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Python meets systems neuroscience: affordable,
scalable and open-source electrophysiology in awake,
behaving rodents

Narendra Mukherjee™, Joseph Wachutka'l, Donald B Katz*3

Abstract—In-vivo electrophysiology, the recording of neurons in the brains of
awake, behaving animals, is currently undergoing paradigm shifts. There is a
push towards moving to open-source technologies that can: 1) be adjusted to
specific experiments; 2) be shared with ease; and 3) more affordably record
from larger numbers of electrodes simultaneously. Here we describe our con-
struction of a system that satisfies these three desirable properties using the
scientific Python stack and Linux. Using a Raspberry Pi to control experimental
paradigms, we build a completely open-source, HDF5-based analysis (spike
sorting) toolkit in Python. This toolkit can be easily parallelized and scales to
incorporate increasing electrode counts and longer recordings. Our rig costs
about $5000, an order of magnitude less than many comparable commercially
available electrophysiology systems.

Index Terms—in-vivo electrophysiology, Python, open-source, HDF5, spike
sorting

Introduction

The process of recording neural activity in awake, behaving an-
imals (in-vivo extracellular electrophysiology, hereafter ‘ephys’)
is key in systems neuroscience to understanding how the brain
drives complex behaviors. Typically, this process involves voltage
recordings from bundles of microwire electrodes (10-20 microns
in diameter) surgically implanted into the brain regions of interest.
Across hundreds of papers, ephys has increased our understanding
of brain systems, function and behavior in a wide range of
animal species from invertebrates (locusts and grasshoppers —
[SJLO3] [BHS15]) to fishes [CAK ™ 16], birds [LIMP 16], rodents
[JEST07] and primates [GMHLOS]. Ephys in awake, behaving
animals provides an unprecedented view of the complex and
highly variable neural dynamics that underlie accurate behavioral
responses. It provides a unique degree of resolution at both the
spatial and temporal (sub-millisecond) scales, yielding insights
into brain structure and function ranging from the cellular [HBO1]
to the systems [HRB14] [GTJ99] levels.
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The world of ephys hardware and software has classically
been dominated by proprietary and closed-source technologies.
These closed-source designs are, by default, not easily modifiable
to suit specific experimental circumstances, and, like any closed-
source technology, go against the philosophy of open science
[SHNV15]. It is also harder for other investigators to replicate
experimental results obtained by the use of such proprietary
software, given that most calculations and operations happen
under-the-hood, with underlying algorithms either being opaque
or not technically accessible to researchers of all skill levels
[IHGC12]. Furthermore, proprietary ephys hardware and software
is prohibitively expensive, and poses a high ‘barrier to entry’ for
neuroscientists starting to set up their laboratories or working
under tight budgetary constraints in smaller schools — particularly
those in nations in which research funding is scarce. Finally, the
use of closed-source technologies has ensured that ephys hardware
and software packages are slow to change. In fact, dominant ephys
technology has been virtually unchanged for the last 20 years
despite the fact that electronics and computing technology have
taken giant strides forward in that time.

With reproducible and affordable science in mind, some ephys
laboratories have recently started to explore open source ephys
hardware and software [SHNV15]. The possible value of this
move is manifold: new ephys hardware and software, apart from
being open-source, affordable and reproducible, can easily ‘scale’
with growing experiment and data sizes. It is, therefore, much
easier with open-source technology to follow the trend in mod-
ern ephys towards increasing ‘channel counts’ - recording from
hundreds, or even thousands, of electrodes implanted in several
different brain regions to better understand the inter-regional
coordination that underlies brain function and animal behavior.

