
PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017) 57

FigureFirst: A Layout-first Approach for Scientific
Figures

Theodore Lindsay‡, Peter T. Weir¶, Floris van Breugel§∗

F

Abstract—One major reason that Python has been widely adopted as a sci-
entific computing platform is the availability of powerful visualization libraries.
Although these tools facilitate discovery and data exploration, they are difficult
to use when constructing the sometimes-intricate figures required to advance
the narrative of a scientific manuscript. For this reason, figure creation often
follows an inefficient serial process, where simple representations of raw data
are constructed in analysis software and then imported into desktop publishing
software to construct the final figure. Though the graphical user interface of
publishing software is uniquely tailored to the production of publication quality
layouts, once the data are imported, all edits must be re-applied if the analysis
code or underlying dataset changes. Here we introduce a new Python package,
FigureFirst, that allows users to design figures and analyze data in a paral-
lel fashion, making it easy to generate and continuously update aesthetically
pleasing and informative figures directly from raw data. To accomplish this,
FigureFirst acts as a bridge between the Scalable Vector Graphics (SVG) format
and Matplotlib [Hunter08] plotting in Python. With FigureFirst, the user specifies
the layout of a figure by drawing a set of rectangles on the page using a
standard SVG editor such as Inkscape [Altert13]. In Python, FigureFirst uses
this layout file to generate Matplotlib figures and axes in which the user can
plot the data. Additionally, FigureFirst saves the populated figures back into the
original SVG layout file. This functionality allows the user to adjust the layout
in Inkscape, then run the script again, updating the data layers to match the
new layout. Building on this architecture, we have implemented a number of
features that make complex tasks remarkably easy including axis templates;
changing attributes of standard SVG items such as their size, shape, color, and
text; and an API for adding JessyInk [Jagannathan12] extensions to Matplotlib
objects for automatically generating animated slide presentations. We have used
FigureFirst to generate figures for publications [Lindsay17] and provide code
and the layouts for the figures presented in this manuscript at our GitHub page:
http://flyranch.github.io/figurefirst/.

Index Terms—plotting, figures, SVG, Matplotlib

Introduction

Visualization has long been a critical element in the iterative
process of science. Skill with the pen allowed the early pioneers
of the scientific revolution to share, explain, and convince: Galileo
was trained in the Florentine Accademie delle Arti del Disegno;
and the intricate drawings of Da Vinci and Vesalius served to
overturn Galen’s entrenched theories—with Vesalius’s historic

‡ Caltech Division of Biology and Biological Engineering
¶ Data Science at Yelp
* Corresponding author: florisvb@gmail.com
§ University of Washington

Copyright © 2017 Theodore Lindsay et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

textbook paving the way for William Harvey’s discovery of a
unified circulatory system [Aird11].

Although new web-enabled media formats are emerging to
provide alternative mechanisms for scientific communication, the
static printed publication remains the centerpiece of scientific
discourse. A well-designed sequence of data-rich figures makes it
easy for other researchers across disciplines to follow the narrative,
assess the quality of the data, criticize the work, and remember the
conclusions. In fact, the importance of the narrative in organizing
and structuring the logic of research has led some to propose
that writing the manuscript should be a more integral part of
the original design and execution of experiments [Whitesides04].
According to this view, the researcher should create a text outline,
as well as a visual story-board, long before all the data have been
collected and analyzed. As new results come to light, the story-
board is updated with new data and new experiments.

From a practical standpoint, taking this iterative approach
with data-rich figures is challenging because desktop publishing
and illustration software is not integrated with scientific analysis
software, and using the Matplotlib API to directly specify plotting
details is time consuming (Fig. 1). A few of the commercial
software packages such as MATLAB(TM) and SigmaPlot(TM)
provide some graphical tools to assist in figure layout, but these
are severely limited compared to those available in vector graphics
software such as Inkscape or Adobe Illustrator(TM), especially
when creating multi-panel figures. For this reason, figure gener-
ation usually follows a unidirectional workflow in which authors
first write code to analyze and plot the raw data, and only later do
they import the figures into desktop publishing software for final
editing and styling for press.

