PROPERTY

⚪ cage PROPERTY

report_animals() METHOD

cage_idanimal_id cage_id

Treatment

★ id INTEGER

☆ protocol_id INTEGER

⚪ end_date DATETIME

⚪ start_date DATETIME

⚪ animals PROPERTY

⚪ cages PROPERTY

⚪ protocol PROPERTY

Protocol

★ id INTEGER

⚪ code VARCHAR

⚪ name VARCHAR

⚪ type VARCHAR(50)

⚪ authors PROPERTY

protocol_id

cage_stay_associations

☆ animals_id INTEGER

☆ cage_stays_id INTEGER

animals_id

cage_stays_id

treatment_cage_associations

☆ cages_id INTEGER

☆ treatments_id INTEGER

cages_id treatments_id

Fig. 4: LabbookDB schema section relevant for constructing a plottable forced swim test dataframe.

e.g. via specialized sensors, via semantic image [YJW+16] or
video evaluation, or via an entity-barcode-scanner (as currently
used by the iRATS system) . This poses nontrivial engineering
challenges in excess of relation modelling, and requires distinctly
more manpower than currently available. However, LabbookDB
is from the licensing point of view suitable for use in commercial
products, and additional manpower may be provided by science
service providers interested in offering powerful, transparent, and
extendable metadata tracking to their discerning customers.

Graphical User Interface

A notable special case of data input is the graphical user interface
(GUI). While we acknowledge the potential of a GUI to attract
scientists who are not confident users of the command line, we
both believe that such an outreach effort is incompatible with
the immediate goals of the project and that it is not typically an
attractive long-term outlook for scientific Python applications.

Particularly at this stage in development, manpower is limited,
and contributions are performed on a per-need basis (little code
was written which was not relevant to addressing an actual data
management issue). Presently our foremost outreach target are

researchers who possess the technical affinity needed to test our
schema at its fringes and contribute to—or comment on—our
code and schema. A GUI would serve to add further layers of
abstraction and make it more difficult for users to provide helpful
feedback in our technology development efforts.

In the long run, we would rather look towards developing more
automatic or implicit tracking of wet work, rather than simply
writing a GUI. Our outlook towards automation also means that
a GUI is likely to remain uninteresting for the use cases of the
developers themselves, which would make the creation of such an
interface more compatible with a commercial service model than
with the classical Free and Open Source user-developer model.

REFERENCES

[Bra07] Jean-Claude Bradley. Open notebook science using blogs and
wikis. 2007.

[Bri11] Dave Bridges. Mousedb. GitHub, 2011. URL: https://github.com/
davebridges/mousedb.

[Chr16] Horea Christian. Behaviopy - behavioural data analysis and
plotting in python. GitHub, 2016. URL: https://github.com/
TheChymera/behaviopy, doi:10.5281/zenodo.188169.

https://github.com/davebridges/mousedb
https://github.com/davebridges/mousedb
https://github.com/TheChymera/behaviopy
https://github.com/TheChymera/behaviopy
http://dx.doi.org/10.5281/zenodo.188169


LABBOOKDB: A WET-WORK-TRACKING DATABASE APPLICATION FRAMEWORK 27

[Chr17a] Horea Christian. Labbookdb - lab book database schema with
information addition, retrieval, and reporting functions. GitHub,
2017. URL: https://github.com/TheChymera/LabbookDB, doi:
10.5281/zenodo.823366.

[Chr17b] Horea Christian. Logging examples for labbookdb for scipy2017
proceedings, 05 2017. URL: https://bitbucket.org/TheChymera/
demolog/src/9ce8ca3b808259a1cfe74169d7a91fb40e4cfd90?at=
master.

[CNM12] Nicolas Carpi, Pascal Noirci, and Alexander Minges. elabftw.
online, 2012. URL: https://www.elabftw.net/.

[Cod74] Edgar F. Codd. Recent investigations into relational data base
systems. Technical Report RJ1385, IBM, 4 1974.

[HTT+09] Paul A Harris, Robert Taylor, Robert Thielke, Jonathon Payne,
Nathaniel Gonzalez, and Jose G Conde. Research electronic data
capture (redcap)—a metadata-driven methodology and workflow
process for providing translational research informatics support.
Journal of biomedical informatics, 42(2):377–381, 2009.

[Ini99] Open Source Initiative. The 3-clause bsd license. online, 07 1999.
URL: https://opensource.org/licenses/BSD-3-Clause.

[PDCB05] Benoit Petit-Demouliere, Franck Chenu, and Michel Bourin.
Forced swimming test in mice: a review of antidepressant activity.
Psychopharmacology, 177(3):245–255, 2005.

[YJW+16] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo
Luo. Image captioning with semantic attention. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016.

https://github.com/TheChymera/LabbookDB
http://dx.doi.org/10.5281/zenodo.823366
http://dx.doi.org/10.5281/zenodo.823366
https://bitbucket.org/TheChymera/demolog/src/9ce8ca3b808259a1cfe74169d7a91fb40e4cfd90?at=master
https://bitbucket.org/TheChymera/demolog/src/9ce8ca3b808259a1cfe74169d7a91fb40e4cfd90?at=master
https://bitbucket.org/TheChymera/demolog/src/9ce8ca3b808259a1cfe74169d7a91fb40e4cfd90?at=master
https://www.elabftw.net/
https://opensource.org/licenses/BSD-3-Clause

	Introduction
	Methods
	Database Management System
	Database Schema Design
	Record Keeping and Structure Migration
	Input Design
	Output Design
	Scope
	Quality Control
	Development Model
	Documentation

	Capabilities
	Entry Insertion and Update
	Compact Syntax for Entry Selection
	Command Line Reporting
	Human Readable Spreadsheets
	Printable Protocol Output
	Introspection
	Polymorphic Mapping and Schema Extension
	Atomized Relationships
	Irregularity and Free Text Management
	Plotting via BehavioPy

	Discussion and Outlook
	Record Keeping
	Structure Migration
	Data Input
	Graphical User Interface

	References