In this paper, we describe a completely open-source, Python-
based hardware and software setup that we are currently using to
study the role of gustatory (taste) cortex in taste-related learning
and behavior in rats. We use a Raspberry Pi based system to coor-
dinate the various stimulus control needs of our experiments. This
includes the delivery of precise amounts of taste solutions to the
animals [KSNO2] and the optogenetic perturbation of the firing of
neurons in the taste cortex with laser sources [LMRK16] [Pas11].
To handle the ephys signals, we use chips from Intan Technologies
and a HDF5 and Python-based software setup for spike sorting
(picking out action potentials from individual neurons) [Lew98]
and analysis.
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Starting with a brief description of the hardware we have
constructed to control experimental paradigms, we will focus
on describing the computations involved at every step of our
spike sorting toolchain, highlighting software principles that make
such an analysis setup: 1) scale with increased channel counts
and longer recordings; and 2) easily parallelized on computing
environments. Traditionally, manual approaches, closed-source
software and heuristics abound in the electrophysiologist’s spike
sorting toolchain - these are time-consuming, error-prone and hard
to replicate in a principled manner [WBVI"04]. We automate
several key steps of the spike sorting pipeline with algorithms that
have been suggested elsewhere [QNBS04] [FMKO96] and describe
the accessibility and ease-of-use that the scientific Python stack
offers to electrophysiologists. Finally, we demonstrate the use of
this system to record and analyze ephys data from 64 electrodes
simultaneously in the taste cortex of rodents and point out future
directions of improvement keeping the modern ephys experiment
in mind.

Animal care, handling and surgeries

We use adult, female Long-Evans rats (300-325g) and adult mice
(15-20g) in our experiments. They are prepared with surgically im-
planted bundles of microwire electrodes bilaterally in the gustatory
(taste) cortex and intra-oral cannulae (IOCs) behind the cheek for
delivering taste solutions. All animal care and experiments comply
with the Brandeis University Institutional Animal Care and Use
Committee (IACUC) guidelines. For more details on experimental
protocols, see [SMV ™ 16].

Raspberry Pi based behavior control system

We use a Raspberry Pi running Ubuntu-MATE to weave together
the various behavioral paradigms of our experiments. This in-
cludes 1) delivering precise amounts of taste solutions to the
animals via pressurized solenoid valves, 2) measuring the animals’
licking responses with an analog-to-digital converter (ADC) cir-
cuit and 3) controlling laser sources for optogenetic perturbation.
Most of these steps involve controlling the digital I/O pins (DIO)
of the Pi — the Rpi.GPIO package provides convenient functions:
import RPi.GPIO as GPIO

# The BOARD mode ref
# by their number on the board
GPIO.setmode (GPIO.BOARD)

# Set port 1 as
GPIO.setup(l, GPIO.OUT)

# Send outputs to port 1

GPIO.output (1, 1)
GPIO.output (1, 0)

allows

an output

Electrode bundles and microdrives

We build electrode bundles with 32 nichrome-formvar microwires
(0.0015 inch diameter, from a-msystems), a 200 u fiber for
optogenetics (optionally), and 3D printed microdrives. Our custom
built drives cost about $50 and their designs are freely available
for use and modification at the Katz lab website.

Electrophysiology hardware

We use an open-source ephys recording system from Intan
Technologies for neural recordings. The RHD2000 series ephys
recording headstages connect to electrode bundles implanted in the
animal’s brain and contain 32-128 amplifiers and ADCs. The Intan

data acquisition system offers an open-source C++ based graphical
interface that can record up to 512 electrodes (4 headstages)
simultaneously at sampling rates of up to 30kHz/channel. This
recording system is relatively robust to AC noise, because the
electrode signals are digitized right on the headstage itself, but we
additionally encase the animal’s behavior and recording chamber
in a Faraday cage constructed with standard aluminum insect
netting.

Electrophysiology in systems neuroscience

In-vivo ephys is unique in systems neuroscience in the temporal
and spatial view it provides into the role of the brain in gener-
ating accurate behavioral responses. Ephys typically involves the
placement of a bundle [SMV™16] or spatially structured array
[WRL™15] of electrodes in a brain region of interest. After the
animal recovers from the surgical implantation of electrodes, its
behavior in tightly controlled experimental paradigms is correlated
with neural activity in the brain region being recorded from. The
study of sensory systems (vision, somatosensation, olfaction, taste,
etc) in the brain, for instance, involves an awake, behaving animal
experiencing different sensory stimuli while ephys recordings are
performed in the corresponding sensory cortex (or other involved
regions). In addition, ephys electrodes are often implanted in
multiple brain regions in the same animal in order to understand
the role of inter-regional coordination in the animal’s behavior.