We created the open-source FigureFirst library to enable
interoperability between open-source plotting and analysis tools
available in Python (e.g. Matplotlib) and the graphical user inter-
face provided by Scalable Vector Graphics (SVG) editors such
as the open-source application Inkscape. By drawing a series
of boxes in a blank SVG document, a researcher may rapidly
generate a prototype of a multi-panel figure, and then populate this
figure using powerful analysis and plotting functions in Python.
The FigureFirst library allows the user to insert these plots back
into the prototype SVG document, completing the loop between
visualization and analysis. As data are collected, individual sub-
panels in the figure may be populated, moved, resized or removed
as the events of the ongoing study warrant. In this manner, the
library facilitates a more iterative approach to this key aspect of
the scientific method. Finally, by embedding information about the
scripts used to generate the final figures within the SVG document

http://flyranch.github.io/figurefirst/
mailto:florisvb@gmail.com

58 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Fig. 1: Figurefirst allows the plotting axes in a multi-panel figure to be
quickly placed in a flexible and meaningful way. (A) A plot of the iris
dataset created using the Matplotlib and gridspec API. (B) The same
data plotted using FigureFirst. Note that the less rigid placement of
axes helps highlight the inherent structure of the data. The full 27-line
script used to create this panel can be found in the Summary and
Future Directions section.

itself, FigureFirst makes it possible to store an automatically
updated and complete log of the transformation from raw data
to a publication quality figure, encapsulating the analysis routine
within the final figure. Thus, every step of the process may be kept
under version control and published along with the manuscript,
greatly increasing the transparency and reproducibility of the final
publication.

Below we provide a short overview of the interface to the
library in the Basic Usage section. We discuss more details on
how to generate a layout file using Inkscape and xml tags in the
Groups and Templates section. The Architecture section contains
a more detailed description of the library for those interested in
contributing to the project.

Basic Usage

With FigureFirst creating a new figure generally involves four
steps:

1) Design the layout file. (Fig. 2A) Fundamentally this
step entails decorating a specific subset of the objects

in the SVG file with xml tags that identify what objects
FigureFirst should expose to Python. For instance, the
user specifies a Matplotlib axis by tagging an SVG
<rect/> with the <figurefirst:axis> tag. If
using Inkscape, we facilitate this step with a number of
optional Inkscape extensions (Fig. 3).

2) Import the layout into Python. (Fig. 2B) Construct
a FigureLayout object with the path to the layout
file and then call the make_mplfigures() method of
this object to generate Matplotlib figures and axes as
specified in the layout.

3) Plot data. (Fig. 2C) All the newly created figure
axes are available within the axes dictionary of the
FigureLayout object.

4) Save to SVG. SVG graphics are merged with Matplotlib
figures, allowing complex vector art to be quickly incor-
porated as overlays or underlays to your data presenta-
tion.

As an example, to generate Figure 2 we used Inkscape
to construct a .SVG document called ’workflow_layout.SVG’
containing a layer with three gray rectangles. We then used
the tag axis Inkscape extension (Figure 3) to identify each
<rect/> with a <figurefirst:axes> tag that has a
unique name as an attribute. For instance, we tagged the gray
rectangle that became panel C with <figurefirst:axis
figurefirst:name="plot_data" />. In this example
we have drawn in the axes spines and included this with the
arrows and other annotations on a separate layer in the .SVG file to
illustrate one way to use vector art overlays in a layout document.

