Skip to contentSkip to frontmatterSkip to Backmatter

PyHRF: A Python Library for the Analysis of fMRI Data Based on Local Estimation of the Hemodynamic Response Function

,
,
,
,
,
,

Abstract

Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging technique that allows the non-invasive study of brain function. It is based on the hemodynamic variations induced by changes in cerebral synaptic activity following sensory or cognitive stimulation. The measured signal depends on the variation of blood oxygenation level (BOLD signal) which is related to brain activity: a decrease in deoxyhemoglobin concentration induces an increase in BOLD signal. The BOLD signal is delayed with respect to changes in synaptic activity, which can be modeled as a convolution with the Hemodynamic Response Function (HRF) whose exact form is unknown and fluctuates with various parameters such as age, brain region or physiological conditions.

In this paper we present PyHRF, a software to analyze fMRI data using a Joint Detection-Estimation (JDE) approach. It jointly detects cortical activation and estimates the HRF. In contrast to existing tools, PyHRF estimates the HRF instead of considering it as a given constant in the entire brain. Here, we present an overview of the package and showcase its performance with a real case in order to demonstrate that PyHRF is a suitable tool for clinical applications.

License

Copyright © 2017 Arias et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creators.

Abbreviations
BOLD
Blood Oxygenation Level
fMRI
Functional Magnetic Resonance Imaging
HRF
Hemodynamic Response Function
JDE
Joint Detection-Estimation