In our lab, we study taste processing in adult mice and rats -
Figure 1 shows a typical experimental setup. We surgically implant
bundles of 64 microwire electrodes bilaterally (32 wires in each
hemisphere) in the taste cortex (among many other regions). Our
basic experimental paradigm involves the animal tasting solutions
of different kinds (sweet - sucrose, salty - NaCl or bitter - quinine,
for instance) while its behavioral responses to the tastes are being
recorded [LMRK16]. All this while, we record electrical activity
in the taste cortex using the implanted electrodes and eventually
try to understand the animals behavior in the light of the activity
of the neurons being recorded from.

Spike sorting
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Fig. 1: An example of a sensory systems experimental setup. The
animal (rodent, primate, etc) experiences sensory stimuli (taste, in this
case) while cortical (or other) neurons are being recorded. Eventually,
the activity of the recorded population of neurons (also called units)
is analyzed in the context of the animal’s behavioral responses.

The essential step in the analysis of ephys data, therefore, is
to isolate (and identify) the activity of single neurons from the
raw voltage recordings from the implanted electrodes. As shown
in Figure 1, this involves high-pass filtering of the raw voltage
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signals (see next section for more details) to identify putative
action potentials (or ‘spikes’). These spikes can originate either
from a single neuron or multiple neurons. We thus need to sort
them into groups, based on how they are inferred to originate
(spikes inferred to be from single neurons are called ‘single units’
and those from multiple neurons are called ‘multi units’). This
entire pipeline is, therefore, called ‘spike sorting’. Typically, we
are able to isolate 10-40 neurons from our recordings with 64
electrodes - we then go on to correlate the responses of this
population of recorded units with the animal’s behavior in our
experimental paradigms (see [SMV " 16], [LMRK16] as examples,
and Figure 1).

Scientific Python stack for data analysis — spike sorting

The recent push in ephys experiments towards increased channel
counts and longer recordings poses significant data handling and
analysis challenges. Each of the implanted electrodes needs to
be sampled at frequencies in the range of 20-30kHz if it is
to clearly render action potentials (the signature binary voltage
waveforms, about Ims in duration, that neurons produce when
active — also called ‘spikes’, hence the name ‘spike sorting’). In
our experiments, we sample signals coming from 64 electrodes at
30kHz for up to 2 hours, generating datasets that total 10-30GB
in size. Datasets of such sizes cannot be loaded into memory and
processed in serial — there is evidently a need to convert the data
to a format that allows access to specific parts of the data and can
support a parallel computing framework.

The Hierarchical Data Format (HDF5) is ideal for dealing
with such big numerical datasets. We use the Pytables package
to build, structure and modify HDFS5 files at every point in our
spike sorting and analysis toolchain. Pytables allows data to be
stored and extracted from HDF?5 files in the convenient form of
numpy arrays. We decided to use individual electrodes as storage
and computation splits, storing the voltage recording from each
electrode as a separate array in the HDFS file with its analysis
assigned to a separate process.

We adopt a semi-supervised approach to spike sorting, starting
with a (parallelized) set of automated filtering and clustering
steps that can be fine-tuned by the experimenter (who presumably
comes equipped with expert knowledge about action potential
shapes actually observed in the brain). Our setup therefore in-
volves 3 distinct steps (all the code is available on Github):

1)  Pre-processing (blech_clust.py) — Constructs a HDFS5 file
post-experiment with the raw binary data recorded by the
Intan system, acquires the clustering parameters from the
user and creates a shell file that runs the actual processing
step in parallel.

2) Processing (blech_process.py) — Runs filtering and clus-
tering steps on the voltage data from every electrode and
plots out the results.

3) Post-processing (blech_post_process.py) — Removes
raw recordings from the HDFS5 file and compresses it,
and then allows the user to sieve out real spikes from the
putative spikes plotted in step 2.