In Python we may then use the FigureFirst module to plot
some data to this axis using the following code:

1 import figurefirst as fifi
2 layout = fifi.FigureLayout('workflow_layout.SVG')
3 layout.make_mplfigures()
4 fifi.mpl_functions.kill_all_spines(layout)
5 x = np.linspace(0,2*pi); y = np.sin(x)
6 layout.axes['plot_data'].plot(x,y)
7 layout.save('workflow.SVG')

Lines 2 and 3 are responsible for parsing the layout document
and generating the Matplotlib figures. In line 4 we pass the
layout to a helper function in the mpl_functions submodule
that removes the axes spines from all the axes contained within
the layout. Lines 5-6 plot the data and line 7 saves the layout
to a new SVG document called ’workflow.SVG’ with all the
Matplotlib axes associated with this figure inserted into a new
layer. Because usually one will want to use Matplotlib to generate
the axis spines we have included an auxiliary submodule called
mpl_functions that contains a number of utility functions
that operate on figures generated from layouts to apply consistent
spine-styles and formats accross the axes of a figure. The rest of
the figure panels were also generated in Python by simply calling
layout['panel_name'].imshow(screenshot_image).
Note that there is nothing keeping us from using this new
document as a layout document itself, enabling the placement of
vector graphics objects in relation to plotted features.

Groups and Templates

Because the figurefirst:name attribute of the tagged
<rect> will be used as the key in the layout.axes dictionary in
Python, each panel in this example must be given a unique name.

FIGUREFIRST: A LAYOUT-FIRST APPROACH FOR SCIENTIFIC FIGURES 59

Fig. 2: Overview of the iterative layout-based approach to figure
creation using FigureFirst. (A) The user designs a figure layout
in SVG, specifying the location and aspect-ratio of plotting axes.
Additional vector art such as arrows or stylized axes spines can be
included in the layout document. (B) FigureFirst interprets the layout
document and generates Matplotlib axes and figures that the user can
use to plot in Python. (C) When saving, the generated plots are merged
with the original layout to incorporate the non-Matplotlib graphics.
Note that this approach allows changes to the figure layout or analysis
code to be applied at any point in the workflow.

Generating these names can be a cumbersome requirement be-
cause scientific data often have a nested or hierarchical structure.
Moreover, we found that when generating the code to plot a figure,
it is useful if the organization of the layout document reflects
the underlying data. Thus, we have provided two mechanisms
to allow a hierarchical structure in the labels associated with a
layout: groups and templates. Though the interfaces for working
with these objects differ, they both generate a nested structure in
the layout.axes dictionary.

When using groups, the hierarchy is specified in SVG
by enclosing a set of tagged axes within the <g> container
that itself is tagged with <figurefirst:group> using a

Fig. 3: Screenshots of Inkscape illustrating the two mechanisms for
applying the correct xml tags, which are used by FigureFirst to
generate Matplotlib axes. (A) A dialog box allows the user to tag a
rectangle as a FigureFirst axis. (B) The user can edit the document’s
XML directly using Inkscape’s XML editor.

figurefirst:name attribute. The axes are then exposed to
the user in Python within the layout.axes dictionary keyed
by tuples that contain the path in the hierarchy e.g. myaxes =
layout.axes[(groupname, axisname)].

Though groups allow for arbitrary nesting structure within
the layout, it is common in scientific figures for a single display
motif to be replicated multiple times in a multi-panel figure. For
instance, one might want to plot data from a series of similar
experiments performed under different conditions. In this case,
the template feature allows for rapid design and modification of
the layout without the need to tag each individual axis.