Pre-processing

The pre-processing starts by building a HDFS file for the ephys
dataset with separate nodes for raw neural electrodes, digital inputs
and outputs. This structuring of different aspects of the data into
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separate nodes is a recurrent feature of our toolchain. The Pytables
library provides a convenient set of functions for this purpose:

# modified from blech_clust.py

import tables

# Create hdf5 file,

hf5 =

and make group for raw data
tables.open_file (hdf5_name[-1]+'.h5", 'w',
title = hdf5_name 1)

# Node for raw electrode da
hf5.create_group('/",
# Node for digital inputs
hf5.create_group('/', 'digital_ in")
#Node for digital outputs
hf5.create_group('/', 'digital out')
hf5.close ()

-1
)

'raw'

We have set up Pytables extendable arrays (EArrays) to read
the electrode and digital input data saved by the Intan system.
Extendable arrays are akin to standard Python lists in the sense
that their size can be ‘extended’ as data is appended to them
— unlike lists, however, they are a homogeneous data class and
cannot store different types together. The Intan system saves all
the data as integers in binary files and therefore, EArrays of type
int (defined by IntAtom in Pytables) are perfect for this purpose.
These EArrays can be constructed and filled as follows:

# Modified from cr
# Open HDF5
hf5 = tables.open_file(file_name,
# 2 ports/headstages each with 32
# electrodes in our exper
n_electrodes = len(ports) 32

# All the data is stored as integers
atom = tables.IntAtom()

# Create

e_hdf_arrays () in
read and write perm
Trgr)

| file.py
issions — r+

file with

iments

electrodes
for i in range(n_electrodes):
el = hf5.create_earray('/raw',
'electrodes%i' % i,
atom, (0,))

arrays for neural

hf5.close ()

# Modified fr read_files () in read _file.py

file with read and w

# Open HDF5
hf5 = tables.open_file(file_name,

rite permissions r+

Trtt)

# Fill data from electrode 1 on port A
# Electrode data are stored in binary files
# as 16 signed integers
# Filenames of binary files as defined
# by the Intan system
data = np.fromfile('amp-A-001.dat"',
dtype = np.dtype('int1l6'))
hf5.flush ()
hf5.close ()

To facilitate the spike sorting process, we use the easygui package
to integrate user inputs through a simple graphical interface. Fi-
nally, we use GNU Parallel [Tan11] to run filtering and clustering
on every electrode in the dataset in a separate process. GNU
Parallel is a great parallelization tool on .nix systems, and allows
us to: 1) assign a minimum amount of RAM to every process and
2) resume failed processes by reading from a log file.

Processing

The voltage data from the electrodes are stored as signed integers
in the HDFS5 file in the pre-processing step — they need to be
converted into actual voltage values (in microvolts) as floats. The
datasheet of the Intan RHD2000 system gives the transformation
as:

voltage(uV) = 0.195 x voltage(int)

Spikes are high frequency events that typically last for 1-1.5
ms — we therefore remove low frequency transients by bandpass
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filtering the data in 300-3000 Hz using a 2-pole Butterworth filter
as follows:

# Modified from get_filtered_ electrode()

#o1 lustering.py

from scipy.signal import butter

from scipy.signal import filtfilt

m, n = butter (2, [300.0/(sampling_rate/2.0),
3000.0/ (sampling_rate/2.0)1,
btype = 'bandpass')

filtfilt (m, n, el)

# 1n cC

filt_el =

Depending on the position of the electrode in relation to neurons
in the brain, action potentials appear as transiently large posi-
tive or negative deflections from the mean voltage detected on
the electrode. Spike sorting toolchains thus typically impose an
amplitude threshold on the voltage data to detect spikes. In our
case (i.e., cortical neurons recorded extracellularly with microwire
electrodes), the wide swath of action potentials appear as negative
voltage deflections from the average — we therefore need to choose
segments of the recording that go below a predefined threshold.
The threshold we define is based on the median of the electrode’s
absolute voltage (for details, see [QNBS04]):

# Modified from extract_waveforms () in

clustering.py

m = np.mean (filt_el)
th = 5.0+np.median(np.abs (filt_el) /0.6745)
pos = np.where (filt_el <= m - th) [0]

We treat each of these segments as a ‘putative spike’. We locate
the minimum of each segment and slice out 1.5ms (0.5ms before
the minimum, 1ms after = 45 samples at 30kHz) of data around
it. These segments, having been recorded digitally, are eventually
approximations of the actual analog signal with repeated samples.
Even at the relatively high sampling rates that we use in our
experiments, it is possible that these segments are significantly
‘jittered’ in time and their shapes do not line up exactly at their
minima due to sampling approximation. In addition, due to a
variety of electrical noise that seeps into such a recording, we
pick up a large number of segments that have multiple troughs (or
minima) and are unlikely to be action potentials. To deal with these
issues, we ‘dejitter’ the set of potential spikes by interpolating their
shapes (using scipy.interpolate.interpld), up-sampling them 10-
fold using the interpolation, and finally picking just the segments
that can be lined up by their unique minimum.

This set of 450-dimensional putative spikes now needs to be
sorted into two main groups: one that consists of actual action
potentials recorded extracellularly and the other that consists of
noise (this is high-frequency noise that slips in despite the filter-
ing and amplitude thresholding steps). In addition, an electrode
can record action potentials from multiple neurons - the group
consisting of real spikes, therefore, needs to be further sorted
into one or more groups depending upon the number of neurons
that were recorded on the electrode. We start this process by
first splitting up the set of putative spikes into several clusters
by fitting a Gaussian Mixture Model (GMM) [Lew98]. GMM is
an unsupervised clustering technique that assumes that the data
originate from several different groups, each defined by a Gaussian
distribution (in our case over the 450 dimensions of the putative
spikes). Classifying the clusters that the GMM picks as noise or
real spikes is eventually a subjective decision (explained in the
post-processing section). The user picks the best solution with
their expert knowledge in the manual part of our semi-automated
spike sorting toolchain (which is potentially time cosuming for
recordings with large numbers of electrodes, see Discussion for
more details).

Each putative spike waveform picked by the procedure above
consists of 450 samples after interpolation — there can be more
than a million such waveforms in a 2 hour recording from each
electrode. Fitting a GMM in such a high dimensional space is
both processor time and memory consuming (and can potentially
run into the curse-of-dimensionality). We therefore reduce the
dimensionality of the dataset by picking the first 3 components
produced through principal component analysis (PCA) [BS14]
using the scikit-learn package [PVG'11]. These principal com-
ponents, however, are known to depend mostly on the amplitude-
induced variance in shapes of recorded action potential waveforms
— to address this possibility, we scale each waveform by its energy
(modified from [FMKO96]), defined as follows, before performing
the PCA:

450

Y X

i=1

1
Energy = —
n

where X; = i component of the waveform

Finally, we feed in the energy and maximal amplitude of
each waveform as features into the GMM in addition to the first
3 principal components. Using scikit-learn’s GMM API, we fit
GMMs with cluster numbers varying from 2 to a user-specified
maximum number (usually 7 or 8). Each of these models is fit
to the data several times (usually 10) and the best fit is chosen
according to the Bayesian Information Criterion (BIC) [BK10].

The clustering results need to be plotted for the user to be able
to pick action potentials from the noise in the post-processing
step. The most important in these sets of plots are the actual
waveforms of the spikes clustered together by the GMM and the
distribution of their inter-spike-intervals (ISIs) (more details in
the post-processing step). Plotting the waveforms of the putative
spikes in every cluster produced by the GMM together, however, is
the most memory-expensive step of our toolchain. Each putative
spike is 1.5ms (or 45 samples) long, and there can be tens of
thousands of spikes in every cluster (see Figures 2, 3). For a 2
hour recording with 64 electrodes, the plotting step with matplotlib
[Hun07] can consume up to 6GB of memory although the PNG
files that are saved to disk are only of the order of 100KB. High
memory consumption during plotting also limits the possibility
of applying this spike sorting framework to recordings that are
several hours long — as a potential substitute, we have preliminarily
set up a live plotting toolchain using Bokeh that can be used during
the post-processing step. We are currently trying to work out a
more memory-efficient plotting framework, and any suggestions
to that end are welcome.