To illustrate the template feature, consider the task of making
a more complex figure that describes three behavioral metrics for
three different animal groups. With FigureFirst, the user can draw
the layout for one of the groups, and then use this layout as a
template for the other two (Fig. 4A-B). Later one can add, remove,
or change the relative sizes of the axes in all three figures simply
by editing the single template. In this example, each of the three
groups was created using a new Matplotlib figure, which was
then saved to a separate layer in the SVG file (Fig. 4C). Below
is an excerpt of the code used to load the layout from Figure
3A, iterating through three groups and plotting the relevant data
into a separate layer for each group (Fig. 4B-C). The complete
code is available on our github page as a Jupyter notebook:

60 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Fig. 4: Creating and rearranging multi-panel figures using FigureFirst’s template feature. (A) Layout for a figure. (B) Output. (C) Inkscape
screenshot illustrating the layered structure. (D) Rearranged layout. (E) Output for the new layout (code remains identical). The code used to
generate these figures is available as a Jupyter Notebook on our github page: https://github.com/FlyRanch/FigureFirst/blob/master/examples/
figure_groups_and_templates/figure_templates_example.ipynb

https://github.com/FlyRanch/FigureFirst/blob/master/examples/
figure_groups_and_templates/figure_templates_example.ipynb.
1 import figurefirst as fifi
2 layout = fifi.FigureLayout(template_filename)
3 layout.make_mplfigures()
4

5 for group in ['group1', 'group2', 'group3']:
6 for ax in ['ax1', 'ax2', 'ax3']:
7 mpl_axis = layout.axes[(group, ax)]
8 mpl_axis.plot(x_data, y_data,
9 color=colors[group])

10

11 layout.append_figure_to_layer(
12 layout.figures[group], group)
13

14 layout.write_svg(output_filename)

Additional SVG/Python interoperability

The decorator language we use for the FigureFirst xml tags is
general, and we extended it to provide a simple mechanism for
passing additional information back and forth between Python and
SVG. This enables a few additional features we refer to as axis
methods, path specs, xml passing, Python tracebacks and SVG
items.

The axis methods feature allows the user to include
Python code in the layout document to be applied to
all the corresponding Matplotlib axes en mass when the
layout.apply_mpl_methods() function is called in
Python. Axis methods are enabled by adding an appropriate
attribute to the <figurefirst:axis> tag. The value of this
attribute will be parsed and passed as arguments to the method.
For instance to specify the y limits of an axis to (0, 250)
add the figurefirst:set_ylim="0,250" attribute to the
corresponding <figurefirst:axis> tag.

In keeping with the notion that vector editing software is
better suited for designing the visual landscape of a figure
than code, we created the <figurefirst:pathspec> or
<figurefirst:patchspec> tag to create a way for users
to generate a palette of line and patch styles within the layout
document and pass these to plotting functions in Python. Using
this feature, a user can explore different stroke widths, colors and
transparencies in Inkscape and then quickly pass these styles as
keyword arguments to Matplotlib plotting functions.

The two tools described above allow the user to pass informa-
tion from SVG to Python; we have also implemented features that
allow data to be passed from Python back into SVG. For instance

https://github.com/FlyRanch/FigureFirst/blob/master/examples/figure_groups_and_templates/figure_templates_example.ipynb
https://github.com/FlyRanch/FigureFirst/blob/master/examples/figure_groups_and_templates/figure_templates_example.ipynb
https://github.com/FlyRanch/FigureFirst/blob/master/examples/figure_groups_and_templates/figure_templates_example.ipynb
https://github.com/FlyRanch/FigureFirst/blob/master/examples/figure_groups_and_templates/figure_templates_example.ipynb

FIGUREFIRST: A LAYOUT-FIRST APPROACH FOR SCIENTIFIC FIGURES 61

Fig. 5: Additional features that use FigureFirst as an interface layer between SVG and Python. (A-B) SVGitems allows the attributes of SVG
objects in the layout document to be to be edited and modified in Python. In the layout (A) the text item I1, the three small <rects/> as well as
the three <path/> objects are tagged with <figurefirst:SVGitem figurefirst:name=somename> allowing the text and color
of the objects to be changed in the final output shown in B. (C-D) Using <figurefirst:pathspec> and <figurefirst:patchspec>
a palette of line or patch styles respectively, can be defined in SVG (C) and then passed as keyword arguments to Matplotlib plotting functions
to generate the plot in D. (E) FigureFirst simplifies keeping track of when, how, and why your figures are created by embedding the time
modified, user notes, and full traceback directly into each FigureFirst generated layer.

the pass_xml() method of the layout class can be used to iden-
tify axes as slides in a JessyInk (https://launchpad.net/jessyink)
presentation, or attach mouseover events or even custom javascript
routines to a plotted path.