Post-processing

Once the parallelized processing step outlined above is over, we
start the post-processing step by first deleting the raw electrode
recordings (under the ‘raw’ node) and compressing the HDFS5 file
using ptrepack as follows:

# Modified from blech_post_process.py

hf5.remove_node ('/raw', recursive = True)

# Use ptrepack with compression level = 9 and

# compression library = blosc

os.system("ptrepack —--chunkshape=auto —--propindexes
—--complevel=9 --complib=blosc " + hdf5_name
+ " " + hdf5_name[:-3] + "_repacked.h5")

The logic of the post-processing step revolves around allowing the
user to look at the GMM solutions for the putative spikes from
every electrode, pick the solution that best splits the noise and


https://en.wikipedia.org/wiki/Curse_of_dimensionality
http://bokeh.pydata.org/en/latest/docs/dev_guide.html
http://www.pytables.org/usersguide/utilities.html

102

Unit 23, total waveforms = 6733
Electrode: 49, Single Unit: 1, RSU: 1, F5: 0
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Unit: 23, Window size: 250 ms, Step size: 25 ms
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Fig. 2: Tivo types of single units isolated from taste cortex recordings. Spike waveforms on the left, and responses to the taste stimuli on the
right. Top-left: Spikes waveforms of a regular spiking unit (RSU) - 45 samples (1.5ms) on the time/x axis. Note the 2 inflection points as the
spikes go back to baseline from their minimum - this is characteristic of the shape of RSUs. RSUs represent the activity of excitatory cortical
pyramidal neurons on ephys records - these spikes are slow and take about Ims (20-30 samples) to go back up to baseline from their minimum
(with 2 inflection points). Bottom-left: Spike waveforms of a fast spiking unit (FS) - 45 samples (1.5ms) on the time/x axis. Compare to the
spike waveforms of the RSU in the top-left figure and note that this unit has narrower/faster spikes that take only 5-10 samples (1/3 ms) to go
back up to baseline from their minimum. FSs represent the activity of (usually inhibitory) cortical interneurons on ephys records. Top-Right:
Peri-stimulus time histogram (PSTH) - Plot of the activity of the RSU around the time of stimulus (taste) delivery (0 on the time/x axis). Note
the dramatic increase in firing rate (spikes/second) that follows taste delivery. Bottom-Right: Peri-stimulus time histogram (PSTH) - Plot of
the activity of the FS around the time of stimulus (taste) delivery (0 on the time/x axis). Note the dramatic increase in firing rate (spikes/second)
that follows taste delivery. Also compare to the PSTH of the RSU in the figure above and note that the FS has a higher firing rate (more spikes)
than the RSU. 0.1M Sodium Chloride (NaCl), 0.15M Sucrose, ImM Quinine-HCI and a 50:50 mixture of 0.1M NaCl and 0.15M Sucrose were

used as the taste stimuli.

spike clusters, and choose the cluster numbers that corresponds to
spikes. The GMM clustering step, being unsupervised in nature,
can sometimes put spikes from two (or more) separate neurons
(with very similar energy-scaled shapes, but different amplitudes)
in the same cluster or split the spikes from a single neuron across
several clusters. In addition, the actual action potential waveform
observed on an electrode depends on the timing of the activity of
the neurons in its vicinity — co-active neurons near an electrode can
additively produce spike waveforms that have smaller amplitude
and are noisier (called ‘multi’ units) (Figure 3) than single, isolated
neurons (called ‘single’ units, Figure 2). Therefore, we set up
utilities to merge and split clusters in the post-processing step —
users can choose to merge clusters when the spikes from a single
neuron have been distributed across clusters or split (with a GMM

clustering using the same features as in the processing step) a
single cluster if it contains spikes from separate neurons.

HDFS5, once again, provides a convenient format to store the
single and multi units that the user picks from the GMM results.
We make a ‘sorted_units’ node in the file to which units are added
in the order that they are picked by the user. In addition, we make
a ‘unit_descriptor’ table that contains metadata about the units
that are picked — these metadata are essential in all downstream
analyses of the activity of the neurons in the dataset. To set up such
a table through Pytables, we first need to create a class describing
the datatypes that the columns of the table will hold and then use
this class as the description while creating the table.

# Modified from blech_post_process.py

# Define a unit_descriptor class to be used
# to add things (anything!) about the sorted
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Unit 12, total waveforms = 12265
Electrode: 32, Single Unit: 0, RSU: 0, FS: 0
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Fig. 3: A multi unit - 45 samples (1.5ms) on the time/x axis. Compare
to the single units in Figure 2 and note that these spikes have smaller
amplitudes and are noisier. Multi units are produced by the co-activity
of multiple neurons near the electrode.
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Fig. 4: A noise cluster - 45 samples (1.5ms) on the time/x axis.
This is high frequency noise that seeps in despite the filtering and
thresholding steps used in the processing step. Compare to the single
units in Figure 2 and multi unit in Figure 3 and note that these
waveforms are much smoother and do not have the characteristics
of a unit.