FigureFirst can also expose many types of SVG objects includ-
ing text, patches, and circles to Python by tagging the object with
the <figurefirst:SVGitem> tag (Fig. 5C-D). This makes it
possible to use the Inkscape user interface to place labels, arrows,
etc. while using Python to edit their attributes based on the data.

When quickly prototyping analysis and figures, it is easy to
lose track of when you have updated a figure, and what code you
used to generate it. FigureFirst allows the user to embed traceback
information, time modified, and custom notes into the SVG file
directly using the following option. See Figure 4E for a screenshot
of the Inkscape output.
layout.append_figure_to_layer(layout.figures[group],

group,
save_traceback=True,
notes=notes[group])

In the future, we plan to expand the traceback capability by
optionally linking the traceback to a github page so that when
a FigureFirst generated SVG file is shared, other viewers can
quickly find the code and data used to generate the figure.
This option would directly and automatically link the scientific
publication with the data and software, thereby facilitating open
science with minimal user overhead. Alternatively, for simple and
standalone Python scripts, it would be possible to embed the
scripts directly into the xml.

Architecture

FigureFirst uses a minimal Document Object Model interface
(xml.dom.minidom) to parse and write to an SVG file. We define
a set of xml tags that the user may use to decorate a subset of
SVG objects. Our library then exposes these objects to Python,
where they are used, for example, to generate Matplotlib axes. We
use the <figurefirst:> namespace in our xml to ensure that
these tags will not collide with any other tags in the document.

When constructing a figurefirst.FigureLayout, Fig-
ureFirst parses the SVG document and transforms tagged SVG
elements into a Python object that holds the key graphical data
specified by SVG. For instance, as mentioned above, a box
tagged with <figurefirst:axis> will be used to create a
FigureFirst.Axis object that contains the x,y position of
the origin, as well as the height and width of the tagged box.
In the case that the tagged SVG objects are subject to geometric
transforms from enclosing containers, FigureFirst will compose
the transforms and apply them to the origin, height, and width
coordinates of the Matplotlib axes so that the resulting Matplotlib
figure matches what is seen by the user when the layout is rendered
in Inkscape.

Within a figurefirst.FigureLayout object, axes ob-
jects are organized within a grouping hierarchy specified by
the SVG groups or Inkscape layers that enclose the tagged
box. Like the axes, these groups and layers are exposed to
FigureFirst using xml tags: <figurefirst:group> and
<figurefirst:figure> respectively.

We use Inkscape layers as the top level of the grouping
hierarchy. Each layer generatea a new Matplotlib figure instance
that holds the enclosed <figurefirst:axis> objects, and the
dimensions of these figures are determined by the dimensions of
the SVG document. Additional levels of grouping are specified by
tagging groups with the <figurefirst:group> tag. In the
case that a <figurefirst:figure> tag is not indicated, all
the axes of the document are collected into the default figure with
the name 'none'.

The <figurefirst:figure> tag can also be used at
the level of groups and individual boxes to support figure
templates. Templates allow a sub-layout prototype to be repli-
cated multiple times within the context of a larger docu-
ment. To use templates a group of <figurefirst:axis>
boxes is tagged with a <figurefirst:figure> tag.
This template is then targeted to single boxes that are
tagged with the <figurefirst:figure> that contains a

https://launchpad.net/jessyink

62 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

<figurefirst:template> attribute indicating the name of
the template to use. The template is subsequently scaled and
translated to fit within the bounds of the target.