# units to a pytables table

class UnitDescriptor (tables.IsDescription):
electrode_number = tables.Int32Col ()
single_unit = tables.Int32Col ()
regular_spiking = tables.Int32Col ()
fast_spiking = tables.Int32Col ()

# Make a table describing the sorted units.
# If unit_descriptor already exists, just open it up
try:
table = hf5.create_table('/', 'unit descriptor',
description = UnitDescriptor)
except Exception:
table = hfb5.root.unit_descriptor

Cortical neurons (including gustatory cortical neurons that we
record from in our experiments) fall into two major categories
— 1) excitatory pyramidal cells that define cortical layers and have

long range connections across brain regions, and 2) inhibitory
interneurons that have short range connections. In ephys records,
pyramidal cells produce relatively large and slow action potentials
at rates ranging from 5-20 Hz (spikes/s) (Figure 2, top). Interneu-
rons, on the other hand, have much higher spiking rates (usually
from 25-50Hz, and sometimes up to 70 Hz) and much faster (and
hence, narrower) action potentials (Figure 2, bottom). Therefore,
in the unit_descriptor table, we save the type of cortical neuron
that the unit corresponds to in addition to the electrode number
it was located on and whether its a single unit. In keeping with
classical ephys terminology, we refer to putative pyramidal neuron
units as ‘regular spiking units (RSU)’ and interneuron units as ‘fast
spiking units (FS)’ [MCLP85] [HLVH " 13]. In addition, anatom-
ically, pyramidal cells are much larger and more abundant than
interneurons in cortical regions [YEH11] [AFY " 13] [PTF"17] —
expectedly, in a typical gustatory cortex recording, 60-70% of the
units we isolate are RSUs. This classification of units is in no
way restrictive — new descriptions can simply be added to the
UnitDescriptor class to account for recordings in a sub-cortical
region that contains a different electrophysiological unit.

Apart from the shape of the spikes (look at Figures 2, 3, 4 to
compare spikes and typical noise) in a cluster, the distribution of
their inter-spike-intervals (ISIs) (plotted in the processing step)
is another important factor in differentiating single units from
multi units or noise. Due to electrochemical constraints, after every
action potential, neurons enter a ‘refractory period’ - most neurons
cannot produce another spike for about 2ms. We, therefore, advise
a relatively conservative ISI threshold while classifying single
units — in our recordings, we designate a cluster as a single unit
only if <0.01% (<1 in 10000) spikes fall within 2ms of another
spike.

Finally, we consider the possibility that since the processing
of the voltage data from each electrode happens independently in
a parallelized manner, we might pick up action potentials from the
same neuron on different electrodes (if they are positioned close
to each other). We, therefore, calculate ‘similarity’ between every
pair of units in the dataset — this is the percentage of spikes in a
unit that are within 1ms of spikes in a different unit. This metric
should ideally be very close to O for two distinct neurons that are
spiking independently — in our datasets, we consider units that
have similarity greater than 20% as the same neuron and discard
one of them from our downstream analysis. To speed up this
analysis, especially for datasets that have 20-40 neurons each with
>10000 spikes, we use Numba’s just-in-time compilation (JIT)
feature:

# Modified from blech_units_distance.py
from numba import jit
@jit (nogil = True)
def unit_distance (this_unit_times,
this_unit_counter = 0
other_unit_counter = 0
for i in range(len(this_unit_times)):
for j in range(len(other_unit_times)):
if np.abs(this_unit_times[i]
- other_unit_times[7])
<= 1.0:
this_unit_counter += 1

other_unit_counter += 1
return this_unit_counter, other_unit_counter

other_unit_times) :