Summary and Future Directions

Matplotlib provides a rich and powerful low-level API that allows
exquisite control over every aspect of a plot. Although high level
interfaces such as subplot and gridspec that attempt to simplify the
layout of a figure exist, these do not always meet the demands of a
visualization problem. For example, consider Fig. 1 where we plot
the raw data and marginal distributions from Fisher’s iris dataset
[Fisher36]. In Fig. 1A we use the gridspec API to construct a 2X4
grid, and then define the axes within the constraints of this grid.
Compare this to Fig. 1B where we use figurefirst to plot into a
layout. Not only does careful placing of the plotting axes make
better use of the figure space, but the spacing emphasizes certain
comparisons over others. Of course, it is entirely possible to con-
struct a nearly identical figure using the Matploltib API, however
this would require writing functions that manually specify each
axis location or contain a considerable amount of layout logic. In
addition to being rather lengthy, it would be difficult to write these
functions in a way that generalizes across figures. In contrast, as
shown below, only 27 lines of code were required to load the data
and plot Fig. 1B using FigureFirst. Note that nearly all the styling
information is encapsulated within the layout document. In fact,
in the case of the marginal distributions, we use the names from
the layout to index into our Python data structure (line 21), thus
the layout even specifies what data to plot and where.

1 from sklearn import datasets
2 import numpy as np
3 import figurefirst as fifi
4 d = datasets.load_iris()
5 data = dict()
6 for n,v in zip(d.feature_names,d.data.T):
7 data[tuple(n.split()[:2][::-1])] = v
8 layout = fifi.FigureLayout('example_layout.svg')
9 layout.make_mplfigures()

10 kwa = layout.pathspecs['petal'].mplkwargs()
11 layout.axes['raw'].scatter(data['width','petal'],
12 data['length','petal'],
13 **kwa)
14 kwa = layout.pathspecs['sepal'].mplkwargs()
15 layout.axes['raw'].scatter(data['width','sepal'],
16 data['length','sepal'],
17 **kwa)
18 for key in layout.axes.keys() :
19 if key in data.keys():
20 kwa = layout.pathspecs[key[1]].mplkwargs()
21 counts,b = np.histogram(data[key],
22 np.arange(0,11))
23 layout.axes[key].fill_between(
24 b[:-1]+0.5,0,counts,**kwa)
25 layout.apply_mpl_methods()
26 fifi.mpl_functions.set_spines(layout)
27 layout.save('example.svg')

The use of layout documents to structure graphical elements is
common in many domains of computer science, including the
design of graphical user interfaces and the organization of web
pages. FigureFirst takes this concept and applies it to the construc-
tion of scientific figures. This approach makes it possible to update
figures with new data independently (saving computational time).
Often when working on a scientific figure early in the process, the
overall layout and figure size is unknown. Or perhaps the figure
needs to be reformatted for a different journal’s size, or for a
poster or slide format. With FigureFirst these changes are as easy

as rearranging the rectangles in Inkscape, and rerunning the same
code (Fig. 4D-E). This workflow exemplifies the key contribution
of FigureFirst: separating figure layout from data analysis, so that
the software is not cluttered with code to generate the layout, and
allowing for quick reorganization.

Thus far, we have focused our development efforts on using
FigureFirst in conjunction with Inkscape. Inkscape is convenient
in that it is (a) open source, (b) has a strong feature set, (c) uses
the open SVG standard, (d) is available for all major operating
systems, and (e) has a built-in xml editor. In principle, however,
any SVG-compatible graphical layout software can be used (e.g.
Adobe Illustrator). In the future, we plan to test other user
interfaces to help increase our user base. Adobe Illustrator un-
fortunately does not use the same open SVG standard as Inkscape,
so adding full support for Illustrator will require signficant effort,
though it is possible and we will continue to explore that direction.
Furthermore, developing a Javascript-based SVG editor that could
easily decorate a SVG file with FigureFirst tags could then be
employed as a Jupyter notebook extension to facilitate quick Fig-
ureFirst layout creation within a Jupyter session. In the meantime,
layouts can be created externally and the following code can be
used to display the output.SVG in the notebook:
from IPython.display import display,SVG
display(SVG(output.svg))