Discussion

In-vivo extracellular electrophysiology in awake, behaving ani-
mals provides a unique spatiotemporal glimpse into the activity
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of populations of neurons in the brain that underlie the animals’
behavioral responses to complex stimuli. Recording, detecting, an-
alyzing and isolating action potentials of single neurons in a brain
region in an awake animal poses a variety of technical challenges,
both at the hardware and software levels. Rodent and primate
electrophysiologists have classically used proprietary hardware
and software solutions in their experiments — these closed-source
technologies are expensive, not suited to specific experimental
contexts and hard to adapt to sharing and collaboration. The push
towards open, collaborative and reproducible science has spurred
calls for affordable, scalable open-source experimental setups. In
this paper, we have outlined a Raspberry Pi and scientific Python-
based solution to these technical challenges and described its suc-
cessful use in electrophysiological and optogenetic experiments in
the taste cortex of awake mice and rats. Our setup can scale as data
sizes grow with increasingly longer recordings and larger number
of electrodes, and costs ~$5000 (compared to up to $100k for a
comparable proprietary setup).

Our approach uses the HDFS5 data format, which allows us to
organize all of the data (and their associated metadata) under spe-
cific nodes in the same file. This approach has several advantages
over traditional practices of organizing ephys data. Firstly, HDF5
is a widely used cross-platform data format that has convenient
APIs in all major programming languages. Secondly, having all
the data from an experimental session in the same file (that can
be easily compressed — we use ptrepack in the post-processing
step) makes data sharing and collaboration easier. Thirdly, HDF5
files allow quick access to desired parts of the data during analysis
— as a consequence, larger than memory workflows can easily
be supported without worrying about the I/O overhead involved.
Lastly, in our setup, we splice the storage and processing of the
data by individual electrodes — this allows us to run the processing
step in parallel on several electrodes together bringing down
processing time significantly.

The standard approach of picking units in ephys studies in-
volves arbitrary, user-defined amplitude threshold on spike wave-
forms during ephys recordings and manually drawing polygons
around spikes from a putative unit in principal component (PC)
space. This process is very time consuming for the experimenter
and is prone to human errors. Our semi-automated approach to
spike sorting is faster and more principled than the standard
approach - we automate both these steps of the traditional spike
sorting toolchain by using an amplitude threshold that depends
on the median voltage recorded on an electrode and clustering
putative spikes with a Gaussian Mixture Model (GMM). The
user’s expertise only enters the process in the last step of our
workflow — they label the clusters picked out by the GMM as
noise, single unit or multi unit based on the shapes of the spike
waveforms and their ISI distributions. As the number of electrodes
in an electrophysiological recording is already starting to run into
the hundreds and thousands, there is a need to automate this last
manual step as well — this can be achieved by fitting supervised
classifiers to the units (and their types) picked out manually in a
few training datasets. As the waveforms of spikes can depend upon
the brain region being recorded from, such an approach would
likely have to applied to every brain region separately.

During the pre-processing step, we restrict our setup to pick
only negative spikes — those in which the voltage deflection goes
below a certain threshold. While most extracellular spikes will
appear as negative voltage deflections (due to the fact that they
are being mostly recorded from outside the axons of neurons),
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sometimes an electrode, depending on the brain region, ends up
being close enough to the cell body of a neuron to record positive
spikes. Our pre-processing step requires only trivial modifications
to include positive deflections ‘above’ a threshold as spikes as
well.

The use of the HDF5 format and the ease of supporting larger-
than-memory workflows allows our toolchain to scale to longer
recordings and increased electrode counts. However, as explained
previously, plotting all the spike waveforms in a cluster together
during the processing step using matplotlib is a major memory
bottleneck in our workflow. We are working on still more efficient
workarounds, and have devised a live plotting setup with Bokeh
(that plots 50 waveforms at a time) that can be used during post
processing instead. In addition, recordings running for several
hours (or days) have to account for the change in spike waveforms
induced by ‘electrode drift’ - the electrode moves around in the
fluid medium of the brain with time. The live plotting module is
potentially useful in such longer recordings as well — it can be used
to look at spikes recorded in small windows of time (30 minutes
say) to see if their shapes change with time.

We are currently attempting to fold our Python based ephys
analysis setup into the format of a Python package that can be
used by electrophysiologists (using the Intan recording system) to
analyze their data with ease on a shared computing resource or on
personal workstations. We think that using the scientific Python
stack will make previously hidden under-the-hood spike sorting
principles clearer to the average electrophysiologist, and will make
implementing downstream analyses on these data easier.
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