Presently, the most serious performance issue with FigureFirst is
that large Matplotlib collections are difficult for Inkscape to render
efficiently. This can be circumvented by utilizing the Matplotlib
axis method <set_rasterization_zorder(N)> to raster-
ize large collections of patches. Other SVG rendering engines,
such as the ones used by Google Chrome and Adobe Illustrator,
have fewer problems, suggesting that this is a solvable issue.

As described previously in the Additional SVG/Python Inter-
operability section, we have implemented a simple method of
embedding Python traceback information into the output SVG
generated by FigureFirst. Linking this traceback with online repos-
itories and data will make it possible for readers to easily access
the data and code in an organized way, rearrange the presentation
for their own needs, or apply the same analysis to a new dataset.
In this way, FigureFirst simultaneously decouples the tasks of
layout, analysis, and data sharing, while keeping them intimately
connected, making open science easy and hassle free.

Acknowledgements

We conceived and began work on FigureFirst in lab of Michael
Dickinson at Caltech, supported by a grant (T.L.) from the
National Science Foundation (IOS 1452510). Travel funding and
future developement is also supported by the Moore-Sloan Data
Science (F.v.B).

REFERENCES

[Aird11] W. C. Aird. Discovery of the cardiovascular system: from
Galen to William Harvey., Journal of Thrombosis and
Haemostasis, 9 (Suppl. 1): 118-129, July 2011. https://doi.
org/10.1111/j.1538-7836.2011.04312.x

[Altert13] M Albert, J. Andler, T. Bah, P. Barbry-Blot, J. Barraud, B.
Baxter Inkscape., http://www.inkscape.org , 2013.

[Fisher36] R. A. Fisher The use of multiple measurements in taxonomic
problems., Ann. Hum. Genet. 7 (2): 179-188, 1936. https:
//doi.org/10.1111/j.1469-1809.1936.tb02137.x

[Hunter08] John D. Hunter. Matplotlib: A 2D graphics environment.,
Computing In Science & Engineering 9.3: 90-95, 2007.
https://doi.org/10.1109/MCSE.2007.55

https://doi.org/10.1111/j.1538-7836.2011.04312.x
https://doi.org/10.1111/j.1538-7836.2011.04312.x
http://www.inkscape.org
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1109/MCSE.2007.55

FIGUREFIRST: A LAYOUT-FIRST APPROACH FOR SCIENTIFIC FIGURES 63

[Jagannathan12] Arvind Krishnaa Jagannathan, Srikrishnan Suresh, and
Vishal Gautham Venkataraaman. A Canvas-Based Presen-
tation Tool Using Scalable Vector Graphics., 2012 IEEE
Fourth International Conference on Technology for Educa-
tion. 2012. https://doi.org/10.1109/T4E.2012.35

[Lindsay17] T. H. Lindsay, A. Sustar and M. Dickinson, The Function
and Organization of the Motor System Controlling Flight
Maneuvers in Flies., Curr Biol. 27(3):345-358, 2017. https:
//doi.org/10.1016/j.cub.2016.12.018

[Whitesides04] George M. Whitesides, ’Whitesides’ group: writing a paper.,
Advanced Materials 16.15: 1375-1377. 2004. https://doi.org/
10.1002/adma.200400767

https://doi.org/10.1109/T4E.2012.35
https://doi.org/10.1016/j.cub.2016.12.018
https://doi.org/10.1016/j.cub.2016.12.018
https://doi.org/10.1002/adma.200400767
https://doi.org/10.1002/adma.200400767

	Introduction
	Basic Usage
	Groups and Templates
	Additional SVG/Python interoperability
	Architecture
	Summary and Future Directions
	Acknowledgements
	References

